The Quality of Seedbed and Seeding Under Four Tillage Modes
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Equipment Description
2.3. Experimental Design
2.4. Indices
2.4.1. The Average Length of Roots and Straw in the Test Area
2.4.2. The Weight of Roots and Straw in the Seedbed
2.4.3. The Uniformity of Roots and Straw Distribution in the Seedbed
2.4.4. The Standard Deviation of Lateral Displacement of Seed
2.4.5. The Seed Germination Rate
2.4.6. The Harvest Yield
2.5. Data Analysis
3. Results
3.1. Effects of Different CRM and ST Modes on the Quality of Seedbed
3.1.1. The Results of the Average Length of Roots and Straw in the Test Area
3.1.2. The Results of the Weight of Roots and Straw in the Seedbed
3.1.3. The Results of the Uniformity of Roots and Straw Distribution in the Seedbed
3.2. Effects of Different CRM and ST Modes on the Quality of Seeding
3.3. Effects of Different CRM and ST Modes on the Harvest Yield
4. Discussions
4.1. CRM and ST Modes Fundamentally Alter the Quality of Seedbed
4.2. Seedbed Conditions Directly Govern the Quality of Seeding
4.3. Integrated Effects on Seed Germination and Harvest Yield
4.4. Comprehensive Analysis: Cost–Benefit Analysis
5. Conclusions
- (1)
- Conventional tillage (DT and S) achieved the highest seed placement accuracy and germination rate but yielded a lower net profit due to its high operational costs.
- (2)
- Among the conservation tillage modes, Shallow Rotary Tillage (SRT and S) created superior seedbed conditions, leading to the highest soybean yield and a high net profit, demonstrating the best overall performance.
- (3)
- No-tillage (SF and NTS) was highly profitable because of its low operational cost, but this was achieved at the expense of poor seeding quality and reduced crop yield.
- (4)
- A fundamental trade-off exists between the agronomic benefits of conventional tillage and the cost-effectiveness of conservation agriculture. Within conservation systems, the SRT and S mode provides the most advantageous and sustainable solution by effectively balancing these conflicting demands.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azimi-Nejadian, H.; Karparvarfard, S.H.; Naderi-Boldaji, M. Weed seed burial as affected by mouldboard design parameters, ploughing depth and speed: DEM simulations and experimental validation. Biosyst. Eng. 2022, 216, 79–92. [Google Scholar] [CrossRef]
- Cannell, R.Q. Reduced tillage in north-west Europe—A review. Soil Tillage Res. 1985, 5, 129–177. [Google Scholar] [CrossRef]
- Monsefi, A.; Sharma, A.R.; Rang Zan, N.; Behera, U.K.; Das, T.K. Effect of tillage and residue management on productivity of soybean and physico-chemical properties of soil in soybean–wheat cropping system. Int. J. Plant Prod. 2014, 8, 429–440. [Google Scholar]
- Korczyk-Szabó, J.; Macák, M.; Jarecki, W.; Sterczyńska, M.; Jug, D.; Pużyńska, K.; Hromadová, L.; Habán, M. Influence of Crop Residue Management on Maize Production Potential. Agronomy 2024, 14, 2610. [Google Scholar] [CrossRef]
- He, K.; Ma, B.-L.; Wei, X.; Guo, S.; Feng, C.; Liu, C.; Ma, Y.; Li, P. Straw return impacts on crop yield and yield variability: A meta-analysis. Soil Tillage Res. 2025, 254, 106712. [Google Scholar] [CrossRef]
- Singh, V.; Gupta, R.K.; Kahlon, M.S.; Toor, A.S.; Singh, K.B.; Al-Ansari, N.; Mattar, M.A. Effect of Different Tillage and Residue Management Options on Soil Water Transmission and Mechanical Behavior. Land 2023, 12, 1895. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Adams, C.B.; Rogers, C.W.; Marshall, J.M.; Hatzenbuehler, P.; Walsh, O.S.; Thurgood, G.; Dari, B.; Loomis, G.; Tarkalson, D.D. Uptake and economic value of macro-and micronutrient minerals in wheat residue. Agronomy 2024, 14, 1795. [Google Scholar] [CrossRef]
- Xu, Z.; Lai, T.; Li, S.; Si, D.; Zhang, C. Effective potassium management for sustainable crop production based on soil potassium availability. Field Crops Res. 2025, 326, 109865. [Google Scholar] [CrossRef]
- Cheng, K.; Peng, S.; Li, C.; Wen, L.; Liu, L.; Luo, H.; Liu, J.; Tang, H. Effects of Long-Term Soil Tillage Practices on Soil Organic C Accumulation Characteristics in Double-Cropped Rice Paddy. Land 2024, 13, 2074. [Google Scholar] [CrossRef]
- Zhou, Y.; Nie, X.; Zhao, Y.; Zhang, L.; Cheng, Y.; Jiang, C.; Zhao, W.; Wang, X.; Yang, C. Application of Biochar on Soil Improvement and Speciation Transformation of Heavy Metal in Constructed Wetland. Biology 2025, 14, 515. [Google Scholar] [CrossRef]
- Elyasi, S.S.; Pirzad, A.; Jalilian, J.; Roohi, E.; Siosemardeh, A. Effects of different tillage on morpho-physiological traits of dryland chickpea (Cicer arietinum L.). Soil Tillage Res. 2023, 229, 105660. [Google Scholar] [CrossRef]
- Boizard, H.; Richard, G.; Roger-Estrade, J.; Dürr, C.; Boiffin, J. Cumulative effects of cropping systems on the structure of the tilled layer in northern France. Soil Tillage Res. 2002, 64, 149–164. [Google Scholar] [CrossRef]
- Soane, B.; Ball, B. Review of management and conduct of long-term tillage studies with special reference to a 25-yr experiment on barley in Scotland. Soil Tillage Res. 1998, 45, 17–37. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, B.; Hu, Y.; Wang, A.; Guo, Q.; Yin, B.; Cao, Q.; He, L. The role of conventional tillage in agricultural soil erosion. Agric. Ecosyst. Environ. 2023, 348, 108407. [Google Scholar] [CrossRef]
- Su, Y.; Yang, Y.H.; Jia, S.Q.; Yu, M.; Chen, X.J.; Shen, A.L. Main problems of agricultural production areas after straw returning and the respective green control technologies. J. Agric. Resour. Environ. 2019, 36, 711–717. [Google Scholar]
- Tan, C.; Cao, X.; Yuan, S.; Wang, W.; Feng, Y.; Qiao, B. Effects of long-term conservation tillage on soil nutrients in sloping fields in regions characterized by water and wind erosion. Sci. Rep. 2015, 5, 17592. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- He, J.; Li, H.W.; Chen, H.T.; Lu, C.Y.; Wang, Q.J. Research progress of conservation tillage technology and machine. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–19. [Google Scholar]
- Lamichhane, J.R.; Soltani, E. Sowing and seedbed management methods to improve establishment and yield of maize, rice and wheat across drought-prone regions: A review. J. Agric. Food Res. 2020, 2, 100089. [Google Scholar] [CrossRef]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Do, M.C.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Tillage Res. 2020, 197, 104494. [Google Scholar] [CrossRef]
- Oliver, M.A.; Bishop, T.F. Precision Agriculture for Sustainability and Environmental Protection; Marchant, B.P., Ed.; Routledge: Abingdon, UK, 2013; pp. 3–19. [Google Scholar]
- Wang, L.; Wang, F.L.; Duan, T.T.; Liang, X.G. Study on the decomposition regularity of returning corn straw to field in Heilongjiang province. J. Agric. Mech. Res. 2020, 42, 24–31. [Google Scholar]
- Xiao, Y.; Luo, W.; Yang, K.; Fu, J.; Wang, P. Plow tillage with buried straw increases maize yield by regulating soil properties, root growth, photosynthetic capacity, and bacterial community assembly in semi-arid black soil farmlands. Eur. J. Agron. 2025, 164, 127532. [Google Scholar] [CrossRef]
- Tian, P.; Sui, P.; Lian, H.; Wang, Z.; Meng, G.; Sun, Y.; Wang, Y.; Su, Y.; Ma, Z.; Qi, H.; et al. Maize straw returning approaches affected straw decomposition and soil carbon and nitrogen storage in Northeast China. Agronomy 2019, 9, 818. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef]
- Feng, X.; Xie, C.; Tong, J.; Guo, S.; Qi, B.; Gao, Y.; Wang, L.; Wang, Q. Design and Test of Vertical Axis Rotating Cutters for Cutting Corn Roots and Crown. Agriculture 2025, 15, 717. [Google Scholar] [CrossRef]
- Hu, J.; Xu, L.; Yu, Y.; Lu, J.; Han, D.; Chai, X.; Wu, Q.; Zhu, L. Design and experiment of bionic straw-cutting blades based on Locusta migratoria manilensis. Agriculture 2023, 13, 2231. [Google Scholar] [CrossRef]
- Han, Y.; Yao, S.-H.; Jiang, H.; Ge, X.-L.; Zhang, Y.; Mao, J.; Dou, S.; Zhang, B. Effects of mixing maize straw with soil and placement depths on decomposition rates and products at two cold sites in the mollisol region of China. Soil Tillage Res. 2020, 197, 104519. [Google Scholar] [CrossRef]
- Xi, H.; Jia, M.; Kuzyakov, Y.; Peng, Z.; Zhang, Y.; Han, J.; Ali, G.; Mao, L.; Zhang, J.; Fan, T.; et al. Key decomposers of straw depending on tillage and fertilization. Agric. Ecosyst. Environ. 2023, 358, 108717. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, Y.; Zhu, X.; Wang, Y.; Ji, W.; Chen, H. Design and experiment of a straw clearing mulching no-tillage planter. Biosyst. Eng. 2022, 221, 69–80. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Z.; Xu, Y.; Li, C.; Ding, H.; Li, C.; Tang, Q.; Liu, M.; Hou, J. The Development of No-Tillage Seeding Technology for Conservation Tillage—A Review. Sustainability 2025, 17, 1808. [Google Scholar] [CrossRef]
- Fallahi, S.; Raoufat, M.H. Row-crop planter attachments in a conservation tillage system: A comparative study. Soil Tillage Res. 2008, 98, 27–34. [Google Scholar] [CrossRef]
- Liang, B.; Li, J.; Zhao, X.; Lei, X.; Chen, G.; Pu, T.; Wu, Y.; Yong, T.; Yang, F.; Wang, X.; et al. Effects of Bandwidth on Ear Differentiation and Grain Yield Formation of Maize in Strip Intercrop. Plants 2025, 14, 1081. [Google Scholar] [CrossRef] [PubMed]
Working Parameters | Three Types of Tillage Machines | ||
---|---|---|---|
The Rotary Plow | The Three-Axis Rotary Tiller | The Shallow Rotary Tiller | |
Traveling speed/m·s−1 | 0.5 | 0.5 | 0.5 |
Tillage depth/cm | 35 | 20 | 15 |
Rotational speed/r·min−1 | 0 | 240 | 240 |
CRM and ST Modes | Grains Per Plant (Grains/Plant) | 100-Grain Weight (g) | Plant Density (Plants·hm−2) | Yield (kg·hm−2) |
---|---|---|---|---|
DT and S | 64.17 ± 16.78 | 19.24 ± 0.35 | 275,400 ± 578 | 3387.83 |
SF and NTS | 54.83 ± 14.47 | 21.87 ± 0.51 | 262,100 ± 1356 | 3142.93 |
TART and S | 59.83 ± 8.90 | 19.535 ± 0.29 | 269,300 ± 914 | 3147.52 |
SRT and S | 61.33 ± 8.06 | 20.655 ± 0.69 | 271,100 ± 509 | 3434.22 |
CRM and ST Modes | Cost (CNY·hm−2) | Revenue (CNY·hm−2) | Net Profit (CNY·hm−2) |
---|---|---|---|
DT and S | 1500 + 600 | 8130 | 6030 |
SF and NTS | 1050 | 7543 | 6493 |
TART and S | 1200 + 600 | 7554 | 5754 |
SRT and S | 1200 + 600 | 8242 | 6442 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Gao, Y.; Ma, Z.; Wang, B. The Quality of Seedbed and Seeding Under Four Tillage Modes. Agriculture 2025, 15, 1626. https://doi.org/10.3390/agriculture15151626
Wang L, Gao Y, Ma Z, Wang B. The Quality of Seedbed and Seeding Under Four Tillage Modes. Agriculture. 2025; 15(15):1626. https://doi.org/10.3390/agriculture15151626
Chicago/Turabian StyleWang, Lijun, Yunpeng Gao, Zhao Ma, and Bo Wang. 2025. "The Quality of Seedbed and Seeding Under Four Tillage Modes" Agriculture 15, no. 15: 1626. https://doi.org/10.3390/agriculture15151626
APA StyleWang, L., Gao, Y., Ma, Z., & Wang, B. (2025). The Quality of Seedbed and Seeding Under Four Tillage Modes. Agriculture, 15(15), 1626. https://doi.org/10.3390/agriculture15151626