Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Experiment Design
2.3. Data Acquisition and Processing
2.3.1. Multispectral Images from UAV
2.3.2. Ground Data
2.4. Research Method
2.4.1. Feature Extraction
- (1)
- Vegetation indices
- (2)
- Texture features
2.4.2. Data Analysis
- (1)
- RF
- (2)
- SVR
- (3)
- XGBoost
2.4.3. Model Evaluation
2.4.4. Model Transferability Evaluation
3. Results
3.1. Sensitivity Analysis of Plant Nitrogen Content
3.2. Model’s Performance
3.3. Transferability of Nitrogen Content Prediction Models for Winter Wheat
4. Discussion
4.1. Driving Factors for Differences in Model Performance
4.2. Agricultural Explanation of Model Transferability
4.3. Limits and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Jing, Y.H.; Gang, W.L.; Yi, H.J.; Jia, H.; Wei, F.; Qing, Z.G. UAV multispectral image-based nitrogen content prediction and the transferability analysis of the models in winter wheat plant. Sci. Agric. Sin. 2023, 56, 850–865. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Yang, G.; Fu, Y.; Wang, H.; Zhou, C. Estimating vertically growing crop above-ground biomass based on UAV remote sensing. Comput. Electron. Agric. 2023, 205, 107627. [Google Scholar] [CrossRef]
- Verma, B.; Prasad, R.; Srivastava, P.K.; Singh, P.; Badola, A.; Sharma, J. Evaluation of simulated AVIRIS-NG imagery using a spectral reconstruction method for the retrieval of leaf chlorophyll content. Remote Sens. 2022, 14, 3560. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Modugno, A.F.; De Carolis, G.; Sanitate, N.; Negash Tesemma, M.; Scarascia-Mugnozza, G.; Tekle Tegegne, Y.; Campi, P. Explainable Artificial Intelligence to Predict the Water Status of Cotton (Gossypium hirsutum L., 1763) from Sentinel-2 Images in the Mediterranean Area. Plants 2024, 13, 3325. [Google Scholar] [CrossRef]
- Kaur, S.; Kakani, V.G.; Carver, B.; Jarquin, D.; Singh, A. Hyperspectral imaging combined with machine learning for high-throughput phenotyping in winter wheat. Plant Phenome J. 2024, 7, e20111. [Google Scholar] [CrossRef]
- Ma, X.; Chen, P.; Jin, X. Predicting wheat leaf nitrogen content by combining deep multitask learning and a mechanistic model using UAV hyperspectral images. Remote Sens. 2022, 14, 6334. [Google Scholar] [CrossRef]
- Jia, Z.; Zhao, S.; Zhang, Q.; Zhang, X.; Zhang, Y.; Gao, Q. Multi-stage fertilizer recommendation for spring maize at the field scale based on narrowband vegetation indices. Comput. Electron. Agric. 2023, 213, 108236. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Pu, R.; Li, Z.; Li, H.; Xu, X.; Song, X.; Yang, X.; Zhao, C. An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. Eur. J. Agron. 2021, 124, 126241. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, C.; Zhang, X.; Cheng, X.; Feng, G.; Wang, Y.; Gao, Q. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecol. Indic. 2021, 129, 107985. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, J.; Zhou, M.; Li, D.; Yao, X.; Cao, W.; Zhu, Y.; Cheng, T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens. 2020, 12, 957. [Google Scholar] [CrossRef]
- Zhang, L.; Song, X.; Niu, Y.; Zhang, H.; Wang, A.; Zhu, Y.; Zhu, X.; Chen, L.; Zhu, Q. Estimating winter wheat plant nitrogen content by combining spectral and texture features based on a Low-Cost UAV RGB system throughout the growing season. Agriculture 2024, 14, 456. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. Isprs J. Photogramm. Remote Sens. 2015, 10, 12–32. [Google Scholar] [CrossRef]
- Zhou, Y.; Lao, C.; Yang, Y.; Zhang, Z.; Yang, N. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agric. Water Manag. 2021, 256, 107076. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, H.; Yue, J.; Jin, X.; Liu, Y.; Chen, R.; Bian, M.; Ma, Y.; Song, X.; Yang, G. Using an optimized texture index to monitor the nitrogen content of potato plants over multiple growth stages. Comput. Electron. Agric. 2023, 212, 108147. [Google Scholar] [CrossRef]
- Chen, P.F.; Liang, F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle. Sci. Agric. Sin. 2019, 52, 2220–2229. [Google Scholar]
- Wu, L.; Gong, Y.; Bai, X.; Wang, W.; Wang, Z. Nondestructive determination of leaf nitrogen content in corn by hyperspectral imaging using spectral and texture fusion. Appl. Sci. 2023, 13, 1910. [Google Scholar] [CrossRef]
- Su, Q.; Lv, J.; Fan, J.; Zeng, W.; Pan, R.; Liao, Y.; Song, Y.; Zhao, C.; Qin, Z.; Defourny, P. Remote sensing-based classification of winter irrigation fields using the random forest algorithm and GF-1 Data: A case study of Jinzhong Basin, North China. Remote Sens. 2023, 15, 4599. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, P.; Zheng, J.; Xue, L.; Zhu, Q.; Cai, X.; Cheng, S.; Zhang, Z.; Kong, F.; Zhang, J. Effects of soil texture and nitrogen fertilization on soil bacterial community structure and nitrogen uptake in flue-cured tobacco. Sci. Rep. 2021, 11, 22643. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Liu, Y.; Wang, J.; Guo, W.; Ma, X.; Niu, Q.; Qiao, H.; Feng, H. Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning. Comput. Electron. Agric. 2024, 222, 109026. [Google Scholar] [CrossRef]
- Thompson, L.J.; Puntel, L.A. Transforming unmanned aerial vehicle (UAV) and multispectral sensor into a practical decision support system for precision nitrogen management in corn. Remote Sens. 2020, 12, 1597. [Google Scholar] [CrossRef]
- Silva, L.; Conceição, L.A.; Lidon, F.C.; Maçãs, B. Remote monitoring of crop nitrogen nutrition to adjust crop models: A review. Agriculture 2023, 13, 835. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Yang, Y.; Jiang, R.; He, P.; Jia, L. Long-term nutrient expert management improves nitrogen use efficiency and enhances soil organic carbon sequestration in wheat-maize rotation system. Acta Agric. Boreali-Sin. 2021, 36, 154–161. [Google Scholar] [CrossRef]
- Messina, G.; Praticò, S.; Badagliacca, G.; Fazio, S.D.; Modica, G. Monitoring onion crop “Cipolla Rossa di Tropea Calabria IGP” growth and yield response to varying nitrogen fertilizer application rates using UAV imagery. Drones 2021, 5, 61. [Google Scholar] [CrossRef]
- Yu, F.; Xing, S.; Guo, Z.; Bai, J.; Xu, T. Remote sensing inversion of the nitrogen content in rice leaves using character transfer vegetation index. Trans. Chin. Soc. Agric. Eng. 2022, 38, 175–182. [Google Scholar] [CrossRef]
- Erunova, M.G.; Pisman, T.I.; Shevyrnogov, A.P. The technology for detecting weeds in agricultural crops based on vegetation index VARI (PlanetScope). J. Sib. Fed. Univ. Eng. Technol. 2021, 14, 347–353. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999. [Google Scholar]
- Lamm, R.D.; Slaughter, D.C.; Giles, D.K. Precision weed control system for cotton. Trans. ASABE 2002, 45, 231. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gilabert, M.; González-Piqueras, J.; Garcıa-Haro, F.; Meliá, J. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 2002, 82, 303–310. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Type III, Final Report; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2003, 90, 337–352. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.; De Baardemaaker, J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precis. Agric. 2016, 17, 136–154. [Google Scholar] [CrossRef]
- Deering, D.W.; Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A. MSS data. In Proceedings of the 10th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 6–10 October 1975. [Google Scholar]
- Usha, S.G.A.; Vasuki, S. Significance of texture features in the segmentation of remotely sensed images. Optik 2022, 249, 168241. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-Based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J. Comprehensive analysis of water carrying capacity based on wireless sensor network and image texture of feature extraction. Alex. Eng. J. 2022, 61, 2877–2886. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Cañada, M.C.; Moreno, A.M.G.; Leal-Murillo, J.R.; González-Dugo, M.P.; Oar, B.A.; Gómez-Giráldez, P.J.; Fernández-Rebollo, P. Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by Random Forest and PLS regressions. Comput. Electron. Agric. 2022, 192, 106614. [Google Scholar] [CrossRef]
- Jeung, M.; Baek, S.; Beom, J.; Cho, K.H.; Her, Y.; Yoon, K. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. J. Hydrol. 2019, 575, 1099–1110. [Google Scholar] [CrossRef]
- Panahi, M.; Sadhasivam, N.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 2020, 588, 125033. [Google Scholar] [CrossRef]
- Lin, F.; Hai, C.L.; Mei, L.Q. Multi-source aerodynamic data fusion modeling with XGBoost. Acta Aerodyn. Sin. 2023, 42, 27–34. [Google Scholar] [CrossRef]
- Du, B.; Lund, P.D.; Wang, J.; Kolhe, M.; Hu, E. Comparative study of modelling the thermal efficiency of a novel straight through evacuated tube collector with MLR, SVR, BP and RBF methods. Sustain. Energy Technol. Assess. 2021, 44, 101029. [Google Scholar] [CrossRef]
- Yin, Q.G. Research on Batch Evaluation of Real Estate Tax Base Based on Ensemble Learning: Agriculture. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2023. [Google Scholar] [CrossRef]
- Li, Y.M.; Tan, Z.Y.; Yang, C.; He, F.; Meng, D.; Luo, J.H.; Duan, H.T. Extraction of algal blooms in Dianchi Lake based on multi-source satellites using machine learning algorithms. Adv. Earth Sci. 2022, 37, 1141–1156. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X. Mixture-based weight learning improves the random forest method for hyperspectral estimation of soil total nitrogen. Comput. Electron. Agric. 2022, 192, 106634. [Google Scholar] [CrossRef]
- Jiang, Q.; Xu, L.; Sun, S.; Wang, M.; Xiao, H. Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms–A case study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, R.; Long, H.; Xu, A. Research on spatial distribution of soil texture in Southern Ningxia based on machine learning. Sci. Agric. Sin. 2022, 55, 2961–2972. [Google Scholar] [CrossRef]
- Shi, P.; Wang, Y.; Xu, J.; Zhao, Y.; Yang, B.; Yuan, Z.; Sun, Q. Rice nitrogen nutrition estimation with RGB images and machine learning methods. Comput. Electron. Agric. 2021, 180, 105860. [Google Scholar] [CrossRef]
- Gallegos, Á.; Gavito, M.E.; Ferreira-Medina, H. Foliar nitrogen estimation with artificial intelligence and technological tools: State of the art and future challenges. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 375–386. [Google Scholar] [CrossRef]
Parameter Category | Details |
---|---|
Spectral bands | Center wavelength/nm |
Blue | 450 |
Green | 550 |
Red | 685 |
Red-edge | 725 |
Near-infrared | 780 |
Height of flight | 50 m |
Lens orientation | Vertically downward |
Field of view | 30° |
Forward overlap | 80% |
Side overlap | 75% |
Vegetation Indices (Abbreviation) | Formulas | Reference |
---|---|---|
Atmospherically resistant vegetation index (VARI) | (Green − Red)/(Green + Red − Blue) | [27] |
Chlorophyll absorption ratio index (CARI) | (RE − Red) − 0.2 × (RE + Red) | [28] |
Difference vegetation index (DVI) | NIR − Red | [29] |
Enhanced vegetation index (EVI) | 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1) | [30] |
Excessive green index (EXG) | 2 × Green − Red − Blue | [31] |
Green-band-normalized vegetation index (GNDVI) | (NIR − Green)/(NIR + Green) | [32] |
Green-band-optimized soil-adjusted vegetation index (GOSAVI) | 1.16 × (NIR − Green)/(NIR + Green + 0.16) | [33] |
Modified simple ratio index (MSR) | ((NIR/Red) − 1)/(((NIR/Red) + 1)0.5) | [34] |
Modified triangle vegetation index (MTVI) | (1.5 × (1.2 × (NIR − Green) − 2.5 × (Red − Green)))/(((2 × NIR + 1)2 − 6 × NIR − 5 × (Red)0.5 − 0.5)0.5) | [35] |
Normalized blue-green band difference vegetation index (GBNDVI) | (NIR − (Green + Blue))/(NIR + Green + Blue) | [32] |
Normalized blue-green difference index (NGBDI) | (Green − Blue)/(Green + Blue) | [13] |
Normalized difference vegetation index (NDVI) | (NIR − Red)/(NIR + Red) | [34] |
Optimized soil adjusted vegetation index (OSAVI) | (NIR − Red)/(NIR + Red + 0.16) | [28] |
Optimized vegetation index (VIplot) | 1.45 × (NIR2 + 1) × (Red + 0.45) | [36] |
Ratio vegetation index (RVI) | NIR/Red | [27] |
Red-edge-band-optimized soil-adjusted vegetation index (REOSAVI) | 1.16 × (NIR − Red)/(NIR/Red + 0.16) | [37] |
Red-edge-band-renormalized difference vegetation index (RERDVI) | (NIR − RE)/((NIR + RE)0.5) | [32] |
Red-edge-normalized difference vegetation index (RENDVI) | NIR − RE | [32] |
Renormalized difference vegetation index (RDVI) | (NIR − Red) × (NIR + Red)0.5 | [35] |
Soil-adjusted vegetation index (SAVI) | 1.5 × (NIR − Red)/(NIR + Red + 0.5) | [30] |
Triangle vegetation index (TVI) | 0.5 × (120 × (NIR − Green) − 200 × (Red − Green)) | [38] |
Vegetation red-edge index (VREI) | NIR/RE | [32] |
Model | Parameters | Parameter Value |
---|---|---|
RF | Data cut | 0.75 |
Data shuffling | Yes | |
Cross-validation | 3-fold cross-validation | |
Identity node split evaluation criterion | MSE | |
Minimum number of samples for internal node splitting | 2 | |
Minimum number of samples of leaf nodes | 1 | |
Maximum depth of tree | 10 | |
Maximum number of leaf nodes | 50 | |
Numbers of decision trees | 500 | |
SVR | Data cut | 0.75 |
Data shuffling | Yes | |
Cross-validation | 3-fold cross-validation | |
Penalty factor | 1 | |
Kernel function | linear | |
Kernel function coefficient | scale | |
Maximum number of terms in kernel function | 3 | |
Error convergence condition | 0.001 | |
Maximum number of iterations | 1000 | |
XGboost | Data cut | 0.75 |
Data shuffling | Yes | |
Cross-validation | 3-fold cross-validation | |
Learning rate | 0.3 | |
gamma | 0.001 | |
Maximum depth of tree | 10 | |
subsample | 0.7 | |
nrounds | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cheng, G.; Huang, S.; Yang, J.; Yang, Y.; Xing, S.; Wang, J.; Yang, H.; Nie, H.; Yang, W.; et al. Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features. Agriculture 2025, 15, 1373. https://doi.org/10.3390/agriculture15131373
Zhang J, Cheng G, Huang S, Yang J, Yang Y, Xing S, Wang J, Yang H, Nie H, Yang W, et al. Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features. Agriculture. 2025; 15(13):1373. https://doi.org/10.3390/agriculture15131373
Chicago/Turabian StyleZhang, Jing, Gong Cheng, Shaohui Huang, Junfang Yang, Yunma Yang, Suli Xing, Jingxia Wang, Huimin Yang, Haoliang Nie, Wenfang Yang, and et al. 2025. "Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features" Agriculture 15, no. 13: 1373. https://doi.org/10.3390/agriculture15131373
APA StyleZhang, J., Cheng, G., Huang, S., Yang, J., Yang, Y., Xing, S., Wang, J., Yang, H., Nie, H., Yang, W., Yu, K., & Jia, L. (2025). Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features. Agriculture, 15(13), 1373. https://doi.org/10.3390/agriculture15131373