Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach
Abstract
1. Introduction
- To what extent have digital technologies influenced the evolution of skills, knowledge, tools, and practices?
- How does the coordination between different actors change with the introduction of digital technologies?
- Which rules and routines have been institutionalised with the use of digital technologies?
- How do digital technologies contribute to the management of an agroecological farm?
2. Theoretical Framework
2.1. Digitalisation as a Socio-Technical Process
2.2. Agroecology as a Science, Set of Practices, and Social Movement
2.3. The Debate of Digital Agroecology
3. Materials and Methods
3.1. Technography
3.2. Data Collection
3.3. Context of the Study
3.3.1. Farm Level
3.3.2. Market Level
3.3.3. Local Community Level
3.3.4. Global or Institutional Level
3.3.5. Natural Environment Level
4. Results
4.1. Digitalisation at Mulini Di Segalari
4.1.1. Social Media and the E-Commerce Website
4.1.2. Weather Station
4.1.3. Drones
4.2. Impacts of Digital Technologies at Mulini Di Segalari
4.2.1. Making/Doing
4.2.2. Distributed Cognition
4.2.3. Rules and Routines
5. Discussion
- Data-based decision-making for vineyard management and grape harvesting.
- Formalised partnerships with technology providers due to regulatory limitations.
- Asymmetric communication flows and emerging hierarchies in technical knowledge.
- Integration of technology into certification compliance routines.
- Synergies, Recycling and Biodiversity (Ecological Principles)
- Synergies, by enhancing functional interactions between natural elements.
- Recycling, through better cover crop and organic matter management.
- Biodiversity, by ensuring diverse vegetation is conserved and monitored effectively.
- 2.
- Efficiency and Resilience (Ecological/Economic Principles)
- Resilience, by enhancing the farm’s adaptability to market fluctuations.
- Resource-use efficiency, by reducing unnecessary applications of water or fertilisers [85].
- Resilience, through improved responsiveness to environmental variability.
- 3.
- Co-creation and Knowledge Sharing, Human and Social Values (Social Principles)
- Co-creation and sharing of knowledge, as the farm becomes a site for experimentation and learning.
- Human and social values, by recognising the farmer’s role as both user and contributor in technological innovation.
- 4.
- Circular and Solidarity Economy, Responsible Governance, Culture, and Food traditions (Socio-economic Principles)
- Circular and solidarity economy, by localising sales and minimising intermediaries.
- Responsible governance, through transparency about agroecological practices to consumers.
- Culture and food traditions, by disseminating the local culture and traditions to different stakeholders globally.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertoglio, R.; Corbo, C.; Renga, F.M.; Matteucci, M. The Digital Agricultural Revolution: A Bibliometric Analysis Literature Review. IEEE Access 2021, 9, 134762–134782. [Google Scholar] [CrossRef]
- Lampkin, N.; Schwarz, G.; Bellon, S. Policies for Agroecology in Europe, Building on Experiences in France, Germany and the United Kingdom. Landbauforschung 2020, 70, 103–112. [Google Scholar] [CrossRef]
- Wezel, A.; David, C. Policies for Agroecology in France: Implementation and Impact in Practice, Research and Education. J. Sustain. Organic. Agric. Syst. 2020, 70, 66–76. [Google Scholar] [CrossRef]
- Brunori, G. Agriculture and Rural Areas Facing the “Twin Transition”: Principles for a Sustainable Rural Digitalisation. Ital. Rev. Agric. Econ. 2022, 77, 3–14. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.L. Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability. Glob. Environ. Polit. 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Schimpf, M.; Seufert, P.; Van Dyck, B. Remote Control & Peasant Intelligence; Friends of the Earth Europe, FIAN International and the Centre for Agroecology Water and Resilience at Coventry University: Coventry, UK, 2023. [Google Scholar]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The Future(s) of Digital Agriculture and Sustainable Food Systems: An Analysis of High-Level Policy Documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Hackfort, S. Patterns of Inequalities in Digital Agriculture: A Systematic Literature Review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- McCampbell, M.; Rijswijk, K.; Wilson, H.; Klerkx, L. A Problematisation of Inclusion and Exclusion. In The Politics of Knowledge in Inclusive Development and Innovation; Routledge: Oxford, UK, 2021; pp. 199–213. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Bacco, M.; Bartolini, F.; Bulten, E.; Debruyne, L.; Dessein, J.; Scotti, I.; Brunori, G. Digital Transformation of Agriculture and Rural Areas: A Socio-Cyber-Physical System Framework to Support Responsibilisation. J. Rural. Stud. 2021, 85, 79–90. [Google Scholar] [CrossRef]
- Autonomy in the Face of Agtech. A Growing Culture & ETC Group in Collaboration with La Vía Campesina and the Alliance for Food Sovereignty in Africa Tools for Challenging Industry Narratives. 2023. Available online: https://viacampesina.org/en/wp-content/uploads/sites/2/2024/01/Autonomy-in-the-Face-of-Agtech-EN.pdf (accessed on 12 February 2024).
- Gascuel-Odoux, C.; Lescourret, F.; Dedieu, B.; Detang-Dessendre, C.; Faverdin, P.; Hazard, L.; Litrico-Chiarelli, I.; Petit, S.; Roques, L.; Reboud, X.; et al. A Research Agenda for Scaling up Agroecology in European Countries. Agron. Sustain. Dev. 2022, 42, 53. [Google Scholar] [CrossRef]
- Rolandi, S.; Brunori, G.; Bacco, M.; Scotti, I. The Digitalization of Agriculture and Rural Areas: Towards a Taxonomy of the Impacts. Sustainability 2021, 13, 5172. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Brossard, L.; Garcia, F.; Mitton, N.; Termier, A. Agriculture and Digital Technology; Inria: Paris, France, 2022. [Google Scholar]
- Giagnocavo, C.; Duque-Acevedo, M.; Terán-Yépez, E.; Herforth-Rahmé, J.; Defossez, E.; Carlesi, S.; Delalieux, S.; Gkisakis, V.; Márton, A.; Molina-Delgado, D.; et al. A Multi-Stakeholder Perspective on the Use of Digital Technologies in European Organic and Agroecological Farming Systems. Technol. Soc. 2025, 81, 102763. [Google Scholar] [CrossRef]
- Schnebelin, É.; Labarthe, P.; Touzard, J.M. How Digitalisation Interacts with Ecologisation? Perspectives from Actors of the French Agricultural Innovation System. J. Rural. Stud. 2021, 86, 599–610. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Huyghe, C. Putting Agricultural Equipment and Digital Technologies at the Cutting Edge of Agroecology. OCL-Oilseeds Fats Crops Lipids 2017, 24, D307. [Google Scholar] [CrossRef]
- Petraki, D.; Gazoulis, I.; Kokkini, M.; Danaskos, M.; Kanatas, P.; Rekkas, A.; Travlos, I. Digital Tools and Decision Support Systems in Agroecology: Benefits, Challenges, and Practical Implementations. Agronomy 2025, 15, 236. [Google Scholar] [CrossRef]
- Kendall, L.; Dearden, A. ICTs Agroecology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 451–462. [Google Scholar] [CrossRef]
- Paget, N.; Nacambo, I.; Fournier, S.; Moumouni-Moussa, I. Tracking Digital Innovations for Agroecology in Benin. Cah. Agric. 2022, 31, 13. [Google Scholar] [CrossRef]
- Moroder, A.; Bellingrath-Kimura, S.; Reimand, K.; Kantelhardt, J.; Meyer-Aurich, A. Assessing the Contribution of Digital Technologies to Agroecological Principles in the European Context. In 44. GIL-Jahrestagung, Biodiversität Fördern Durch Digitale Landwirtschaft; Gesellschaft für Informatik eV: Bonn, Germany, 2024; pp. 347–352. [Google Scholar]
- Gkisakis, V.D.; Damianakis, K. Digital Innovations for the Agroecological Transition: A User Innovation and Commons-Based Approach. Landbauforschung 2020, 70, 1–4. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Lutton, E.; Bisquert, P.; Brossard, L.; Chambaron-Ginhac, S.; Labarthe, P.; Lagacherie, P.; Martignac, F.; Molenat, J.; Parisey, N.; et al. Digital Revolution for the Agroecological Transition of Food Systems: A Responsible Research and Innovation Perspective. Agric. Syst. 2022, 203, 103524. [Google Scholar] [CrossRef]
- Which Digitalisation(s) to Support the Agroecological Transition? Available online: https://www.aspexit.com/agroecology-digital-technologies/ (accessed on 2 April 2025).
- Hilbeck, A.; Mccarrick, H.; Tisselli, E.; Pohl, J.; Kleine, D. Aligning Digitalization with Agroecological Principles to Support a Transformation Agenda; ECDF WORKING PAPER SERIES #003; Einstein Center Digital Future: Berlin, Germany, 2022. [Google Scholar] [CrossRef]
- Ajena, F.; Bossard, N.; Clément, C.; Hilbeck, A.; Oehen, B.; Thomas, J.; Tisselli, E.; Tuzzato, A.; Gall, E.; Berckmans, E. Agroecology & Digitalisation Traps and Opportunities to Transform the Food System; FAO: Roma, Italy, 2022. [Google Scholar]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- de Roo, N.; Almekinders, C.; Leeuwis, C.; Tefera, T. Scaling Modern Technology or Scaling Exclusion? The Socio-Political Dynamics of Accessing in Malt Barley Innovation in Two Highland Communities in Southern Ethiopia. Agric. Syst. 2019, 174, 52–62. [Google Scholar] [CrossRef]
- Rijswijk, K.; de Vries, J.R.; Klerkx, L.; Turner, J.A. The Enabling and Constraining Connections Between Trust and Digitalisation in Incumbent Value Chains. Technol. Forecast. Soc. Change 2023, 186, 122175. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). The 10 Elements of Agroecology Guiding the Transition to Sustainable Food and Agricultural Systems; FAO: Rome, Italy, 2018. [Google Scholar]
- Archer, M. What Is Critical Realism? Bhaskar, 1982. Available online: https://www.academia.edu/30592603/What_is_critical_realism (accessed on 29 April 2025).
- Jansen, K.; Vellema, S. What Is Technography? NJAS-Wagening. J. Life Sci. 2011, 57, 169–177. [Google Scholar] [CrossRef]
- Bijker, W.E.; Hughes, T.P.; Pinch, T. The Social Construction of Technological Systems; MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. In NJAS-Wageningen Journal of Life Sciences; Elsevier BV: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Bronson, K. Looking through a Responsible Innovation Lens at Uneven Engagements with Digital Farming. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100294. [Google Scholar] [CrossRef]
- Orlikowski, W.J.; Scott, S.V. Sociomateriality: Challenging the Separation of Technology, Work and Organization. Acad. Manag. Ann. 2008, 2, 433–474. [Google Scholar] [CrossRef]
- Leonardi, P.M. When Flexible Routines Meet Flexible Technologies. MIS Q. 2011, 35, 147–167. [Google Scholar] [CrossRef]
- van Dijk, J. The Deepening Divide: Inequality in the Information Society; SAGE: Newcastle upon Tyne, UK, 2005.
- Selwyn, N. Reconsidering Political and Popular Understandings of the Digital Divide. New Media Soc. 2004, 6, 341–362. [Google Scholar] [CrossRef]
- Bensin, B.M. Agroecological Characteristics Description and Classification of the Local Corn Varieties Chorotypes, 1928.
- Wezel, A.; Soldat, V. A Quantitative and Qualitative Historical Analysis of the Scientific Discipline of Agroecology. Int. J. Agric. Sustain. 2009, 7, 3–18. [Google Scholar] [CrossRef]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a Science, a Movement and a Practice. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; Volume 2, pp. 27–43. [Google Scholar] [CrossRef]
- Altieri, M.A.; Toledo, V.M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants. J. Peasant. Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- de Molina, M.G. Agroecology and Politics. How To Get Sustainability? About the Necessity for a Political Agroecology. Agroecol. Sustain. Food Syst. 2013, 37, 45–59. [Google Scholar]
- Gliessman, S. Defining Agroecology. In Agroecology and Sustainable Food Systems; Taylor and Francis Inc.: Oxfordshire, UK, 2018; pp. 599–600. [Google Scholar] [CrossRef]
- FAO. Tool for Agroecology Performance Evaluation Process of Development and Guidelines for Application; FAO: Roma, Italy, 2019. [Google Scholar]
- Wezel, A.; Gemmill Herren, B.; Kerr, R.B.; Barrios, E.; Luiz, A.; Gonçalves, R.; Sinclair, F. Agroecological Principles and Elements and Their Implications for Transitioning to Sustainable Food Systems. A Review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Clark, L.F. Concentration and Power in The Food System: Who Controls What We Eat? Philip, H. Howard, Bloomsbury Publishing, 2016, 216p. Cuizine 2016, 7, 2. [Google Scholar] [CrossRef]
- Fricker, M. Epistemic Injustice: Power and the Ethics of Knowing; Oxford University Press: Oxford, UK, 2007. [Google Scholar] [CrossRef]
- Anderson, C.; Buchanan, C.; Chang, M.; Sanchez Rodriguez, J.; Wakeford, T. Everyday Experts: How People’s Knowledge Can Transform the Food System. 2017. Available online: https://www.coventry.ac.uk/research/areas-of-research/agroecology-water-resilience/our-publications/everyday-experts-how-peoples-knowledge-can-transform-the-food-system/ (accessed on 25 April 2025).
- Zheng, J.; Zhang, J.Z.; Kamal, M.M.; Wang, H.; Yang, Y.; Dey, B.; Apostolidis, C. Empowering Radical Innovation: How Digital Technologies Drive Knowledge Transfer and Co-Creation in Innovation Ecosystems. R. D Manag. 2025, early view. [Google Scholar] [CrossRef]
- Ewert, F.; Baatz, R.; Finger, R. Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption. Annu. Rev. Resour. Econ. 2023, 15, 351–381. [Google Scholar] [CrossRef]
- Arora, S.; Glover, D. Power in Practice: Insights from Technography and Actor-Network Theory for Agricultural Sustainability. 2017. Available online: https://steps-centre.org/publication/power-practice-insights-technography-actor-network-theory-agricultural-sustainability/ (accessed on 3 January 2024).
- O’Reilly, K. Ethnographic Methods, 2nd ed.; Routledge: Oxford, UK, 2012. [Google Scholar]
- McFeat, T. Experimental Small Group Cultures” In Small-Group Cultures; Pergamon Press: Oxford, UK, 1974. [Google Scholar]
- Glover, D. Affordances and Agricultural Technology. J. Rural. Stud. 2022, 94, 73–82. [Google Scholar] [CrossRef]
- Richards, P. Agriculture as a Performance; Chambers, R., Pacey, A., Thrupp, L.A., Eds.; Farmer Innovation and Agricultural Research, Intermediate Technology Publications: London, UK, 1989. [Google Scholar]
- Crane, T.A.; Roncoli, C.; Hoogenboom, G. Adaptation to Climate Change and Climate Variability: The Importance of Understanding Agriculture as Performance. NJAS-Wagening. J. Life Sci. 2011, 57, 179–185. [Google Scholar] [CrossRef]
- Nuijten, E. Combining Research Styles of the Natural and Social Sciences in Agricultural Research. NJAS-Wagening. J. Life Sci. 2011, 57, 197–205. [Google Scholar] [CrossRef]
- Suchman, L.A. Plans and Situated Actions: The Problem of Human-Machine Communication; Cambridge University Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Richards, P.; De Bruin-Hoekzema, M.; Hughes, S.G.; Kudadjie-Freeman, C.; Offei, S.K.; Struik, P.C.; Zannou, A. Seed Systems for African Food Security: Linking Molecular Genetic Analysis and Cultivator Knowledge in West Africa. Int. J. Technol. Manag. 2009, 45, 196–214. [Google Scholar] [CrossRef]
- Hutchins, E. Cognition in the Wild; The MIT Press: Cambridge, MA, USA; London, UK, 1995. [Google Scholar]
- Pinch, T. Technology and Institutions: Living in a Material World. Theory Soc. 2008, 37, 461–483. [Google Scholar] [CrossRef]
- González-Varona, J.M.; López-Paredes, A.; Poza, D.; Acebes, F. Building and Development of an Organizational Competence for Digital Transformation in SMEs. J. Ind. Eng. Manag. 2021, 14, 15–24. [Google Scholar] [CrossRef]
- Bhaskar, R. A Realist Theory of Science, 1st ed.; Routledge: Oxford, UK, 2008. [Google Scholar]
- Kahn, P.; Anne, Q.; Young, R. Structure and Agency in Learning: A Critical Realist Theory of the Development of Capacity to Reflect on Academic Practice. High. Educ. Res. Dev. 2012, 31, 859–871. [Google Scholar] [CrossRef]
- Bakshy, E.; Rosenn, I.; Marlow, C.; Adamic, L. The Role of Social Networks in Information Diffusion. In Proceedings of the WWW ’12: 21st International Conference on World Wide Web, Lyon, France, 16–20 April 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 519–528. [Google Scholar] [CrossRef]
- Cheng, H.W.J. Factors Affecting Technological Diffusion Through Social Networks: A Review of the Empirical Evidence. World Bank. Res. Obs. 2022, 37, 137–170. [Google Scholar] [CrossRef]
- Kreindler, G.E.; Young, H.P. Rapid Innovation Diffusion in Social Networks. Proc. Natl. Acad. Sci. USA 2014, 111, 10881–10888. [Google Scholar] [CrossRef]
- Ingram, J.; Maye, D. What Are the Implications of Digitalisation for Agricultural Knowledge? Front. Sustain. Food Syst. 2020, 4, 66. [Google Scholar] [CrossRef]
- Bebb, A.; Becheva, S.; Hieber, L.; Schimpf, M. The Future of Farming from Data Giants to Farmer Power. Available online: https://friendsoftheearth.eu/publication/report-on-digital-farming-from-data-giants-to-farmer-power/ (accessed on 10 December 2022).
- Christine, R.; Dusseldorp, M. Precision Agriculture: How Innovative Technology to a More Sustainable Agriculture. GAIA-Ecol. Perspect. Sci. Soc. 2007, 16, 272–279. [Google Scholar]
- Moschitz, H.; Stolze, M. Smart Technologies in Farming and Food Systems: Can We Make Sense of Smart Technologies for Sustainable Agriculture?—A Discussion Paper. In Proceedings of the 13th European IFSA Symposium, Chania, Greece, 1–5 July 2018; p. 1. [Google Scholar]
- Foley, S. Technology and Knowledge: The Affirmation of Power. AI Soc. 2004, 18, 310–333. [Google Scholar] [CrossRef]
- Vernooij, V.; de Koeijer, J.; Vellema, S.; Crane, T.; Maiyo, N. Feeding Cattle under Suboptimal Conditions in Kenya: From Emphasising Technical (Non-)Adoption to Stimulating Adaptive Performance. Outlook Agric. 2024, 53, 154–163. [Google Scholar] [CrossRef]
- Berg, M. Digital Technography: A Methodology for Interrogating Emerging Digital Technologies and Their Futures. Qual. Inquiry 2022, 28, 827–836. [Google Scholar] [CrossRef]
- van der Velden, D.; Klerkx, L.; Dessein, J.; Debruyne, L. Cyborg Farmers: Embodied Understandings of Precision Agriculture. Sociol. Ruralis 2024, 64, 3–21. [Google Scholar] [CrossRef]
- Ceccarelli, T.; Chauhan, A.; Rambaldi, G.; Kumar, I.; Cappello, C.; Janssen, S.; McCampbell, M. Leveraging Automation and Digitalization for Precision Agriculture: Evidence from the Case Studies; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Xin, J.; Zazueta, F. Technology Trends in ICT-Towards Data-Driven, Farmer-Centered and Knowledge-Based Hybrid Cloud Architectures for Smart Farming. Agric. Eng. Int. CIGR J. 2016, 18, 275–279. [Google Scholar]
- Van, E.H.; Woodard, J. Innovation in Agriculture and Food Systems in the Digital Age. In Global Innovation Index 2017: Innovation Feeding the World Glob. Innov. Index; Cornell University: Ithaca, NY, USA, 2017; Volume 1, pp. 97–104. [Google Scholar]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation Can Accelerate the Transition towards a Sustainable Food System. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Pearson, S.; May, D.; Leontidis, G.; Swainson, M.; Brewer, S.; Bidaut, L.; Frey, J.G.; Parr, G.; Maull, R.; Zisman, A. Are Distributed Ledger Technologies the Panacea for Food Traceability? In Global Food Security; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 145–149. [Google Scholar] [CrossRef]
- Digitalization and Agroecology: A Challenging Marriage? Summary of an e-Conversation. Available online: https://gfair.network/news/digitalization-and-agroecology-challenging-marriage-summary-e-conversation (accessed on 3 March 2025).
- Khanna, M. Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications. Appl. Econ. Perspect. Policy 2021, 43, 1221–1242. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A Review. In Agricultural Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 69–80. [Google Scholar] [CrossRef]
- Richards, P. FOOD SECURITY, SAFE FOOD: Biotechnology and Sustainable Development in Anthropological Perspective; WPI Publishing: New York, NY, USA, 2000. [Google Scholar]
- Nuer, B.; Tetteh Kwasi, A. Sustaining Rural Technology Transfer Under Rural Enterprises Projects (A Case Study of Cassava Processing Technologies in Rural Ghana). Master’s Thesis, Technology and Agrarian Development Group, Wageningen University, Wageningen, The Netherlands, 2010. [Google Scholar]
- Bhaskar, R.; Danermark, B. Metatheory, Interdisciplinarity and Disability Research: A Critical Realist Perspective. Scand. J. Disabil. Res. 2006, 8, 278–297. [Google Scholar] [CrossRef]
- Gorski, P.S. “What Is Critical Realism? And Why Should You Care?”. Contemp. Sociol. A J. Rev. 2013, 42, 658–670. [Google Scholar] [CrossRef]
- Danermark, B.; Ekstrom, M.; Jakobsen, L.; Karlsson, J.C. Explaining Society: An Introduction to Critical Realism in the Social Sciences, 1st ed.; Routledge: London, UK, 2001. [Google Scholar]
- Archer, M.S. Critical Realism: Essential Readings; Routledge: London, UK; New York, NY, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meesala, H.; Brunori, G. Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach. Agriculture 2025, 15, 1636. https://doi.org/10.3390/agriculture15151636
Meesala H, Brunori G. Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach. Agriculture. 2025; 15(15):1636. https://doi.org/10.3390/agriculture15151636
Chicago/Turabian StyleMeesala, Harika, and Gianluca Brunori. 2025. "Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach" Agriculture 15, no. 15: 1636. https://doi.org/10.3390/agriculture15151636
APA StyleMeesala, H., & Brunori, G. (2025). Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach. Agriculture, 15(15), 1636. https://doi.org/10.3390/agriculture15151636