Measuring and Analyzing the Spatiotemporal Evolution of Agricultural Green Total Factor Productivity on the Tibetan Plateau (2002–2021)
Abstract
1. Introduction
1.1. Global Environmental Pressures on Agriculture
1.2. High-Altitude Vulnerabilities and Regional Context
1.3. Advancements in Green Total Factor Productivity Measurement
1.4. Research Gaps and Study Contributions
2. Research Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources
3. Model Selection and Construction of the Indicator System
3.1. Model Selection
3.1.1. Super-SBM Model
3.1.2. Kernel Density Estimation
3.1.3. Dagum Gini Coefficient and Its Decomposition
3.2. Construction of the Indicator System
3.2.1. Input Variables
3.2.2. Desirable Outputs
- (1)
- Gross Output Value of Agriculture and Animal Husbandry
- (2)
- Agricultural Carbon Sequestration
3.2.3. Undesirable Outputs
- (1)
- Agricultural Non-Point-Source Pollution
- (2)
- Agricultural Carbon Emissions
- (3)
- Livestock Carbon Emissions
4. Research Results and Analysis
4.1. Measurement of AGTFP and Decomposition of Results
4.1.1. Analysis of AGTFP Estimates for Tibet
4.1.2. Decomposition of AGTFP Efficiency in Tibet
4.2. Temporal Evolution of AGTFP Distribution in Tibet
4.3. Spatial Decomposition of AGTFP Disparities in Tibet
5. Discussion
5.1. Spatiotemporal Evolution Mechanisms of AGTFP in Tibet
5.2. Regional Divergence and Convergence Characteristics of AGTFP in Tibet
5.3. Research Limitations and Future Directions
6. Conclusions and Policy Recommendations
6.1. Main Findings
- (1)
- AGTFP in Tibet has shown an overall upward trend, but growth remains below the national average. During the study period, AGTFP in the region increased from 0.949 in 2002 to 1.068 in 2021, yielding a compound annual growth rate (CAGR) of 0.78 percent, which is lower than the national agricultural average of approximately 1.6 percent. Growth accelerated significantly after 2010 (CAGR = 4.13 percent), coinciding with the implementation of key policies such as the Tibet Ecological Security Barrier Protection and Construction Plan (2008–2030), indicating that an appropriate policy framework plays a decisive role in fostering resource-efficient and environmentally sustainable agriculture. Notably, the effects of policy interventions may not appear immediately. In remote, high-altitude regions like Tibet, labor substitution with mechanization often unfolds slowly and may take years to yield measurable productivity gains. This highlights the need for sustained long-term monitoring to assess policy outcomes effectively.
- (2)
- Tibet’s AGTFP exhibits pronounced regional heterogeneity, which can be categorized into three typical evolutionary patterns. The continuous improvement type (Nagqu and Qamdo) follows a three-phase pattern—an initial trough, gradual rise, and rapid leap—primarily driven by grassland ecological compensation and the adoption of penned livestock systems in cold pastoral zones. The stable fluctuation type (Lhasa and Xigazê) maintains consistently high efficiency levels but with considerable volatility. The decline risk type (Lhoka, Nyingchi, and Ngari) is characterized by an initial drop followed by stabilization, or a deep decline with slow recovery, reflecting systemic vulnerability.
- (3)
- Improvements in pure technical efficiency are the primary drivers of AGTFP growth in Tibet, while low scale efficiency remains a major constraint. Efficiency decomposition shows that the mean pure technical efficiency across regions (0.9447) is significantly higher than the mean technical efficiency (0.8523), highlighting scale inefficiency as a key limiting factor. This is primarily due to rigid environmental constraints on the plateau, including short growing seasons caused by cold climates, severe land fragmentation, and limited ecological carrying capacity—all of which undermine the foundational assumptions of economies of scale.
- (4)
- AGTFP in Tibet follows a “convergence–divergence–reconvergence” dynamic pattern, with widening regional disparities but a trend toward structural stabilization. Kernel density analysis shows that the AGTFP distribution shifted from a left-skewed pattern during the Tenth Five-Year Plan to a right-skewed, high-peak structure by the Thirteenth Plan, indicating not only overall improvements in green productivity but also the formation of high-efficiency clusters. Gini coefficient analysis reveals that overall inequality increased substantially, with the coefficient rising from 0.165 in 2002 to 0.260 in 2020—an increase of 57.6 percent—suggesting that regional development imbalances have continued to intensify.
- (5)
- Interregional disparities are the dominant source of AGTFP inequality in Tibet, and their importance has grown over time. Gini decomposition results show that interregional inequality rose from 0.085 in 2002 to 0.140 in 2020—an increase of 64.7 percent—and its share of total inequality rose from 51.5 percent to 53.8 percent, significantly exceeding the contribution from intraregional differences (around 40 percent). Among ecological zones, the farmland–pastoral divide exhibited the highest Gini coefficient (increasing from 0.068 to 0.090), highlighting substantial gaps in resource endowment, infrastructure, and agricultural technology levels between these areas.
6.2. Policy Recommendations
- (1)
- Development of a “staged advancement” strategy for green development, with differentiated technology diffusion pathways tailored to regional AGTFP profiles. For farmland zones (e.g., Qamdo and Nyingchi), priority should be given to promoting water-saving irrigation technologies and organic agriculture certification to enhance value-added production. In agro-pastoral transition zones (e.g., Lhasa, Lhoka, and Xigazê), efforts should focus on integrated crop–livestock circular production systems to improve resource use efficiency. For pastoral zones (e.g., Nagqu and Ngari), ecological compensation mechanisms should be further strengthened, and enclosed livestock systems adapted to alpine environments should be promoted to relieve grazing pressure on grasslands.
- (2)
- Prioritization of the enhancement of pure technical efficiency and overcoming scale-efficiency constraints. Given Tibet’s unique natural conditions, traditional scale expansion strategies should be set aside in favor of technological innovation and managerial optimization to drive productivity gains. Emphasis should be placed on developing precision agriculture technologies suited to high-altitude conditions, environmentally friendly agro-pastoral production models, and value-added processing for specialty agricultural products. Technological progress should be leveraged to compensate for the limitations of scale economies.
- (3)
- Strengthening regional coordination to narrow the structural gap between farmland and pastoral zones. Institutional mechanisms for interregional technology diffusion and resource sharing should be established to facilitate the spread of advanced production techniques from high-efficiency to low-efficiency areas. Infrastructure connectivity should be improved to enhance production conditions and market accessibility in pastoral zones, thereby enabling more efficient circulation, processing, and value-adding of agro-pastoral products.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alston, J.M.; Pardey, P.G. Agriculture in the Global Economy. J. Econ. Perspect. 2014, 28, 121–146. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; Barros, J.D.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Jin, Z.; Smith, P.; Barrett, C.B.; Zhu, Y.-G.; Burney, J.; D’Odorico, P.; Fantke, P.; Fargione, J.; et al. Climate change exacerbates the environmental impacts of agriculture. Science 2024, 385, eadn3747. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef]
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Political Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Klarin, T. The Concept of Sustainable Development: From its Beginning to the Contemporary Issues. Zagreb Int. Rev. Econ. Bus. 2018, 21, 67–94. [Google Scholar] [CrossRef]
- Altieri, M.A.; Koohafkan, P. Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities; Third World Network (TWN): Penang, Malaysia, 2008; Volume 6. [Google Scholar]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Cuni-Sanchez, A.; Aneseyee, A.B.; Baderha, G.K.R.; Batumike, R.; Bitariho, R.; Imani, G.; Jha, N.; Kaganzi, K.R.; Kaplin, B.A.; Klein, J.A.; et al. Perceived climate change impacts and adaptation responses in ten African mountain regions. Nat. Clim. Change 2025, 15, 153–161. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Pauli, H.; Halloy, S.R.P. High Mountain Ecosystems Under Climate Change. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Viviroli, D.; Kummu, M.; Meybeck, M.; Kallio, M.; Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 2020, 3, 917–928. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, G.; Cong, Z.; Wang, X. Priorities for the sustainable development of the ecological environment on the Tibetan Plateau. Fundam. Res. 2021, 1, 329–333. [Google Scholar] [CrossRef]
- Li, D.; Tian, P.; Luo, H.; Hu, T.; Dong, B.; Cui, Y.; Khan, S.; Luo, Y. Impacts of land use and land cover changes on regional climate in the Lhasa River basin, Tibetan Plateau. Sci. Total Environ. 2020, 742, 140570. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Lansink, A.O.; Ondersteijn, C. Energy Productivity Growth in the Dutch Greenhouse Industry. Am. J. Agric. Econ. 2006, 88, 124–132. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Pasurka, C.A. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Oh, S.-C.; Shin, J. The impact of mismeasurement in performance benchmarking: A Monte Carlo comparison of SFA and DEA with different multi-period budgeting strategies. Eur. J. Oper. Res. 2015, 240, 518–527. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Zhaofeng, W.; Yaoyao, D. Spatiotemporal Variations and Influencing Factors of Carbon Emission Efficiency in Hunan Province Based on the SBM-DEA Model. Geogr. Sci. 2019, 39, 797–806. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, S.; Cai, Q.; Gao, S. Evaluating the energy-environment efficiency and its determinants in Guangdong using a slack-based measure with environmental undesirable outputs and panel data model. Sci. Total Environ. 2019, 663, 878–888. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, X.; Hu, H.; Su, Z.; Zhang, S. Measurement of China’s Green Total Factor Productivity Introducing Human Capital Composition. Int. J. Environ. Res. Public Health 2022, 19, 13563. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Shen, Z.; Boussemart, J.-P.; Leleu, H. Aggregate green productivity growth in OECD’s countries. Int. J. Prod. Econ. 2017, 189, 30–39. [Google Scholar] [CrossRef]
- Lv, T.; Fu, S.; Zhang, X.; Hu, H.; Zhang, Y. Spatiotemporal evolution and convergence of agricultural eco-efficiency in the middle reaches of the Yangtze River. Phys. Chem. Earth Parts A/B/C 2023, 131, 103438. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, X.; Guo, Y. Spatiotemporal coupling analysis between green total factor productivity and urban e-commerce development in China’s eight urban clusters. Sci. Rep. 2024, 14, 22816. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Q.; Huang, C. Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture 2022, 12, 2025. [Google Scholar] [CrossRef]
- He, J.; Han, M. Analysis of spatial and temporal characteristics and evolution of green total factor productivity in agriculture in the lower Yellow River basin. Front. Sustain. Food Syst. 2024, 8, 1474813. [Google Scholar] [CrossRef]
- Bao, H.; Liu, X.; Xu, X.; Shan, L.; Ma, Y.; Qu, X.; He, X. Spatial-temporal evolution and convergence analysis of agricultural green total factor productivity-evidence from the Yangtze River Delta Region of China. PLoS ONE 2023, 18, e0271642. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wu, H.; Lu, Z.; Kou, J.; Du, J. Spatial differences, distributional dynamics, and driving factors of green total factor productivity in China. Front. Environ. Sci. 2022, 10, 1058612. [Google Scholar] [CrossRef]
- Zhou, F.; Wen, C. Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development. Agriculture 2023, 13, 1441. [Google Scholar] [CrossRef]
- Wang, F.; Du, L.; Tian, M. Does Agricultural Credit Input Promote Agricultural Green Total Factor Productivity? Evidence from Spatial Panel Data of 30 Provinces in China. Int. J. Environ. Res. Public Health 2023, 20, 529. [Google Scholar] [CrossRef]
- Liu, S.; Lei, P.; Li, X.; Li, Y. A nonseparable undesirable output modified three-stage data envelopment analysis application for evaluation of agricultural green total factor productivity in China. Sci. Total Environ. 2022, 838, 155947. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Cui, X.; Graf, H.-F. Recent land cover changes on the Tibetan Plateau: A review. Clim. Change 2009, 94, 47–61. [Google Scholar] [CrossRef]
- Adelabu, D.B.; Clark, V.R.; Bredenhand, E. Potential for Sustainable Mountain Farming: Challenges and Prospects for Sustainable Smallholder Farming in the Maloti–Drakensberg Mountains. Mt. Res. Dev. 2020, 40, A1–A11. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, H.; Qiu, X.; Sun, H.; Song, P.; Yang, W. China’s grassland ecological compensation policy achieves win-win goals in Inner Mongolia. Environ. Res. Commun. 2023, 5, 031007. [Google Scholar] [CrossRef]
- Tibet Statistical Yearbook 2003–2022; China Statistics Press: Beijing, China, 2022.
- Li, H.; Fang, K.; Yang, W.; Wang, D.; Hong, X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer: Berlin/Heidelberg, Germany, 2007; Volume 2. [Google Scholar]
- Zhang, Y.; Yu, Z.; Zhang, J. Analysis of carbon emission performance and regional differences in China’s eight economic regions: Based on the super-efficiency SBM model and the Theil index. PLoS ONE 2021, 16, e0250994. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Guo, H.; Xu, S.; Pan, C. Environmental regulations and agricultural carbon emissions efficiency: Evidence from rural China. Heliyon 2024, 10, e25677. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Oxfordshire, UK, 2018. [Google Scholar]
- Dagum, C. Decomposition and interpretation of Gini and the generalized entropy inequality measures. Statistica 1997, 57, 295–308. [Google Scholar] [CrossRef]
- Hayami, Y.; Ruttan, V. Agricultural Development: An International Perspective; The Johns Hopkins Press: Baltimore, MD, USA; London, UK, 1971; p. 123. [Google Scholar]
- Liu, Y.; Lu, C.; Chen, X. Dynamic analysis of agricultural green development efficiency in China: Spatiotemporal evolution and influencing factors. J. Arid Land 2023, 15, 127–144. [Google Scholar] [CrossRef]
- Anik, A.R.; Rahman, S.; Sarker, J.R. Agricultural Productivity Growth and the Role of Capital in South Asia (1980–2013). Sustainability 2017, 9, 470. [Google Scholar] [CrossRef]
- Le, N.T.; Thinh, N.A.; Ha, N.T.V.; Tien, N.D.; Lam, N.D.; Hong, N.V.; Tuan, N.T.; Hanh, T.V.; Khanh, N.N.; Thanh, N.N.; et al. Measuring water resource use efficiency of the Dong Nai River Basin (Vietnam): An application of the two-stage data envelopment analysis (DEA). Environ. Dev. Sustain. 2022, 24, 12427–12445. [Google Scholar] [CrossRef]
- Wen, L.; Li, H. Estimation of agricultural energy efficiency in five provinces: Based on data envelopment analysis and Malmquist index model. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 2900–2913. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Kroodsma, D.A.; Field, C.B. CARBON SEQUESTRATION IN CALIFORNIA AGRICULTURE, 1980–2000. Ecol. Appl. 2006, 16, 1975–1985. [Google Scholar] [CrossRef] [PubMed]
- Peltonen-Sainio, P.; Muurinen, S.; Rajala, A.; Jauhiainen, L. Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. J. Agric. Sci. 2008, 146, 35–47. [Google Scholar] [CrossRef]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Ronghua, J.; Wei, L.; Zhengang, Y. A Study on the Carbon Balance of Household Production Systems in Typical Agro-Pastoral Transition Zones of Gansu Province from a Carbon Neutrality Perspective. Crop Res. 2023, 37, 259–266. [Google Scholar]
- Hütsch, B.W.; Schubert, S. Chapter Two—Harvest Index of Maize (Zea mays L.): Are There Possibilities for Improvement? In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, UK, 2017; Volume 146, pp. 37–82. [Google Scholar]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Proctor, K.; Murthy, G.; Higgins, C. A Case Study of Tomato (Solanum lycopersicon var. Legend) Production and Water Productivity in Agrivoltaic Systems. Sustainability 2021, 13, 2850. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Novotny, V. Water Quality: Diffuse Pollution and Watershed Management; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Zhu, K.-W.; Cheng, Y.-C.; Yang, Z.-M.; Huang, L.; Zhang, S.; Lei, B. Research trends of agricultural non-point source pollution risk assessment based on bibliometric method. J. Ecol. Rural Environ. 2020, 36, 425–432. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007-Mitigation of Climate Change:Working Group III Contribution to the Fourth Assessment Report of the IPCC.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Ming, G.; Hongyuan, S. Spatial Convergence and Divergence of Carbon Emission Efficiency in Chinese Agriculture: An Empirical Analysis Based on the Malmquist–Luenberger Index and Spatial Econometrics. Econ. Geogr. 2015, 35, 142–148+185. [Google Scholar] [CrossRef]
- Yiqing, C.; Huarui, W.; Chunfeng, T. Evaluation of Agricultural Production Efficiency and Its Influencing Factors in Jiangxi Province. East China Econ. Manag. 2016, 30, 21–28. [Google Scholar]
- Fu, D.; Gong, Y.; Chen, C.; Gui, X.; Liu, H.; Chen, S.; Ren, J.; Hou, B. Nitrogen and Phosphorus Loading Characteristics of Agricultural Non-Point Sources in the Tuojiang River Basin. Water 2023, 15, 3503. [Google Scholar] [CrossRef]
- Liutao, L. A Study on the Spatiotemporal Characteristics and Evolutionary Patterns of the Rural Ecological Environment. Doctor Nanjing Agricultural University: Nanjing, China, 2009. [Google Scholar]
- Dubey, A.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Bo, L.; Junbiao, Z.; Haipeng, L. Spatiotemporal Characteristics and Decomposition of Influencing Factors of Agricultural Carbon Emissions in China. China Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar]
- Changliang, S. The Impact of Land Transfers on High-Quality Agricultural Development from a Green Total Factor Productivity Perspective. J. Nat. Resour. 2024, 39, 1418–1433. [Google Scholar]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Hu, J. Green productivity growth and convergence in Chinese agriculture. J. Environ. Plan. Manag. 2024, 67, 1775–1804. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, X.; Chi, L.; Meng, H.; Chen, G.; Shen, C.; Wu, J. Stimulating innovation or enhancing productivity? The impact of environmental regulations on agricultural green growth. J. Environ. Manag. 2024, 370, 122706. [Google Scholar] [CrossRef]
- Sun, Y. Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity. Front. Environ. Sci. 2022, 10, 955954. [Google Scholar] [CrossRef]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Pagiola, S.; Arcenas, A.; Platais, G. Can Payments for Environmental Services Help Reduce Poverty? An Exploration of the Issues and the Evidence to Date from Latin America. World Dev. 2005, 33, 237–253. [Google Scholar] [CrossRef]
- Hayes, T.M. Payment for ecosystem services, sustained behavioural change, and adaptive management: Peasant perspectives in the Colombian Andes. Environ. Conserv. 2012, 39, 144–153. [Google Scholar] [CrossRef]
- Jin, S.; Ma, H.; Huang, J.; Hu, R.; Rozelle, S. Productivity, efficiency and technical change: Measuring the performance of China’s transforming agriculture. J. Product. Anal. 2010, 33, 191–207. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Nayak, A.K.; Rahul, T.; Dhal, B.; Nayak, A.D.; Vijayakumar, S.; Satpathy, B.; Chatterjee, D.; Swain, C.K.; Moharana, K.C.; Nayak, P.K.; et al. Eco-efficiency and technical efficiency of different integrated farming systems in eastern India. Int. J. Agric. Sustain. 2023, 21, 2270250. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridgeshire, UK, 2003. [Google Scholar]
- Rogers, E. Diffusion of Innovations, 5th ed.; Free Press: Tampa, FL, USA, 2003. [Google Scholar]
- Phillips, P.C.; Sul, D. Transition modeling and econometric convergence tests. Econometrica 2007, 75, 1771–1855. [Google Scholar] [CrossRef]
- Haihong, G.; Xinmin, L. Spatiotemporal Evolution of China’s Agricultural Green Total Factor Productivity. China Manag. Sci. 2020, 28, 66–75. [Google Scholar] [CrossRef]
- Yafei, W.; Qijia, Z.; Ying, B. China’s Agricultural Green Total Factor Productivity and Its Spatiotemporal Evolution. Stat. Decis. 2022, 38, 98–102. [Google Scholar] [CrossRef]
- Myrdal, G.; Sitohang, P. Economic Theory and Under-Developed Regions; Gerald Duckworth & Co., Ltd.: London, UK, 1957; Available online: http://revistas.bancomext.gob.mx/rce/magazines/567/12/RCE11.pdf (accessed on 25 November 2024).
- Krugman, P. What’s New About the New Economic Geography? Oxf. Rev. Econ. Policy 1998, 14, 7–17. Available online: https://www.jstor.org/stable/23606492 (accessed on 25 November 2024). [CrossRef]
- Xie, Y.; Zhou, X. Income inequality in today’s China. Proc. Natl. Acad. Sci. USA 2014, 111, 6928–6933. [Google Scholar] [CrossRef]
- Quah, D.T. Twin Peaks: Growth and Convergence in Models of Distribution Dynamics. Econ. J. 1996, 106, 1045–1055. [Google Scholar] [CrossRef]
Indicator Type | Indicator | Meaning | Units |
---|---|---|---|
Input | Labor | The number of agricultural employees | 104 persons |
Mechanics | The total power of agricultural machinery | 104 kilowatts (kW) | |
Land | The total planting area of crops | 103 hectares (HA) | |
Water | Effective irrigation area | 103 hectares (HA) | |
Fertilizer | The amount of pure fertilizer application | tons | |
Pesticide | The amount of pesticide used | tons | |
Plastic sheeting | Consumption of agricultural plastic film | tons | |
Livestock | Year-end inventory of livestock | 104 heads (only) | |
Desirable output | GDP | Gross domestic product of agriculture and animal husbandry | CNY 104 |
Carbon sink | Carbon sequestration in agricultural production | 104 tons | |
Undesirable output | Non-point-source pollution | Agricultural non-point-source pollution and other standard emissions | 104 tons |
Agricultural total carbon emissions | Total carbon emissions from agricultural production and livestock breeding | 104 tons |
Crop Species | Economic Coefficient | Moisture Content | Carbon Absorption Rate | Reference |
---|---|---|---|---|
Highland barley | 0.51 | 0.12 | 0.485 | [58,59,60] |
Wheat | 0.40 | 0.12 | 0.49 | [58,59] |
Green forage | 0.34 | 0.7 | 0.15 | [59,61] |
Rapeseed | 0.25 | 0.1 | 0.45 | [59,62] |
Vegetables | 0.6 | 0.9 | 0.45 | [59,63] |
Pollution Source | Survey Unit | Indicator | Unit | Emission Inventory |
---|---|---|---|---|
Agricultural fertilizer | Nitrogen and phosphorus | Pure equivalent application | 104 tons | TN, TP |
Livestock husbandry | Cattle, sheep, pigs | Year-end stock | 104 heads | COD, TN, TP |
Carbon Source | Carbon Emission Coefficient | Reference |
---|---|---|
Fertilizer | 0.8956 kg CO2e·kg−1 | Oak Ridge National Laboratory, ORNL |
Pesticides | 4.9341 kg CO2e·kg−1 | Oak Ridge National Laboratory, ORNL |
Agricultural plastic sheeting | 5.18 kg CO2e·kg−1 | Institute of Resources, Ecosystem and Environment of Agriculture, IREEA, Nanjing Agricultural University |
Agricultural ploughing | 312.6 kg CO2e·km−1 | Institute of Agriculture and Biotechnology of China Agricultural University, IABCAU |
Livestock Species | CH4 Emission Factor (Enteric Fermentation) | CH4 Emission Factor (Manure Management) | N2O Emission Factor (Manure Management) | CO2-Equivalent Emission Factor (/kg·(head a)−1) |
---|---|---|---|---|
Pig | 1 | 5.08 | 0.175 | 68 |
Cattle (including yak) | 78.8 | 5.82 | 1.456 | 774.4 |
Sheep | 9.1 | 0.27 | 0.113 | 107.3 |
Year | Overall Gini Coefficient | Within-Region Inequality | Between-Region Inequality | Transvariation Density |
---|---|---|---|---|
2002 | 0.165 | 0.068 (41.2%) | 0.085 (51.5%) | 0.012 (7.3%) |
2005 | 0.18 | 0.075 (41.7%) | 0.092 (51.1%) | 0.013 (7.2%) |
2008 | 0.195 | 0.080 (41.0%) | 0.102 (52.3%) | 0.013 (6.7%) |
2011 | 0.215 | 0.088 (40.9%) | 0.113 (52.6%) | 0.014 (6.5%) |
2014 | 0.232 | 0.095 (40.9%) | 0.122 (52.6%) | 0.015 (6.5%) |
2017 | 0.248 | 0.101 (40.7%) | 0.132 (53.2%) | 0.015 (6.1%) |
2020 | 0.26 | 0.105 (40.4%) | 0.140 (53.8%) | 0.015 (5.8%) |
Year | Within-Region Inequality Decomposition (Within Each Ecological Zone) | Between-Region Inequality Decomposition (Between Ecological Zones) | ||||
---|---|---|---|---|---|---|
Farmland | Pastoral | Agro-Pastoral Transition | Farmland–Pastoral | Farmland–Agro-Pastoral | Agro-Pastoral–Pastoral | |
2002 | 0.025 | 0.048 | 0.035 | 0.068 | 0.042 | 0.052 |
2005 | 0.027 | 0.053 | 0.038 | 0.075 | 0.046 | 0.058 |
2008 | 0.029 | 0.057 | 0.041 | 0.083 | 0.05 | 0.063 |
2011 | 0.032 | 0.061 | 0.044 | 0.09 | 0.054 | 0.068 |
2014 | 0.034 | 0.065 | 0.047 | 0.096 | 0.057 | 0.072 |
2017 | 0.036 | 0.068 | 0.049 | 0.101 | 0.059 | 0.075 |
2020 | 0.033 | 0.062 | 0.045 | 0.09 | 0.055 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xiao, J.; Yu, C. Measuring and Analyzing the Spatiotemporal Evolution of Agricultural Green Total Factor Productivity on the Tibetan Plateau (2002–2021). Agriculture 2025, 15, 1480. https://doi.org/10.3390/agriculture15141480
Zhang M, Xiao J, Yu C. Measuring and Analyzing the Spatiotemporal Evolution of Agricultural Green Total Factor Productivity on the Tibetan Plateau (2002–2021). Agriculture. 2025; 15(14):1480. https://doi.org/10.3390/agriculture15141480
Chicago/Turabian StyleZhang, Mengmeng, Jianyu Xiao, and Chengqun Yu. 2025. "Measuring and Analyzing the Spatiotemporal Evolution of Agricultural Green Total Factor Productivity on the Tibetan Plateau (2002–2021)" Agriculture 15, no. 14: 1480. https://doi.org/10.3390/agriculture15141480
APA StyleZhang, M., Xiao, J., & Yu, C. (2025). Measuring and Analyzing the Spatiotemporal Evolution of Agricultural Green Total Factor Productivity on the Tibetan Plateau (2002–2021). Agriculture, 15(14), 1480. https://doi.org/10.3390/agriculture15141480