Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro
Abstract
1. Introduction
2. Materials and Methods
2.1. Geography of Study Area and Sample Collection
2.1.1. Rearing of G. mellonella and T. molitor (Model Host Insects)
2.1.2. Insect Baiting Method
2.1.3. Survivability of Recovered Isolates at Different Storage Time Intervals at 20 °C
2.1.4. Pathogenicity of Recovered EPNs over Time Against G. mellonella and T. molitor
2.2. Scanning Electron Microscopy (SEM)
2.3. Polymerase Chain Reaction (PCR) and Sequencing
2.4. In Vitro Mass Production of EPNs
Isolation and Cultivation of Symbiotic Photorhabdus spp. for EPN Production
2.5. Statistical Analysis
3. Results
3.1. Distribution and Prevalence of EPNs
3.2. Survivability and Pathogenicity Percentage of Recovered Isolates at Different Storage Time Intervals Against G. mellonella and T. molitor
3.3. Morphometrics and Developmental Stages of H. atacamensis and H. bacteriophora
3.4. Molecular Characterisation
3.5. Mass EPN Production
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Hussain, S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, D.K.; Gawande, S.J.; Soumia, P.S.; Krishna, R.; Vaishnav, A.; Ade, A.B. Biocontrol strategies: An eco-smart tool for integrated pest and diseases management. BMC Microbiol. 2022, 22, 324. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Kallali, N.S.; Ouijja, A.; Goura, K.; Laasli, S.E.; Kenfaoui, J.; Benseddik, Y.; Blenzar, A.M.; Joutei, A.B.; Jarroudi, M.E.; Mokrini, F.; et al. From soil to host: Discovering the tripartite interactions between entomopathogenic nematodes, symbiotic bacteria and insect pests and related challenges. J. Nat. Sci. Res. 2024, 7, 100065. [Google Scholar] [CrossRef]
- Noosidum, A.; Hodson, A.K.; Lewis, E.E.; Chandrapatya, A. Characterization of new entomopathogenic nematodes from Thailand: Foraging behavior and virulence to the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). J. Nematol. 2010, 42, 281–291. [Google Scholar] [PubMed]
- Manochaya, S.; Udikeri, S.; Srinath, B.S.; Sairam, M.; Bandlamori, S.V.; Ramakrishna, K. In vivo culturing of entomopathogenic nematodes for biological control of insect pests: A review. J. Nat. Pest. Res. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Moisan, K.; Kostenko, O.; Galeano, M.; Soler, R.; van der Ent, S.; Hiltpold, I. The sky is not the limit: Successful foliar application of Steinernema spp. entomopathogenic nematodes to control Lepidopteran caterpillars. J. Invertebr. Pathol. 2024, 206, 108163. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, C.F.; Fatouros, N.E.; Kammenga, J.E. The potential of entomopathogenic nematodes to control moth pests of ornamental plantings. Biol. Control 2022, 165, 104815. [Google Scholar] [CrossRef]
- Brivio, M.F.; Mastore, M. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. Insects 2018, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Allouf, N.; Ahmad, M. Isolation, identification of entomopathogenic nematodes with insights into their distribution in the Syrian coast regions and virulence against Tuta absoluta. J. Nematol. 2023, 55, 20230056. [Google Scholar] [CrossRef] [PubMed]
- Tomar, P.; Thakur, N.; Singh, S.; Kumar, S.; Rustagi, S.; Rai, A.K.; Shreaz, S.; Yadav, N.; Rai, P.K.; Yadav, A.N. Soil inhabiting bacto-helmith complex in insect pest management: Current research and future challenges. Heliyon 2024, 10, e36365. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Invertebr. Pathol. 2020, 30, 31. [Google Scholar] [CrossRef]
- Sandhi, R.K.; Pothula, R.; Pothula, S.K.; Adams, B.J.; Reddy, G.V.P. First record of native entomopathogenic nematodes from Montana agroecosystems. J. Nematol. 2020, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Julià, I.; de Herrera, M.S.; Morton, A.; Garriga, A.; Tapia, D.; Navarro-Rocha, J.; Garcia-del-Pino, F. Compatibility of entomopathogenic nematodes and essential oils: A new step for integrated pest management of the truffle beetle. Biol. Control 2024, 190, 105462. [Google Scholar] [CrossRef]
- Lacey, L.A.; Georgis, R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 2012, 44, 218–225. [Google Scholar] [PubMed]
- Zelaya-Molina, L.X.; Chávez-Díaz, I.F.; de los Santos-Villalobos, S.; Cruz-Cárdenas, C.I.; Ruíz-Ramírez, S.; Rojas-Anaya, E. Biological pest control in Mexican agriculture. Rev. Mex. Cienc. Agrícolas 2022, 13, 69–79. [Google Scholar]
- Ogier, J.C.; Pagès, S.; Frayssinet, M.; Gaudriault, S. Entomopathogenic nematode-associated microbiota: From monoxenic paradigm to pathobiome. Microbiome 2020, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; He, D.; Li, B.; Chen, X.; Luo, K.; Li, G. Environmentally friendly and effective alternative approaches to pest management: Recent advances and challenges. Agronomy 2024, 14, 1807. [Google Scholar] [CrossRef]
- Campbell, J.F.; Orza, G.; Yoder, F.; Lewis, E.; Gaugler, R. Spatial and temporal distribution of endemic and released entomopathogenic nematode populations in turfgrass. Entomol. Exp. Appl. 1998, 86, 1–11. [Google Scholar] [CrossRef]
- Raja, R.K.; Aiswarya, D.; Gulcu, B.; Raja, M.; Perumal, P.; Sivaramakrishnan, S.; Kaya, H.K.; Hazir, S. Response of three cyprinid fish species to the Scavenger Deterrent Factor produced by the mutualistic bacteria associated with entomopathogenic nematodes. J. Invert. Pathol. 2017, 143, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Khashaba, E.H.; Moghaieb, R.E.; Abd El Azim, A.M.; Ibrahim, S.A. Isolation, identification of entomopathogenic nematodes, and preliminary study of their virulence against the great wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). Egypt J. Biol. Pest Control 2020, 30, 55. [Google Scholar] [CrossRef]
- White, G.F. A method for obtaining infective nematode larvae from cultures. Science 1927, 66, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Deol, Y.S.; Jagdale, G.B.; Cañas, L.; Grewal, P.S. Delivery of entomopathogenic nematodes directly through commercial growing media via the inclusion of infected host cadavers: A novel approach. Biol. Control 2011, 58, 60–67. [Google Scholar] [CrossRef]
- Elbrense, H.; Elmasry, A.M.A.; Seleiman, M.F.; AL-Harbi, M.S.; Abd El-Raheem, A.M. Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae? Biology 2021, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.B.; Smart, G.J. Scanning electron microscope studies of Steinernema glaseri (Nematoda: Steinernematidae). Nematologica 1995, 41, 183–190. [Google Scholar] [CrossRef]
- Ávila-López, M.B.; García-Maldonado, J.Q.; Estrada-Medina, H.; Hernández-Mena, D.I.; Cerqueda-García, D.; Vidal-Martínez, V.M. First record of entomopathogenic nematodes from Yucatán State, México and their infectivity capacity against Aedes aegypti. PeerJ 2021, 9, e11633. [Google Scholar] [CrossRef] [PubMed]
- Buecher, E.J.; Popiel, I. Liquid culture of the Entomogenous Nematode Steinernema feltiae with its bacterial symbiont. J. Nematol. 1989, 21, 500–504. [Google Scholar] [PubMed]
- Chavarría-Hernández, N.; Torre, M. Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture. Biotechnol. Lett. 2001, 23, 311–315. [Google Scholar] [CrossRef]
- Sixto-Josué, P.C.; Rodríguez-Hernández, A.I.; Rocío, L.M.; Zepeda-Bastida, A.; Chavarría-Hernández, N. In-vitro liquid culture of the entomopathogenic nematode, Steinernema colombiense, in orbitally shaken flasks. Biocontrol Sci. Technol. 2018, 28, 901–911. [Google Scholar] [CrossRef]
- Bhat, A.H.; Machado, R.A.; Abolafia, J.; Ruiz-Cuenca, A.N.; Askary, T.H.; Ameen, F.; Dass, W.M. Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont. Parasit. Vectors 2023, 16, 383. [Google Scholar] [CrossRef] [PubMed]
- Edgington, S.; Buddie, A.G.; Moore, D.; France, A.; Merino, L.; Hunt, D.J. Heterorhabditis atacamensis n. sp. (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Atacama Desert, Chile. J. Helminthol. 2011, 85, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Gobinath, C.; Trejo, J.F.G.; Jácome, O.A.; Rico-García, E. Abundancia, caracterizaciones moleculares y producción masiva de comunidades microbianas benéficas (nematodos entomopatógenos) del suelo. Perspect. Cienc. Y Tecnol. 2024, 5, 83–103. [Google Scholar] [CrossRef]
- Sanda, N.B.; Hou, B.; Hou, Y. The Entomopathogenic Nematodes H. bacteriophora and S. carpocapsae Inhibit the Activation of proPO System of the Nipa Palm Hispid Octodonta nipae (Coleoptera: Chrysomelidae). Life 2022, 12, 1019. [Google Scholar] [CrossRef] [PubMed]
- Tarasco, E.; Fanelli, E.; Salvemini, C.; El-Khoury, Y.; Troccoli, A.; Vovlas, A.; De Luca, F. Entomopathogenic nematodes and their symbiotic bacteria: From genes to field uses. Front. Insect Sci. 2023, 3, 1195254. [Google Scholar] [CrossRef] [PubMed]
- Vanlalhlimpuia; Lalramliana; Lalramnghaki, H.C.; Vanramliana. Morphological and molecular characterization of entomopathogenic nematode, Heterorhabditis baujardi (Rhabditida, Heterorhabditidae) from Mizoram, northeastern India. J. Parasit. Dis. 2018, 42, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.A.; Abolafia, J.; Robles, M.C.; Ruiz-Cuenca, A.N.; Bhat, A.H.; Shokoohi, E.; Hibbard, B. Description of Heterorhabditis americana n. sp. (Rhabditida, Heterorhabditidae), a new entomopathogenic nematode species isolated in North America. Parasit. Vectors 2025, 18, 101. [Google Scholar] [CrossRef] [PubMed]
- Daramola, F.Y.; Osemwegie, O.O.; Orisajo, S.B.; Ikponmwosa, E.; Alori, E.T. Isolation and molecular characterization of entomopathogenic nematode, Heterorhabditis sp. from an arable land in Nigeria. J. Integr. Agric. 2021, 20, 2706–2715. [Google Scholar] [CrossRef]
- Harms, N.E.; Knight, I.A.; Pratt, P.D.; Reddy, A.M.; Mukherjee, A.; Gong, P.; Coetzee, J.; Raghu, S.; Diaz, R. Climate Mismatch between Introduced Biological Control Agents and Their Invasive Host Plants: Improving Biological Control of Tropical Weeds in Temperate Regions. Insects 2021, 12, 549. [Google Scholar] [CrossRef] [PubMed]
- Tatevari, M.L.T.; Jorge, C.G.; Luis, M.C.; Ricardo, R.R. Do entomopathogenic nematodes induce immune priming? Microb. Pathog. 2021, 154, 104844. [Google Scholar] [CrossRef] [PubMed]
- Smagghe, F.; Spooner-Hart, R.; Chen, Z.H.; Donovan-Mak, M. Biological control of arthropod pests in protected cropping by employing entomopathogens: Efficiency, production and safety. Biol. Control 2023, 186, 105337. [Google Scholar] [CrossRef]
Soil Sample | Soil Type | Recovered EPNs (Heterorhabditis sp.) | Soil Temperature | Organic Contact (%) | pH | Electrical Conductivity (mS/cm) | Total (%) (Heterorhabditis sp.) |
---|---|---|---|---|---|---|---|
Avena | clay | ++ | 31 | 3.6 | 7.13 | 0.83 | 7.5% |
loam | + | 28 | 3.3 | 8.13 | 1.19 | ||
sandy loam | ++ | 29 | 3.9 | 6.90 | 0.82 | ||
Corn | silt soil | + | 28 | 4.2 | 6.90 | 0.86 | |
loam | + | 31 | 3.8 | 7.01 | 1.23 | ||
loamy clay | + | 29 | 3.7 | 7.13 | 0.83 | ||
Sorghum | loam | + | 29 | 3.4 | 6.78 | 0.78 | |
loam | + | 30 | 3.0 | 8.31 | 0.91 | ||
Alfalfa | silt soil | + | 27 | 4.12 | 6.82 | 0.92 | |
clay | + | 30 | 4.0 | 7.13 | 0.71 |
Recovered EPNs | Morphometric Characteristics | ||||||
---|---|---|---|---|---|---|---|
TBL | MBW | EP | ES | TL | D% | E% | |
AMZX05 1 | 535 ± 10 a | 20 ± 1 a | 120 ± 2 a | 118 ± 12 a | 90 ± 9 a | 84 ± 4 a | 101 ± 7 a |
AMZX10 1 | 539 ± 16 a | 20 ± 1 a | 120 ± 1 a | 118 ± 12 a | 89 ± 11 a | 84 ± 5 a | 104 ± 9 a |
AMZX13 2 | 542 ± 8 a | 20 ± 1 a | 121 ± 2 a | 119 ± 13 a | 93 ± 8 a | 86 ± 4 a | 103 ± 7 a |
H. bacteriophora [28] 1 | 527 ± 6 | 20 ± 1 | 119 ± 2 | 110 ± 10 | 84 ± 10 | 86 ± 5 | 101 ± 6 |
H. atacamensis [29] 2 | 529 ± 12 | 21 ± 1 | 118 ± 2 | 115 ± 11 | 79 ± 12 | 85 ± 6 | 98 ± 8 |
Recovered EPNs | Morphometric Characteristics | |||||||
---|---|---|---|---|---|---|---|---|
ABW | SPL | GuL | TBL | MBW | EP | TL | ES | |
AMZX05 1 | 21 ± 3 a | 44 ± 4 a | 20 ± 1 a | 906 ± 36 a | 104 ± 7 a | 118 ± 5 a | 30 ± 1 a | 109 ± 3 a |
AMZX10 1 | 21 ± 3 a | 44 ± 5 a | 20 ± 2 a | 916 ± 34 a | 103 ± 6 a | 119 ± 6 a | 29 ± 2 a | 106 ± 6 a |
AMZX13 2 | 21 ± 2 a | 45 ± 6 a | 20 ± 1 a | 914 ± 37 a | 102 ± 6 a | 121 ± 8 a | 29 ± 2 a | 106 ± 6 a |
H. bacteriophora [28] 1 | 19 ± 3 | 44 ± 4 | 21 ± 1 | 898 ± 32 | 105 ± 5 | 122 ± 4 | 32 ± 1 | 99 ± 7 |
H. atacamensis [29] 2 | 22 ± 2 | 45 ± 4 | 20 ± 2 | 918 ± 30 | 106 ± 6 | 124 ± 7 | 29 ± 2 | 108 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrakasan, G.; Ávila López, M.B.; Gastauer, M.; Soto Zarazua, G.M.; Sánchez Gutiérrez, A.E.; Martinez Cano, B. Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro. Agriculture 2025, 15, 1603. https://doi.org/10.3390/agriculture15151603
Chandrakasan G, Ávila López MB, Gastauer M, Soto Zarazua GM, Sánchez Gutiérrez AE, Martinez Cano B. Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro. Agriculture. 2025; 15(15):1603. https://doi.org/10.3390/agriculture15151603
Chicago/Turabian StyleChandrakasan, Gobinath, Mariana Beatriz Ávila López, Markus Gastauer, Genaro Martin Soto Zarazua, Arantza Elena Sánchez Gutiérrez, and Betsie Martinez Cano. 2025. "Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro" Agriculture 15, no. 15: 1603. https://doi.org/10.3390/agriculture15151603
APA StyleChandrakasan, G., Ávila López, M. B., Gastauer, M., Soto Zarazua, G. M., Sánchez Gutiérrez, A. E., & Martinez Cano, B. (2025). Distribution, Characterization, and Pathogenicity of Entomopathogenic Nematodes in Agricultural Crops in Amazcala, Querétaro. Agriculture, 15(15), 1603. https://doi.org/10.3390/agriculture15151603