A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies
Abstract
1. Introduction
- (1)
- The annotation formats of existing grape datasets do not fully consider the interconnected relationship between pedicel parts and grape cluster parts. For example, some only annotate grape clusters using bounding boxes [12]; some perform pixel-wise annotation on grape pedicels [8]; others treat pedicel parts or pedicel key points and grape cluster parts as two independent targets [25]. Overall, these existing annotation methods fail to recognize that pedicels and grape clusters form an organic connected entity. For CNN-based recognition, however, the two can mutually provide valuable feature information in terms of color, texture, and structural characteristics. Therefore, how to design a reasonable annotation format remains a problem worth exploring for identifying and locating table grape picking points.
- (2)
- Although existing deep learning models have significantly promoted intelligent grape detection, there is still substantial room for improvement in the accuracy of picking point positioning. Currently, geometric positioning algorithms in indirect methods require the establishment of dedicated geometric models, leading to complex calculation processes. While Li et al. [19] and Xu et al. [21] directly use the center coordinates of the pedicel detection box as the picking point coordinates, simplifying the calculation process, both this solution and direct methods share common drawbacks: low reliability of picking points and large errors. As elaborated earlier, there is a deviation error between the actual picking point and the predicted picking point.
- (1)
- Establishing a new grape segmentation dataset called Grape-⊥ with a total of 1576 grape images and 4455 ⊥-shaped pixel-level instances, including 3375 Grps and 1080 GrpWBs. The ⊥-shaped grape annotation fully considers the botanical relationship between the grape cluster and pedicel while highlighting texture and shape differences.
- (2)
- An instance segmentation network called PGSS-YOLOv11s is proposed to segment the ⊥-shaped regions of grapes. The network PGSS-YOLOv11s is composed of an original backbone of the YOLOv11s-seg, SFAM, AFFM, and DE-SCSH. The SFAM improves the feature description capacity by means of global-to-local spatial feature aggregation. The AFFM adopts bidirectional linear superposition connection, adding more feature fusion paths to achieve adaptive fusion of multi-scale features. The DE-SCSH boosts the model’s refined segmentation ability and cuts down on the number of learnable weights in the network through the structure of detail enhancement convolution and shared weights.
- (3)
- A simple and efficacious combination strategy of morphological operators is designed to locate the picking points on the segmented grape ⊥-shaped regions. The presented strategy does not necessitate complex geometric shape computations, and there is no pixel distance error either.
2. Materials and Methods
2.1. Grape-⊥ Dataset
2.1.1. Image Acquisition
2.1.2. Image Annotation with the Characteristics ‘⊥’
2.2. Methods
2.2.1. Network Architecture
2.2.2. Spatial Feature Aggregation Module
2.2.3. Adaptive Feature Fusion Module
2.2.4. Detail Enhancement—Shared Convolution Segmentation Head
2.3. Localization of Picking Points
3. Results
3.1. Experimental Settings
3.1.1. Evaluation Metrics
3.1.2. Experimental Platform and Details
3.2. Segmentation of Grape ⊥-Shaped Regions
3.2.1. Comparison with Different Methods
3.2.2. Ablation Studies with Different Modules
3.3. Evaluation of Picking Point Detection
3.4. Deployment on Edge Device
4. Discussion
4.1. Key Differences in Principles from Existing Advanced Methods
4.2. Cases of Failed Picking Point Positioning
4.3. Collecting More Grape Image Data Under Natural Environments
4.4. Function Expansion of Table Grape Picking Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, L.; Tang, Y.; Zou, X.; Ye, M.; Feng, W.; Li, G. Vision-based extraction of spatial information in grape clusters for harvesting robots. Biosyst. Eng. 2016, 151, 90–104. [Google Scholar] [CrossRef]
- Luo, L.; Tang, Y.; Lu, Q.; Chen, X.; Zhang, P.; Zou, X. A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. Comput. Ind. 2018, 99, 130–139. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Z.; Lin, R.; Bu, R.; He, Z.; Yang, Z.; Liang, C. Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (CCD) vision sensor with artificial illumination. Sensors 2018, 18, 969. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, C.; Yin, J.; Yang, S.X. Detection method for table grape ears and stems based on a far-close-range combined vision system and hand-eye-coordinated picking test. Comput. Electron. Agric. 2022, 202, 107364. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, T.; Liu, L.; Liu, P.; Li, X. Fast location of table grapes picking point based on infrared tube. Inventions 2022, 7, 27. [Google Scholar] [CrossRef]
- Santos, T.T.; De Souza, L.L.; dos Santos, A.A.; Avila, S. Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 2020, 170, 105247. [Google Scholar] [CrossRef]
- Kalampokas, T.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Grape stem detection using regression convolutional neural networks. Comput. Electron. Agric. 2021, 186, 106220. [Google Scholar] [CrossRef]
- Ning, Z.; Luo, L.; Liao, J.; Wen, H.; Wei, H.; Lu, Q. Recognition and the optimal picking point location of grape stems based on deep learning. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 222–229. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, X.; Shen, M.; Xu, D. Multi-scale adaptive YOLO for instance segmentation of grape pedicels. Comput. Electron. Agric. 2025, 229, 109712. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Li, G.; Chen, L. A real-time table grape detection method based on improved YOLOv4-tiny network in complex background. Biosyst. Eng. 2021, 212, 347–359. [Google Scholar] [CrossRef]
- Su, S.; Chen, R.; Fang, X.; Zhu, Y.; Zhang, T.; Xu, Z. A Novel Lightweight Grape Detection Method. Agriculture 2022, 12, 1364. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, H.; Shi, Q.; Wang, Y. Grape cluster real-time detection in complex natural scenes based on YOLOv5s deep learning network. Agriculture 2022, 12, 1242. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Du, W.; Du, Y.; Liu, P.; Li, X. Identification of table grapes in the natural environment based on an improved Yolov5 and localization of picking points. Precis. Agric. 2023, 24, 1333–1354. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, F.; Wang, M.; Chen, Z.; Li, L.; Zou, X. Grape-bunch identification and location of picking points on occluded fruit axis based on YOLOv5-GAP. Horticulturae 2023, 9, 498. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y.; Liu, W.; Che, Z. An Unstructured Orchard Grape Detection Method Utilizing YOLOv5s. Agriculture 2024, 14, 262. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, X.; Wang, Y.; Yi, Z.; Xie, Y.; Zhou, X. Lightweight-Improved YOLOv5s Model for Grape Fruit and Stem Recognition. Agriculture 2024, 14, 774. [Google Scholar] [CrossRef]
- Huang, X.; Peng, D.; Qi, H.; Zhou, L.; Zhang, C. Detection and Instance Segmentation of Grape Clusters in Orchard Environments Using an Improved Mask R-CNN Model. Agriculture 2024, 14, 918. [Google Scholar] [CrossRef]
- Zhu, Y.; Sui, S.; Du, W.; Li, X.; Liu, P. Picking point localization method of table grape picking robot based on you only look once version 8 nano. Eng. Appl. Artif. Intell. 2025, 146, 110266. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Chen, Q.; Huang, L.; Jiang, Z.; Hua, W.; Li, Y. Detection and picking point localization of grape bunches and stems based on oriented bounding box. Comput. Electron. Agric. 2025, 233, 110168. [Google Scholar] [CrossRef]
- Zhao, R.; Zhu, Y.; Li, Y. An end-to-end lightweight model for grape and picking point simultaneous detection. Biosyst. Eng. 2022, 223, 174–188. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wang, J.; Cai, L.; Jin, Y.; Zhao, S.; Xie, B. Realtime picking point decision algorithm of trellis grape for high-speed robotic cut-and-catch harvesting. Agronomy 2023, 13, 1618. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, F.; Zhou, S.; Xu, D. A method for identifying grape stems using keypoints. Comput. Electron. Agric. 2023, 209, 107825. [Google Scholar] [CrossRef]
- Chen, J.; Ma, A.; Huang, L.; Li, H.; Zhang, H.; Huang, Y.; Zhu, T. Efficient and lightweight grape and picking point synchronous detection model based on key point detection. Comput. Electron. Agric. 2024, 217, 108612. [Google Scholar] [CrossRef]
- Jiang, T.; Li, Y.; Feng, H.; Wu, J.; Sun, W.; Ruan, Y. Research on a Trellis Grape Stem Recognition Method Based on YOLOv8n-GP. Agriculture 2024, 14, 1449. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, F.; Zou, X.; Meng, H.; Zhang, Y.; Luo, X. Method for locating picking points of grape clusters using multi-object recognition. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2023, 39, 166–177. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2016. [Google Scholar] [CrossRef]
- Tang, F.; Xu, Z.; Huang, Q.; Wang, J.; Hou, X.; Su, J.; Liu, J. DuAT: Dual-aggregation transformer network for medical image segmentation. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China, 13–15 October 2023; pp. 343–356. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Hu, J.F.; Sun, J.; Lin, Z.; Lai, J.H.; Zeng, W.; Zheng, W.S. Apanet: Auto-path aggregation for future instance segmentation prediction. IEEE Trans. Pattern Anal. 2021, 44, 3386–3403. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Zhao, L.; Chen, J.; Shahzad, M.; Xia, M.; Lin, H. MFPANet: Multi-scale feature perception and aggregation network for high-resolution snow depth estimation. Remote Sens. 2024, 16, 2087. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021. [Google Scholar] [CrossRef]
- Huang, L.; Li, W.; Tan, Y.; Shen, L.; Yu, J.; Fu, H. YOLOCS: Object Detection based on Dense Channel Compression for Feature Spatial Solidification. arXiv 2024, arXiv:2305.04170. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Yan, G.; Wang, Y.; Hu, B. Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images. Remote Sens. 2023, 15, 4974. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, Y.; Tan, Y.; Zhou, C. YOLOv8-seg-CP: A lightweight instance segmentation algorithm for chip pad based on improved YOLOv8-seg model. Sci. Rep. 2024, 14, 27716. [Google Scholar] [CrossRef]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. TOOD: Task-aligned One-stage Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1922–1933. [Google Scholar] [CrossRef]
- Chen, Z.; He, Z.; Lu, Z.M. DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention. IEEE Trans. Image Process. 2024, 33, 1002–1015. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. arXiv 2018. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Santos, T.; de Souza, L.; dos Santos, A.; Sandra, A. Embrapa Wine Grape Instance Segmentation Dataset–Embrapa WGISD. Zenodo. 2019. Available online: https://zenodo.org/records/3361736 (accessed on 9 June 2025).
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 740–755. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-Time Instance Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9156–9165. [Google Scholar]
- Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. SOLOv2: Dynamic, Faster and Stronger. arXiv 2020, arXiv:2003.10152. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J. YOLOv5 SOTA Realtime Instance Segmentation (v7.0). Zenodo. 2022. Available online: https://zenodo.org/records/7347926 (accessed on 2 June 2025).
- Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. RTMDet: An Empirical Study of Designing Real-Time Object Detectors. arXiv 2022. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J. Ultralytics YOLOv8. Github. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 3 May 2024).
- Zong, Z.; Song, G.; Liu, Y. DETRs with Collaborative Hybrid Assignments Training. arXiv 2023. [Google Scholar] [CrossRef]
- He, J.; Li, P.; Geng, Y.; Xie, X. FastInst: A Simple Query-Based Model for Real-Time Instance Segmentation. arXiv 2023, arXiv:2303.08594. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Method | Grp | GrpWB | Mask mAP@0.5 | Mask mAP@0.75 | Mask mAP@0.5:0.95 |
---|---|---|---|---|---|
Mask-RCNN | 77.4 | 95.8 | 86.6 | 32.2 | 39.3 |
YOLACT | 92.7 | 75.5 | 84.1 | 19.0 | 33.5 |
SOLOv2 | 88.0 | 94.4 | 91.2 | 35.6 | 42.7 |
YOLOv5s-seg | 84.7 | 95.3 | 90.0 | 31.2 | 38.4 |
RTMDet | 94.5 | 90.9 | 92.7 | 23.4 | 39.8 |
YOLOv8s-seg | 89.9 | 97.2 | 93.5 | 38.8 | 43.6 |
YOLOv11s-seg | 89.3 | 96.5 | 92.9 | 37.6 | 44.4 |
Co-DETR | 97.6 | 99.2 | 98.4 | 43.3 | 51.2 |
FastInst | 92.1 | 92.7 | 92.4 | 40.1 | 43.2 |
Ours | 90.9 | 99.4 | 95.2 | 40.3 | 48.8 |
Method | CDY | CFR | CSV | SVB | SYH | Mask mAP@0.5 | Mask mAP@0.75 | Mask mAP@0.5:0.95 |
---|---|---|---|---|---|---|---|---|
Mask-RCNN | 83.9 | 76.8 | 89.9 | 85.4 | 95.7 | 86.3 | 63.6 | 59.0 |
YOLACT | 56.7 | 67.0 | 58.4 | 67.6 | 52.3 | 60.4 | 31.6 | 32.8 |
SOLOv2 | 75.3 | 83.7 | 82.8 | 93.1 | 92.7 | 85.5 | 63.5 | 57.1 |
YOLOv5s-seg | 60.9 | 80.1 | 80.2 | 75.4 | 79.2 | 75.2 | 48.6 | 42.7 |
RTMDet | 71.8 | 80.0 | 77.9 | 89.5 | 87.2 | 81.3 | 54.0 | 49.3 |
YOLOv8s-seg | 86.7 | 90.7 | 80.0 | 95.3 | 89.3 | 86.4 | 60.1 | 60.3 |
YOLOv11s-seg | 81.7 | 88.5 | 80.8 | 93.7 | 90.2 | 87.0 | 62.8 | 58.3 |
Co-DETR | 90.2 | 93.5 | 82.6 | 95.3 | 94.4 | 91.2 | 70.1 | 61.2 |
FastInst | 81.6 | 90.2 | 78.2 | 92.6 | 93.4 | 87.2 | 64.2 | 58.4 |
Ours | 88.9 | 90.9 | 80.7 | 96.0 | 93.4 | 90.0 | 66.0 | 63.2 |
Method | Params/M | MS/MB | Flops/G | FPS (Img/s) |
---|---|---|---|---|
Mask-RCNN | 44.0 | 169.6 MB | 247 | 6.5 |
YOLACT | 34.8 | 135.0 MB | 61.8 | 27.3 |
SOLOv2 | 46.3 | 178.0 MB | 96.2 | 18.4 |
YOLOv5s-seg | 7.4 | 14.4 MB | 25.7 | 40.3 |
RTMDet | 10.2 | 39.1 MB | 21.5 | 30.3 |
YOLOv8s-seg | 11.8 | 22.8 MB | 42.4 | 28.3 |
YOLOv11s-seg | 10.1 | 19.6 MB | 35.3 | 37.6 |
Co-DETR | 384 | 1.4 GB | 537 | 3.0 |
FastInst | 34.2 | 132.9 MB | 75.5 | 22.4 |
Ours | 8.0 | 17.4 MB | 39.4 | 30.9 |
Submodels | SFAM | AFFM | DE-SCSH |
---|---|---|---|
YOLOv11s-seg | - | - | - |
SM1 | ✓ | - | - |
SM2 | - | ✓ | - |
SM3 | - | - | ✓ |
SM4 | ✓ | ✓ | - |
SM5 | ✓ | - | ✓ |
SM6 | - | ✓ | ✓ |
PGSS-YOLOv11s | ✓ | ✓ | ✓ |
Models | Grape-⊥ Dataset | Winegrape Dataset | Params/M | MS/MB | Flops/G | Inference/ms | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P/% | R/% | F 1 |
Mask mAP@0.5 |
Mask mAP@0.5:0.95 | P/% | R/% | F 1 |
Mask mAP@0.5 |
Mask mAP@0.5:0.95 | |||||
YOLOv11s-seg | 90.3 | 91.3 | 90.8 | 92.9 | 44.4 | 82.9 | 80.0 | 81.4 | 87.0 | 58.3 | 10.07 | 19.6 | 35.3 | 13.9 |
SM1 | 94.4 | 89.7 | 92.0 | 93.8 | 47.3 | 82.8 | 83.6 | 83.2 | 87.1 | 58.9 | 14.64 | 28.5 | 44.2 | 20.6 |
SM2 | 89.4 | 93.1 | 91.2 | 93.7 | 45.7 | 84.0 | 81.5 | 82.7 | 86.7 | 59.7 | 7.58 | 14.9 | 35.4 | 14.2 |
SM3 | 94.0 | 91.9 | 92.9 | 94.3 | 48.0 | 83.8 | 82.1 | 82.9 | 88.0 | 59.3 | 9.44 | 20.0 | 37.0 | 18.0 |
SM4 | 93.7 | 92.1 | 92.9 | 94.0 | 47.4 | 84.2 | 84.4 | 84.3 | 88.1 | 60.6 | 8.16 | 16.1 | 37.1 | 29.2 |
SM5 | 95.4 | 92.8 | 94.1 | 94.6 | 48.4 | 84.0 | 84.3 | 84.1 | 89.0 | 61.3 | 14.01 | 28.9 | 45.9 | 34.5 |
SM6 | 92.6 | 94.1 | 93.3 | 94.5 | 48.2 | 85.5 | 82.8 | 84.1 | 89.1 | 62.6 | 7.39 | 16.2 | 37.7 | 18.9 |
Ours | 96.0 | 93.2 | 94.6 | 95.2 | 48.8 | 85.8 | 85.0 | 85.4 | 90.0 | 63.2 | 7.96 | 17.4 | 39.4 | 19.1 |
Models | SM6 | SM6-F-F | SM6-F-F | Ours |
---|---|---|---|---|
Feature output stages of the backbone | - | F, F, F, F | F, F, F | F, F, F |
Models | Grape-⊥ Dataset | Winegrape Dataset | Params/M | Flops/G | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P/% | R/% | F 1 |
Mask mAP@0.5 |
Mask mAP@0.5:0.95 | P/% | R/% | F 1 |
Mask mAP@0.5 |
Mask mAP@0.5:0.95 | |||
SM6 | 92.6 | 94.1 | 93.3 | 94.5 | 48.2 | 85.5 | 82.8 | 84.1 | 89.1 | 62.6 | 7.39 | 37.7 |
SM6-- | 91.5 | 93.4 | 92.4 | 93.2 | 48.1 | 82.9 | 80.5 | 81.7 | 88.2 | 60.6 | 8.16 | 40.9 |
SM6-- | 96.8 | 85.5 | 90.8 | 90.0 | 45.5 | 81.8 | 79.6 | 80.7 | 86.2 | 58.1 | 7.95 | 40.8 |
Ours | 96.0 | 93.2 | 94.6 | 95.2 | 48.8 | 85.8 | 85.0 | 85.4 | 90.0 | 63.2 | 7.96 | 39.4 |
Methods | Head Structures | Grape-⊥ Dataset | Winegrape Dataset | Params/M | MS/MB | Flops/G | FPS (Img/s) | ||
---|---|---|---|---|---|---|---|---|---|
Mask mAP@0.5 |
Mask mAP@0.5:0.95 |
Mask mAP@0.5 |
Mask mAP@0.5:0.95 | ||||||
YOLOv5s- seg-SM4 | Original | 90.0 | 31.2 | 75.2 | 42.7 | 7.44 | 14.4 | 25.7 | 40.3 |
+LADH | 91.3 (+1.3%) | 32.9 (+1.7%) | 76.2 (+1.0%) | 41.0 (−1.7%) | 6.32 (−1.12) | 12.2 (−2.2) | 22.3 (−3.4) | 48.3 (+8.0) | |
+T-Head | 91.1 (+1.1%) | 33.3 (+2.1%) | 73.2 (−2.0%) | 38.4 (−4.3%) | 6.02 (−1.42) | 12.0 (−2.4) | 27.8 (+2.1) | 37.4 (−2.9) | |
+LSCSH | 90.6 (+0.6%) | 35.7 (+4.5%) | 74.2 (−1.0%) | 40.2 (−2.5%) | 6.18 (−1.26) | 10.2 (−4.2) | 23.2 (−2.5) | 44.2 (+3.9) | |
DE-SCSH | 93.4 (+3.4%) | 36.2 (+5.0%) | 78.7 (+3.5%) | 48.1 (+5.4%) | 6.42 (−1.02) | 10.4 (−4.0) | 24.2 (−4.5) | 46.2 (+5.9) | |
YOLOv8s- seg-SM4 | Original | 93.5 | 43.6 | 86.4 | 60.3 | 11.82 | 22.8 | 42.4 | 28.3 |
+LADH | 92.7 (−0.8%) | 47.1 (+3.5%) | 85.5 (−0.9%) | 51.2 (−9.1%) | 7.28 (−4.54) | 15.2 (−7.6) | 34.0 (−8.4) | 36.9 (+8.6) | |
+T-Head | 94.5 (+1.0%) | 46.6 (+3.0%) | 79.3 (−7.1%) | 51.6 (−8.7%) | 9.56 (−2.26) | 19.5 (−3.3) | 44.2 (+1.8) | 28.0 (−0.3) | |
+LSCSH | 91.8 (−1.7%) | 48.1 (+4.5%) | 77.0 (−9.4%) | 50.5 (−9.8%) | 7.46 (−4.36) | 15.4 (−7.4) | 38.4 (−4.0) | 32.1 (+3.8) | |
DE-SCSH | 94.0 (+0.5%) | 46.5 (+2.9%) | 87.1 (+0.7%) | 61.3 (+1.0%) | 7.46 (−4.36) | 17.1 (−5.7) | 38.4 (−4.0) | 33.2 (+4.9) | |
YOLOv11s- seg-SM4 | Original | 92.9 | 44.4 | 87.0 | 58.3 | 10.07 | 19.6 | 35.3 | 37.6 |
+LADH | 95.5 (+2.6%) | 47.2 (+2.8%) | 85.6 (−1.4%) | 51.1 (−7.2%) | 7.77 (−2.30) | 16.2 (−3.4) | 34.9 (−0.4) | 38.0 (+0.4) | |
+T-Head | 94.1 (+1.2%) | 46.1 (+1.7%) | 83.5 (−3.5%) | 54.4 (−3.9%) | 7.54 (−2.53) | 16.8 (−2.8) | 38.4 (+3.1) | 32.2 (−5.4) | |
+LSCSH | 93.4 (+0.5%) | 46.9 (+2.5%) | 82.6 (−4.4%) | 52.2 (−6.1%) | 8.08 (−1.99) | 16.7 (−2.9) | 36.9 (+1.6) | 34.6 (−3.0) | |
DE-SCSH | 95.2 (+2.3%) | 48.8 (+4.4%) | 90.0 (+3.0%) | 63.2 (+4.9%) | 7.96 (−2.11) | 17.4 (−2.2) | 39.4 (+4.1) | 30.9 (−6.7) |
Classes | p | ||
---|---|---|---|
Grps | 228 | 206 | 90.35% |
GrpWBs | 94 | 82 | 87.23% |
Total | 322 | 288 | 89.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Cao, Z.; Wang, J.; Wang, Z.; Zhao, J.; Zhang, M. A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies. Agriculture 2025, 15, 1622. https://doi.org/10.3390/agriculture15151622
Lu J, Cao Z, Wang J, Wang Z, Zhao J, Zhang M. A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies. Agriculture. 2025; 15(15):1622. https://doi.org/10.3390/agriculture15151622
Chicago/Turabian StyleLu, Jin, Zhongji Cao, Jin Wang, Zhao Wang, Jia Zhao, and Minjie Zhang. 2025. "A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies" Agriculture 15, no. 15: 1622. https://doi.org/10.3390/agriculture15151622
APA StyleLu, J., Cao, Z., Wang, J., Wang, Z., Zhao, J., & Zhang, M. (2025). A Picking Point Localization Method for Table Grapes Based on PGSS-YOLOv11s and Morphological Strategies. Agriculture, 15(15), 1622. https://doi.org/10.3390/agriculture15151622