A Japanese Plum Breeding Core Collection Capturing and Exploiting Genetic Variation
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Isolation
2.2. Sequencing and Genotyping
2.3. Phenotypic Evaluation
2.4. Construction of Core Collections
2.5. Genetic Diversity, Population Structure, and Linkage Disequilibrium
2.6. Validation of the Selected Core Collection Through Association Analysis
3. Results
3.1. Genome-Wide Distribution of SNPs and Genetic Diversity
3.1.1. SNPs Distribution
3.1.2. Genetic Diversity
3.2. Phenotype Distribution
3.3. Population Structure
3.4. Patterns of Linkage Disequilibrium
3.5. Association Analysis for Core Collection Validation
4. Discussion
4.1. Generation of a Core Collection Maximizing Genetic Diversity
4.2. Genome-Wide Patterns of Linkage Disequilibrium (LD)
4.3. Core Collection Validation Through Association Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QTLs | Quantitative trait loci |
PPV | Plum pox virus |
MAF | Minor allele frequency |
FWD | Flowering date |
FDP | Fruit development period |
MD | Maturity date |
JD | Julian days |
AN | Accession-to-nearest-entry |
EN | Entry-to-nearest-entry |
LD | Linkage disequilibrium |
NLS | Non-linear least squares |
BLINK | Bayesian information and linkage disequilibrium iteratively nested keyway |
MTAs | Marker–trait associations |
Bp | Base-pair |
Mbp | Mega base-pair |
Kbp | Kilo base-pair |
SNPs | Single nucleotide polymorphism |
ddRADseq | Double digest restriction-site associated DNA sequencing |
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/ (accessed on 15 October 2024).
- Lozano, M.; Vidal-Aragón, M.C.; Hernández, M.T.; Ayuso, M.C.; Bernalte, M.J.; García, J.; Velardo, B. Physicochemical and Nutritional Properties and Volatile Constituents of Six Japanese Plum (Prunus salicina Lindl.). Cultivars. Eur. Food Res. Technol. 2009, 228, 403–410. [Google Scholar] [CrossRef]
- Vincente, A.R.; Manganaris, G.A.; Ortiz, C.M.; Sozzi, G.O.; Crisosto, C.H. Nutritional Quality of Fruits and Vegetables. In Postharvest Handling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 69–122. [Google Scholar]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Nan, G.; Nisar, M.F.; Wan, C. Chemical Constituents and Health Benefits of Four Chinese Plum Species. J. Food Qual. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Okie, W.R.; Ramming, D.W. Plum Breeding Worldwide. Horttechnology 1999, 9, 162–176. [Google Scholar] [CrossRef]
- Karp, D. Luther Burbank’s Plums. HortScience 2015, 50, 189–194. [Google Scholar] [CrossRef]
- Okie, W.R.; Hancock, J.F. Plums. In Temperate Fruit Crop Breeding; Springer: Dordrecht, The Netherlands, 2008; pp. 337–358. [Google Scholar]
- Sottile, F.; Caltagirone, C.; Giacalone, G.; Peano, C.; Barone, E. Unlocking Plum Genetic Potential: Where Are We At? Horticulturae 2022, 8, 128. [Google Scholar] [CrossRef]
- Nicolás-Almansa, M.; Ruiz, D.; Salazar, J.A.; Guevara, A.; Cos, J.; Martínez-Gómez, P.; Rubio, M. Phenotypic and Molecular Characterization of New Interspecific Japanese Plum × Apricot Hybrids (Plumcots). Sci. Hortic. 2023, 318, 112131. [Google Scholar] [CrossRef]
- Guerra, M.E.; Rodrigo, J. Japanese Plum Pollination: A Review. Sci. Hortic. 2015, 197, 674–686. [Google Scholar] [CrossRef]
- Guerrero, B.I.; Guerra, M.E.; Herrera, S.; Irisarri, P.; Pina, A.; Rodrigo, J. Genetic Diversity and Population Structure of Japanese Plum-Type (Hybrids of P. salicina) Accessions Assessed by SSR Markers. Agronomy 2021, 11, 1748. [Google Scholar] [CrossRef]
- Topp, B.L.; Russell, D.M.; Neumüller, M.; Dalbó, M.A.; Liu, W. Plum. In Fruit Breeding; Springer: Boston, MA, USA, 2012; pp. 571–621. [Google Scholar]
- Varshney, R.K.; Bohra, A.; Yu, J.; Graner, A.; Zhang, Q.; Sorrells, M.E. Designing Future Crops: Genomics-Assisted Breeding Comes of Age. Trends Plant Sci. 2021, 26, 631–649. [Google Scholar] [CrossRef]
- Salazar, J.A.; Pacheco, I.; Shinya, P.; Zapata, P.; Silva, C.; Aradhya, M.; Velasco, D.; Ruiz, D.; Martínez-Gómez, P.; Infante, R. Genotyping by Sequencing for SNP-Based Linkage Analysis and Identification of QTLs Linked to Fruit Quality Traits in Japanese Plum (Prunus salicina Lindl.). Front. Plant Sci. 2017, 8, 476. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.A.; Pacheco, I.; Zapata, P.; Shinya, P.; Ruiz, D.; Martínez-Gómez, P.; Infante, R. Identification of Loci Controlling Phenology, Fruit Quality and Post-Harvest Quantitative Parameters in Japanese Plum (Prunus salicina Lindl.). Postharvest Biol. Technol. 2020, 169, 111292. [Google Scholar] [CrossRef]
- Valderrama-Soto, D.; Salazar, J.; Sepúlveda-González, A.; Silva-Andrade, C.; Gardana, C.; Morales, H.; Battistoni, B.; Jiménez-Muñoz, P.; González, M.; Peña-Neira, Á.; et al. Detection of Quantitative Trait Loci Controlling the Content of Phenolic Compounds in an Asian Plum (Prunus salicina L.) F1 Population. Front. Plant Sci. 2021, 12, 679059. [Google Scholar] [CrossRef]
- Battistoni, B.; Salazar, J.; Vega, W.; Valderrama-Soto, D.; Jiménez-Muñoz, P.; Sepúlveda-González, A.; Ahumada, S.; Cho, I.; Gardana, C.S.; Morales, H.; et al. An Upgraded, Highly Saturated Linkage Map of Japanese Plum (Prunus salicina Lindl.), and Identification of a New Major Locus Controlling the Flavan-3-Ol Composition in Fruits. Front. Plant Sci. 2022, 13, 805744. [Google Scholar] [CrossRef]
- Ballesta, P.; Fiol, A.; Ahumada, S.; Osorio, M.; Ibañez, J.; Fresnedo-Ramírez, J.; Mora-Poblete, F.; Infante, R.; Battistoni, B.; Pacheco, I. Genomic Prediction of Phenological and Fruit-Quality Traits in a Multi-Family Japanese Plum Breeding Population. Hortic Plant J. 2025, in press. [Google Scholar]
- Mir, R.R.; Reynolds, M.; Pinto, F.; Khan, M.A.; Bhat, M.A. High-Throughput Phenotyping for Crop Improvement in the Genomics Era. Plant Sci. 2019, 282, 60–72. [Google Scholar] [CrossRef]
- Gu, R.; Fan, S.; Wei, S.; Li, J.; Zheng, S.; Liu, G. Developments on Core Collections of Plant Genetic Resources: Do We Know Enough? Forests 2023, 14, 926. [Google Scholar] [CrossRef]
- Odong, T.L.; Jansen, J.; van Eeuwijk, F.A.; van Hintum, T.J.L. Quality of Core Collections for Effective Utilisation of Genetic Resources Review, Discussion and Interpretation. Theor. Appl. Genet. 2013, 126, 289–305. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Nelson, R.L.; Geraldi, I.O.; Cruz, C.D.; de Toledo, J.F.F. Establishing a Soybean Germplasm Core Collection. Field Crops Res. 2010, 119, 277–289. [Google Scholar] [CrossRef]
- Wu, J.; Liu, D.; Wariss, H.M.; Zhang, H.; Su, M.; Li, W.; Han, Z. Genetic Diversity and Construction of Core Collection Provides New Insight for the Conservation of Edible Allium galanthum in Xinjiang. Sci. Hortic. 2025, 341, 113961. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Dwivedi, S.L.; Gowda, C.L.L.; Singh, S. Identification of Diverse Germplasm Lines for Agronomic Traits in a Chickpea (Cicer arietinum L.) Core Collection for Use in Crop Improvement. Field Crops Res. 2007, 100, 320–326. [Google Scholar] [CrossRef]
- Mahmoodi, R.; Dadpour, M.R.; Hassani, D.; Zeinalabedini, M.; Vendramin, E.; Micali, S.; Nahandi, F.Z. Development of a Core Collection in Iranian Walnut (Juglans regia L.) Germplasm Using the Phenotypic Diversity. Sci. Hortic. 2019, 249, 439–448. [Google Scholar] [CrossRef]
- Yang, W.; Yang, B.; Lu, L.; Zhang, X.; Sun, J.; Wang, L.; Zheng, Z.; Liang, D.; Wang, K.; Yan, X.; et al. Utilizing SSR-Based Core Collection Development to Improve Conservation and Utilization of Corylus L. Genetic Resources. PLoS ONE 2024, 19, e0312116. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Dondini, L.; De Franceschi, P.; Paris, R.; Sansavini, S.; Tartarini, S. Genetic Diversity, Population Structure and Construction of a Core Collection of Apple Cultivars from Italian Germplasm. Plant Mol. Biol. Rep. 2015, 33, 458–473. [Google Scholar] [CrossRef]
- Guo, Y.; Kuang, L.; Xu, Y.; Yan, T.; Jiang, L.; Dong, J.; Wu, D. Construction of a Worldwide Core Collection of Rapeseed and Association Analysis for Waterlogging Tolerance. Plant Growth Regul. 2022, 98, 321–328. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Ro, N.-Y.; Jeong, H.-J.; Kwon, J.-K.; Jo, J.; Ha, Y.; Jung, A.; Han, J.-W.; Venkatesh, J.; Kang, B.-C. Genetic Diversity and Population Structure Analysis to Construct a Core Collection from a Large Capsicum germplasm. BMC Genet. 2016, 17, 142. [Google Scholar] [CrossRef]
- Christov, N.K.; Tsonev, S.; Todorova, V.; Todorovska, E.G. Genetic Diversity and Population Structure Analysis—A Prerequisite for Constructing a Mini Core Collection of Balkan Capsicum annuum Germplasm. Biotechnol. Biotechnol. Equip. 2021, 35, 1010–1023. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Li, J.; Cao, S.; Zhang, Z.; Zhang, J.; Zhang, Y.; Deng, Y.; Niu, D.; Su, L.; et al. Genetic Diversity and Core Collection Extraction of Robinia pseudoacacia L. Germplasm Resources Based on Phenotype, Physiology, and Genotyping Markers. Ind. Crops Prod. 2022, 178, 114627. [Google Scholar] [CrossRef]
- Campoy, J.A.; Lerigoleur-Balsemin, E.; Christmann, H.; Beauvieux, R.; Girollet, N.; Quero-García, J.; Dirlewanger, E.; Barreneche, T. Genetic Diversity, Linkage Disequilibrium, Population Structure and Construction of a Core Collection of Prunus avium L. Landraces and Bred Cultivars. BMC Plant Biol. 2016, 16, 49. [Google Scholar] [CrossRef]
- Donkpegan, A.S.L.; Bernard, A.; Barreneche, T.; Quero-García, J.; Bonnet, H.; Fouché, M.; Le Dantec, L.; Wenden, B.; Dirlewanger, E. Genome-Wide Association Mapping in a Sweet Cherry Germplasm Collection (Prunus avium L.) Reveals Candidate Genes for Fruit Quality Traits. Hortic. Res. 2023, 10, uhad191. [Google Scholar] [CrossRef]
- Serrie, M.; Segura, V.; Blanc, A.; Brun, L.; Dlalah, N.; Gilles, F.; Heurtevin, L.; Le Pans, M.; Signoret, V.; Viret, S.; et al. Multi-environment GWAS uncovers markers associated to biotic stress response and genotype-by-environment interactions in stone fruit trees. Hortic. Res. 2025, 12, uhaf088. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, M.; Micali, S.; Aranzana, M.J.; Arús, P.; Babini, A.; Barreneche, T.; Bink, M.; Cantin, C.M.; Ciacciulli, A.; Cos-Terrer, J.E.; et al. The Multisite PeachRefPop Collection: A True Cultural Heritage and International Scientific Tool for Fruit Trees. Plant Physiol. 2020, 184, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Branchereau, C.; Quero-García, J.; Zaracho-Echagüe, N.H.; Lambelin, L.; Fouché, M.; Wenden, B.; Donkpegan, A.; Le Dantec, L.; Barreneche, T.; Alletru, D.; et al. New Insights into Flowering Date in Prunus: Fine Mapping of a Major QTL in Sweet Cherry. Hortic. Res. 2022, 9, uhac042. [Google Scholar] [CrossRef]
- Cirilli, M.; Rossini, L.; Chiozzotto, R.; Baccichet, I.; Florio, F.E.; Mazzaglia, A.; Turco, S.; Bassi, D.; Gattolin, S. Less Is More: Natural Variation Disrupting a MiR172 Gene at the Di Locus Underlies the Recessive Double-Flower Trait in Peach (P. persica L. Batsch). BMC Plant Biol. 2022, 22, 318. [Google Scholar] [CrossRef]
- Gaudinier, A.; Blackman, B.K. Evolutionary Processes from the Perspective of Flowering Time Diversity. New Phytol. 2020, 225, 1883–1898. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of Plant DNA from Fresh Tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Healey, A.; Furtado, A.; Cooper, T.; Henry, R.J. Protocol: A Simple Method for Extracting next-Generation Sequencing Quality Genomic DNA from Recalcitrant Plant Species. Plant Methods 2014, 10, 21. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An Analysis Tool Set for Population Genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Liu, C.; Feng, C.; Peng, W.; Hao, J.; Wang, J.; Pan, J.; He, Y. Chromosome-Level Draft Genome of a Diploid Plum (Prunus salicina). Gigascience 2020, 9, giaa130. [Google Scholar] [CrossRef]
- Vasimuddin, M.; Misra, S.; Li, H.; Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; IEEE: New York, NY, USA, 2013; pp. 314–324. [Google Scholar]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Human. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.; Hall, M.; Statisticat, L. LaplacesDemon: Complete Environment for Bayesian Inference. Available online: https://cran.r-project.org/web/packages/LaplacesDemon/LaplacesDemon.pdf (accessed on 19 March 2025).
- Jeong, S.; Kim, J.-Y.; Jeong, S.-C.; Kang, S.-T.; Moon, J.-K.; Kim, N. GenoCore: A Simple and Fast Algorithm for Core Subset Selection from Large Genotype Datasets. PLoS ONE 2017, 12, e0181420. [Google Scholar] [CrossRef] [PubMed]
- De Beukelaer, H.; Davenport, G.F.; Fack, V. Core Hunter 3: Flexible Core Subset Selection. BMC Bioinform. 2018, 19, 203. [Google Scholar] [CrossRef]
- Peakall, R.O.D.; Smouse, P.E. Genalex 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software structure: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Breseghello, F.; Sorrells, M.E. Association Mapping of Kernel Size and Milling Quality in Wheat (Triticum aestivum L.) Cultivars. Genetics 2006, 172, 1165–1177. [Google Scholar] [CrossRef]
- Lazzeroni, L.C. Linkage Disequilibrium and Gene Mapping: An Empirical Least-Squares Approach. Am. J. Human Genet. 1998, 62, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A Package for the next Level of Genome-Wide Association Studies with Both Individuals and Markers in the Millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef] [PubMed]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome Association and Prediction Integrated Tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [PubMed]
- Elbasyoni, I.S.; Lorenz, A.; Guttieri, M.; Frels, K.; Baenziger, P.; Poland, J.; Akhunov, E. A Comparison between Genotyping-by-Sequencing and Array-Based Scoring of SNPs for Genomic Prediction Accuracy in Winter Wheat. Plant Sci. 2018, 270, 123–130. [Google Scholar] [CrossRef]
- Frankel, O.H. Genetic Perspectives of Germplasm Conservation. In Genetic Manipulation: Impact on Man and Society; Arber, W., Illmensee, K., Peacock, W.J., Starlinger, P., Eds.; Cambridge University Press: Cambridge, UK, 1984; pp. 161–170. [Google Scholar]
- Deng, Q.; Zhao, S.; Guan, C.; Fu, G.; Yu, S.; Lin, S.; Wang, Z.; Fu, H.; Lu, X.; Cheng, S. Construction and Evaluation of Pepper Core Collection Based on Phenotypic Traits and SSR Markers. Appl. Sci. 2024, 14, 7473. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.-Y.; Zheng, F.-S.; Cheng, G.-X.; Guo, M.; Li, J.-S.; Wang, X.-M. Construction of a Core Collection of Tomato (Solanum lycopersicum) Germplasm Based on Phenotypic Traits and SNP Markers. Sci. Hortic. 2024, 339, 113855. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Chen, D.; Gao, J.; Hao, S.; Zhang, H.; Zhao, Z.; Shen, M.; Chen, H.; Qi, F.; et al. Core Germplasm Construction of Tea Plant Populations Based on Genome-Wide SNP and Catechins in Shaanxi Province, China. J. Integr. Agric. 2025, in press. [Google Scholar]
- Krichen, L.; Audergon, J.M.; Trifi-Farah, N. Relative Efficiency of Morphological Characters and Molecular Markers in the Establishment of an Apricot Core Collection. Hereditas 2012, 149, 163–172. [Google Scholar] [CrossRef]
- Aranzana, M.J.; Decroocq, V.; Dirlewanger, E.; Eduardo, I.; Gao, Z.S.; Gasic, K.; Iezzoni, A.; Jung, S.; Peace, C.; Prieto, H.; et al. Prunus Genetics and Applications after de Novo Genome Sequencing: Achievements and Prospects. Hortic. Res. 2019, 6, 58. [Google Scholar] [CrossRef]
- Zurn, J.D.; E Hummer, K.; Bassil, N.V. Exploring the Diversity and Genetic Structure of the U.S. National Cultivated Strawberry Collection. Hortic. Res. 2022, 9, uhac125. [Google Scholar] [CrossRef]
- Gilpin, L.; Røen, D.; Schubert, M.; Davik, J.; Rumpunen, K.; Gardli, K.A.; Hjeltnes, S.H.; Alsheikh, M. Genetic Characterization of the Norwegian Apple Collection. Horticulturae 2023, 9, 575. [Google Scholar] [CrossRef]
- Scott, M.F.; Ladejobi, O.; Amer, S.; Bentley, A.R.; Biernaskie, J.; Boden, S.A.; Clark, M.; Dell’aCqua, M.; Dixon, L.E.; Filippi, C.V.; et al. Multi-Parent Populations in Crops: A Toolbox Integrating Genomics and Genetic Mapping with Breeding. Heredity 2020, 125, 396–416. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, B.; Díaz, C.; Moya, M.; Gebauer, M.; García-González, R. Genetic Characterization of Japanese Plum Cultivars (Prunus salicina) Using SSR and ISSR Molecular Markers. Cienc. Investig. Agrar. 2012, 39, 533–543. [Google Scholar] [CrossRef]
- Spaeth, R.A.; Pincot, D.D.; Potter, D.; Brown, P.; Gradziel, T.; Preece, J.E. Relatedness of Luther Burbank’s Plum (Prunus sp.) Introductions Based on Genotyping by Sequencing. HortScience 2024, 59, 873–880. [Google Scholar] [CrossRef]
- Jung, M.; Roth, M.; Aranzana, M.J.; Auwerkerken, A.; Bink, M.; Denancé, C.; Dujak, C.; Durel, C.-E.; i Forcada, C.F.; Cantin, C.M.; et al. The apple REFPOP—A reference population for genomics-assisted breeding in apple. Hortic. Res. 2020, 7, 1–16. [Google Scholar] [CrossRef]
- Thurow, L.B.; Gasic, K.; Raseira, M.D.C.B.; Bonow, S.; Castro, C.M. Genome-Wide SNP Discovery through Genotyping by Sequencing, Population Structure, and Linkage Disequilibrium in Brazilian Peach Breeding Germplasm. Tree Genet. Genomes 2020, 16, 10. [Google Scholar] [CrossRef]
- Pavan, S.; Delvento, C.; Mazzeo, R.; Ricciardi, F.; Losciale, P.; Gaeta, L.; D’Agostino, N.; Taranto, F.; Sánchez-Pérez, R.; Ricciardi, L.; et al. Almond Diversity and Homozygosity Define Structure, Kinship, Inbreeding, and Linkage Disequilibrium in Cultivated Germplasm, and Reveal Genomic Associations with Nut and Seed Weight. Hortic. Res. 2021, 8, 15. [Google Scholar] [CrossRef]
- Huang, X.; Ni, Z.; Shi, T.; Tao, R.; Yang, Q.; Luo, C.; Li, Y.; Li, H.; Gao, H.; Zhou, X.; et al. Novel Insights into the Dissemination Route of Japanese Apricot (Prunus Mume Sieb. et Zucc.) Based on Genomics. Plant J. 2022, 110, 1182–1197. [Google Scholar] [CrossRef]
- Carrasco, B.; Ramirez, C.; Gebauer, M.; Meisel, L.A.; Hasbun, R.; Silva, H. Phenotypic and Genetic Analysis of a Peach and a Japanese Plum Core Collection for Pre-Breeding and Distinctness Assessment. Chil. J. Agric. Res. 2022, 82, 457–468. [Google Scholar] [CrossRef]
- Dirlewanger, E.; Quero-García, J.; Le Dantec, L.; Lambert, P.; Ruiz, D.; Dondini, L.; Illa, E.; Quilot-Turion, B.; Audergon, J.-M.; Tartarini, S.; et al. Comparison of the Genetic Determinism of Two Key Phenological Traits, Flowering and Maturity Dates, in Three Prunus Species: Peach, Apricot and Sweet Cherry. Heredity 2012, 109, 280–292. [Google Scholar] [CrossRef]
- Mora, J.R.H.; Micheletti, D.; Bink, M.; Van de Weg, E.; Cantín, C.; Nazzicari, N.; Caprera, A.; Dettori, M.T.; Micali, S.; Banchi, E.; et al. Integrated QTL Detection for Key Breeding Traits in Multiple Peach Progenies. BMC Genom. 2017, 18, 404. [Google Scholar] [CrossRef]
- Castède, S.; Campoy, J.A.; García, J.Q.; Le Dantec, L.; Lafargue, M.; Barreneche, T.; Wenden, B.; Dirlewanger, E. Genetic Determinism of Phenological Traits Highly Affected by Climate Change in Prunus avium: Flowering Date Dissected into Chilling and Heat Requirements. New Phytol. 2014, 202, 703–715. [Google Scholar] [CrossRef]
- Branchereau, C.; Hardner, C.; Dirlewanger, E.; Wenden, B.; Le Dantec, L.; Alletru, D.; Parmentier, J.; Ivančič, A.; Giovannini, D.; Brandi, F.; et al. Genotype-by-Environment and QTL-by-Environment Interactions in Sweet Cherry (Prunus avium L.) for Flowering Date. Front. Plant Sci. 2023, 14, 1142974. [Google Scholar] [CrossRef] [PubMed]
- Rawandoozi, Z.J.; Hartmann, T.P.; Carpenedo, S.; Gasic, K.; Linge, C.d.S.; Cai, L.; Van de Weg, E.; Byrne, D.H. Mapping and Characterization QTLs for Phenological Traits in Seven Pedigree-Connected Peach Families. BMC Genom. 2021, 22, 187. [Google Scholar] [CrossRef] [PubMed]
- Pirona, R.; Eduardo, I.; Pacheco, I.; Linge, C.D.S.; Miculan, M.; Verde, I.; Tartarini, S.; Dondini, L.; Pea, G.; Bassi, D.; et al. Fine Mapping and Identification of a Candidate Gene for a Major Locus Controlling Maturity Date in Peach. BMC Plant Biol. 2013, 13, 166. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The Advantages and Limitations of Trait Analysis with GWAS: A Review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
Chromosome | Chr. Size (Mbp) | N° Markers | Min Distance (bp) | Max Distance (Mbp) | r2 min | r2 | r2 max |
---|---|---|---|---|---|---|---|
Chr1 | 54.5 | 400 | 2 | 53.60 | 2.50 × 10−35 | 0.08 | 1 |
Chr2 | 37.6 | 261 | 1 | 36.16 | 5.96 × 10−9 | 0.12 | 1 |
Chr3 | 31.8 | 361 | 1 | 31.57 | 9.07 × 10−9 | 0.09 | 1 |
Chr4 | 32.3 | 216 | 19 | 32.00 | 1.02 × 10−34 | 0.10 | 1 |
Chr5 | 23.6 | 347 | 1 | 23.23 | 1.52 × 10−7 | 0.13 | 1 |
Chr6 | 36.3 | 319 | 3 | 34.34 | 2.4 × 10−8 | 0.23 | 1 |
Chr7 | 29.9 | 220 | 4 | 29.58 | 4.71 × 10−9 | 0.12 | 1 |
Chr8 | 28.1 | 218 | 4 | 27.62 | 1.00 × 10−34 | 0.16 | 1 |
Population | Individuals | Data Type | N | Ne | I | Ho | He |
---|---|---|---|---|---|---|---|
Original | 1062 | Mean | 1043 | 1.564 | 0.520 | 0.346 | 0.343 |
SE | 0.114 | 0.005 | 0.003 | 0.002 | 0.002 | ||
CV100 | 60 | Mean | 59.031 | 1.580 | 0.531 | 0.330 | 0.352 |
SE | 0.021 | 0.005 | 0.002 | 0.002 | 0.002 | ||
CV99 | 37 | Mean | 36.539 | 1.594 | 0.536 | 0.324 | 0.356 |
SE | 0.014 | 0.005 | 0.002 | 0.002 | 0.002 | ||
ENMR15 | 108 | Mean | 106.756 | 1.575 | 0.526 | 0.369 | 0.348 |
SE | 0.025 | 0.005 | 0.003 | 0.003 | 0.002 | ||
ENMR20 | 144 | Mean | 142.289 | 1.574 | 0.525 | 0.365 | 0.347 |
SE | 0.030 | 0.005 | 0.003 | 0.002 | 0.002 | ||
ANMR15 | 108 | Mean | 106.224 | 1.549 | 0.511 | 0.348 | 0.335 |
SE | 0.029 | 0.006 | 0.003 | 0.003 | 0.002 | ||
ANMR20 | 144 | Mean | 142.133 | 1.551 | 0.514 | 0.350 | 0.337 |
SE | 0.030 | 0.005 | 0.003 | 0.002 | 0.002 |
Population | Trait | Season | SNP | Chr | Pos (Mbp) | PVE (%) |
---|---|---|---|---|---|---|
Original | FWD | 2022–2023 | 4_14579882 | 4 | 14.58 | 21.43 |
4_30218694 | 4 | 30.22 | 14.67 | |||
Original | FWD | 2023–2024 | 2_17677588 | 2 | 17.68 | 4.73 |
2_17810972 | 2 | 17.81 | 2.51 | |||
2_29360599 | 2 | 29.36 | 12.49 | |||
3_29679394 | 3 | 29.68 | 2.23 | |||
4_29671885 | 4 | 29.67 | 5.18 | |||
4_30832109 | 4 | 30.83 | 4.30 | |||
6_28964130 | 6 | 28.96 | 17.63 | |||
Original | MD | 2022–2023 | 1_6041549 | 1 | 6.04 | 2.57 |
1_8537798 | 1 | 8.54 | 3.90 | |||
1_10657148 | 1 | 10.66 | 2.08 | |||
1_27497096 | 1 | 27.50 | 2.81 | |||
2_34062566 | 2 | 34.06 | 5.78 | |||
3_5568519 | 3 | 5.57 | 0.86 | |||
3_15529224 | 3 | 15.53 | 1.25 | |||
4_2123398 | 4 | 2.12 | 5.79 | |||
4_2749012 | 4 | 2.75 | 0.51 | |||
4_9009431 | 4 | 9.01 | 5.34 | |||
4_16271618 | 4 | 16.27 | 5.80 | |||
4_17776021 | 4 | 17.78 | 5.42 | |||
5_14843112 | 5 | 14.84 | 1.68 | |||
6_4538253 | 6 | 4.54 | 3.36 | |||
6_23796481 | 6 | 23.80 | 1.24 | |||
7_29346449 | 7 | 29.35 | 29.04 | |||
8_2117948 | 8 | 2.12 | 1.99 | |||
8_20238405 | 8 | 20.24 | 2.17 | |||
8_25944299 | 8 | 25.94 | 1.52 | |||
Original | MD | 2023–2024 | 1_7582789 | 1 | 7.58 | 2.74 |
1_12071117 | 1 | 12.07 | 1.08 | |||
1_39963944 | 1 | 39.96 | 0.25 | |||
2_34062566 | 2 | 34.06 | 2.37 | |||
3_15415536 | 3 | 15.42 | 1.73 | |||
3_20574499 | 3 | 20.57 | 1.82 | |||
4_2123398 | 4 | 2.12 | 1.47 | |||
4_2749012 | 4 | 2.75 | 1.65 | |||
4_9009431 | 4 | 9.01 | 10.50 | |||
4_14086328 | 4 | 14.09 | 11.05 | |||
4_14379875 | 4 | 14.38 | 1.52 | |||
4_15557481 | 4 | 15.56 | 10.86 | |||
4_16271618 | 4 | 16.27 | 4.67 | |||
4_16847730 | 4 | 16.85 | 4.07 | |||
4_17776021 | 4 | 17.78 | 14.03 | |||
4_22490748 | 4 | 22.49 | 2.88 | |||
5_9438804 | 5 | 9.44 | 2.49 | |||
6_11673835 | 6 | 11.67 | 2.33 | |||
6_31840696 | 6 | 31.84 | 2.34 | |||
7_27485481 | 7 | 27.49 | 4.97 | |||
8_19266695 | 8 | 19.27 | 1.84 | |||
Core | MD | 2022–2023 | 4_9990227 | 4 | 9.99 | 40.56 |
4_18831526 | 4 | 18.83 | 13.97 | |||
4_22490748 | 4 | 22.49 | 13.37 | |||
Core | MD | 2023–2024 | 4_16271618 | 4 | 16.27 | 27.93 |
4_25103389 | 4 | 25.10 | 41.27 | |||
Original | FDP | 2022–2023 | 1_6041549 | 1 | 6.04 | 7.80 |
1_12071117 | 1 | 12.07 | 5.95 | |||
2_34062566 | 2 | 34.06 | 8.75 | |||
4_2423446 | 4 | 2.42 | 2.53 | |||
4_8617235 | 4 | 8.62 | 7.88 | |||
4_9009431 | 4 | 9.01 | 6.84 | |||
4_14011592 | 4 | 14.01 | 1.42 | |||
4_16271618 | 4 | 16.27 | 4.82 | |||
4_17776021 | 4 | 17.78 | 17.84 | |||
4_18293367 | 4 | 18.29 | 8.35 | |||
5_14956833 | 5 | 14.96 | 1.23 | |||
6_4538253 | 6 | 4.54 | 7.32 | |||
Original | FDP | 2023–2024 | 4_2123398 | 4 | 2.12 | 2.62 |
4_9009431 | 4 | 9.01 | 9.27 | |||
4_16271618 | 4 | 16.27 | 2.31 | |||
4_17455555 | 4 | 17.46 | 17.63 | |||
4_17776021 | 4 | 17.78 | 26.58 | |||
4_22490748 | 4 | 22.49 | 7.53 | |||
6_13073537 | 6 | 13.07 | 5.46 | |||
7_21679670 | 7 | 21.68 | 2.75 | |||
Core | FDP | 2022–2023 | 2_34062566 | 2 | 34.06 | 17.95 |
4_18831526 | 4 | 18.83 | 18.19 | |||
4_22490748 | 4 | 22.49 | 15.71 | |||
5_2130737 | 5 | 2.13 | 9.90 | |||
Core | FDP | 2023–2024 | 2_29453403 | 2 | 29.45 | 14.78 |
4_9990227 | 4 | 9.99 | 40.48 | |||
4_18831526 | 4 | 18.83 | 13.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio, M.; Ahumada, S.; Infante, R.; Pacheco, I.; Fiol, A.; Ballesta, P. A Japanese Plum Breeding Core Collection Capturing and Exploiting Genetic Variation. Agriculture 2025, 15, 1369. https://doi.org/10.3390/agriculture15131369
Osorio M, Ahumada S, Infante R, Pacheco I, Fiol A, Ballesta P. A Japanese Plum Breeding Core Collection Capturing and Exploiting Genetic Variation. Agriculture. 2025; 15(13):1369. https://doi.org/10.3390/agriculture15131369
Chicago/Turabian StyleOsorio, María, Sebastián Ahumada, Rodrigo Infante, Igor Pacheco, Arnau Fiol, and Paulina Ballesta. 2025. "A Japanese Plum Breeding Core Collection Capturing and Exploiting Genetic Variation" Agriculture 15, no. 13: 1369. https://doi.org/10.3390/agriculture15131369
APA StyleOsorio, M., Ahumada, S., Infante, R., Pacheco, I., Fiol, A., & Ballesta, P. (2025). A Japanese Plum Breeding Core Collection Capturing and Exploiting Genetic Variation. Agriculture, 15(13), 1369. https://doi.org/10.3390/agriculture15131369