Microplastics Abundance and Spatial Distribution in Bayinbuluk Alpine Swamp Meadow
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design and Soil Sample Collection
2.3. Measurement Methods
2.3.1. Physicochemical Soil Sample Processing and Analysis
2.3.2. Microplastic Sample Handling and Analysis
2.4. Data Analysis
3. Results
3.1. Characteristics of the Spatial Distribution of Microplastics in the Alpine Swamp Meadows of Bayinbuluk
3.2. Analysis of the Composition and Source of Different Forms of Microplastics
4. Discussion
4.1. Abundance, Characteristics, and Source Analysis of Microplastic Distribution in Alpine Swamp Meadow Soil
4.2. Relationship Between Soil Microplastics and Soil Physicochemical Properties in Alpine Swamp Meadows
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wen, Y.; Marshall, M.; Zhao, J.; Gui, H.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci. Total Environ. 2021, 787, 147444. [Google Scholar] [CrossRef]
- Büks, F.; Schaik, N.; Kaupenjohann, M. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic? Soil 2020, 6, 245–267. [Google Scholar] [CrossRef]
- Mintenig, S.; Löder, M.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Xing, R.; Sun, M.; Gao, Y.; An, L. Microplastics in sediments from an interconnected river-estuary region. Sci. Total Environ. 2020, 729, 139025. [Google Scholar] [CrossRef]
- Wright, S.; Thompson, R.; Galloway, T. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Zhao, Y.; Song, L. Perspective of plastics-microplastics-nanoplastics environmental behavior study in landfills. Environ. Sanit. Eng. 2021, 29, 58–68. [Google Scholar] [CrossRef]
- Szymańska, M.; Obolewski, K. Microplastics as contaminants in freshwater environments: A multidisciplinary review. Ecohydrol. Hydrobiol. 2020, 20, 333–345. [Google Scholar] [CrossRef]
- Panko, J.; Chu, J.; Kreider, M.; Unice, K. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Büks, F.; Kaupenjohann, M. Global concentrations of microplastic in soils, a review. Soil 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Lechthaler, S.; Waldschläger, K.; Stauch, G.; Schüttrumpf, H. The way of macroplastic through the Environment. Environments 2020, 7, 73. [Google Scholar] [CrossRef]
- Feng, S.; Lu, H.; Yao, T.; Liu, Y.; Tang, M.; Feng, W.; Lu, J. Distribution and source analysis of microplastics in typical areas of Qinghai-Tibet Plateau. Acta Geogr. Sin. 2021, 76, 2130–2141. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; Jiao, M.; Liu, G.; Van Der Hoek, J.P. Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol. 2022, 56, 4988–4997. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci. Total Environ. 2021, 752, 141917. [Google Scholar] [CrossRef]
- Sun, X.; Gou, Y.; Yan, H.; Tang, Q.; Yang, Z.; Jia, H. Soil microplastic pollution and distribution characteristics in a typical cotton field in northern Xinjiang, China. J. Agro-Environ. Sci. 2024, 43, 571–580. [Google Scholar] [CrossRef]
- Fuller, S.; Gautam, A. A Procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 2016, 5, 774. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef]
- de Souza Machado, A.; Lau, C.; Kloas, W.; Bergmann, J.; Bachelier, J.; Faltin, E.; Becker, R.; Görlich, A.; Rillig, M. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, A.; Wang, B.; Zhou, E.; Xin, T. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Till. Res. 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.; Green, D. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Hegan, D.; Tong, L.; Zhiquan, H.; Qinming, S.; Ru, L. Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties. J. Environ. Biol. 2015, 36, e677–e684. [Google Scholar]
- Urbina, M.; Correa, F.; Aburto, F.; Ferrio, J. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci. Total Environ. 2020, 741, 140216. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Qiu, W.; Song, Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. J. Hazard Mater. 2021, 411, 125055. [Google Scholar] [CrossRef]
- Wang, J.; Coffin, S.; Sun, C.; Schlenk, D.; Gan, J. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ. Pollut. 2019, 249, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lu, H.; Liu, Y. The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: Different land use and mulching time in facility agriculture. Environ Pollut. 2021, 279, 116939. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Fu, Y.; Peng, X.; Ma, S.; Liu, Y.-R.; Chen, W.; Huang, Q.; Hao, X. Microplastics Trigger Soil Dissolved Organic Carbon and Nutrient Turnover by Strengthening Microbial Network Connectivity and Cross-Trophic Interactions. Environ. Sci. Technol. 2025, 59, 5596–5606. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhu, X.; Zhao, C.; Yu, P.; Abulaizi, M.; Jia, H. Rapid microbial community evolution in initial Carex litter decomposition stages in Bayinbuluk alpine wetland during the freeze-thaw period. Ecol. Indic. 2021, 121, 167–173. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Z.; Abulaizi, M.; Hu, Y.; Tian, Y.; Hu, Y.; Yu, G.; Zhu, X.; Yu, P.; Jia, H. Soil bacterial communities in alpine wetlands in arid Central Asia remain stable during the seasonal freeze-thaw period. Ecol. Indic. 2023, 156, 111164. [Google Scholar] [CrossRef]
- Lu, R. Chemical Analysis Methods of Soil Agriculture; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Yan, C.; Liu, E.; He, W.; Liu, S.; Liu, Q. Effects of tillage measures on soil organic carbon and active organic carbon. Soil Fertilizer Sci. China 2010, 6, 58–63. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Q.; Yu, L.; Yang, W.; Li, W.; Yang, J.; Yang, F. Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia. T. Chinese Soc. Agr. Eng. 2020, 36, 204–209. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Dou, S.; Guo, D.; Guan, S. Reduced soil water repellency suggests the need for timely replenishment of soil organic matter in long-term traditional farming. Soil Till Res. 2025, 47, 106381. [Google Scholar] [CrossRef]
- Rull, F.; Prieto, A.; Casado, J.; Sobron, F.; Edwards, H. Estimation of crystallinity in polyethylene by Raman spectroscopy. J. Raman Spectrosc. 1993, 24, 545–550. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, S.; Zhao, L.; Duan, X.; Xie, S.; Zhang, H.; Liu, Y.; Peng, Y.; Liu, C.; Wang, L. Microplastics in Yellow River Delta wetland: Occurrence, characteristics, human influences, and marker. Environ Pollut. 2020, 258, 113232. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Liu, J.; Bao, M.; Fan, Y.; Kong, M. Microplastics in lakes: Distribution patterns and influencing factors. J. Hazard Mater. 2025, 493, 138339. [Google Scholar] [CrossRef]
- Zylstra, E. Accumulation of wind-dispersed trash in desert environments. J. Arid Environ. 2013, 89, 13–15. [Google Scholar] [CrossRef]
- Liu, E.; He, W.; Yan, C. “White revolution” to “white pollution”—Agricultural plastic film mulch in China. Environmental Research Letters. Inst. Phys. Publ. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Cong, Z.; Jinag, J. Pollution and control countermeasures of farmland mulching filmf. Hebei J. Ind. Sci. Technol. 2015, 32, 177–182. Available online: https://link.cnki.net/urlid/13.1226.tm.20150324.1100.005 (accessed on 11 April 2025).
- Zhou, Q.; Zhang, H.; Fu, C.; Zhou, Y.; Dai, Z.; Li, Y.; Tu, C.; Luo, Y. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 2018, 322, 201–208. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, Y.; Li, J.; Liu, K.; Wang, H.; Gu, H.; Zhang, Z.; Guo, X. Distribution characteristics of microplastics in soil of Loess Plateau in northwest China and their relationship with land use type. Sci. Total Environ. 2023, 868, 161674. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Bender, S.; Widmer, F.; Van Der Heijden, M. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.; He, Q.; Chen, Y. What Roles Are Terrestrial Plants Playing in Global Microplastic Cycling? Environ. Sci. Technol. 2020, 54, 5325–5327. [Google Scholar] [CrossRef] [PubMed]
Indexes | F | p | Pr(>r) | |||
---|---|---|---|---|---|---|
number | 8.361 | 0.001 | ** | |||
color | 3.442 | 0.037 | * | |||
shape | 2.075 | 0.139 | ||||
size | 4.969 | 0.011 | * | |||
Soil chemical analyses | ||||||
indexes | 0−10 cm | 10−20 cm | 20−30 cm | 30−50 cm | 50−70 cm | 70−100 cm |
DOC (mg/kg) | 4107.64 ± 149.66 a | 3385.07 ± 132.58 b | 2662.96 ± 267.86 c | 1195.28 ± 120.79 d | 785.22 ± 51.48 d | 719.62 ± 66.98 d |
SWC (%) | 25.40 ± 1.05 b | 31.58 ± 3.20 b | 46.18 ± 4.53 a | 49.71 ± 4.05 a | 50.73 ± 8.25 a | 59.46 ± 3.33 a |
TP (g/kg) | 0.35 ± 0.02 a | 0.38 ± 0.03 a | 0.42 ± 0.06 a | 0.43 ± 0.01 a | 0.44 ± 0.08 a | 0.47 ± 0.07 a |
pH | 8.37 ± 0.08 a | 8.54 ± 0.22 a | 8.33 ± 0.08 a | 8.35 ± 0.16 a | 8.60 ± 0.14 a | 8.69 ± 0.10 a |
BD (g/cm3) | 1.02 ± 2.89 d | 1.40 ± 8.67 ab | 1.14 ± 2.93 cd | 1.29 ± 9.89 bc | 1.36 ± 5.42 abc | 1.52 ± 7.36 a |
SOC (g/kg) | 21.24 ± 7.52 ab | 10.53 ± 1.77 c | 18.28 ± 3.81 ab | 25.72 ± 6.27 a | 24.33 ± 9.97 a | 19.56 ± 2.61 b |
TN (g/kg) | 13.53 ± 1.52 a | 11.09 ± 1.22 ab | 10.74 ± 0.52 b | 6.23 ± 0.25 c | 4.42 ± 0.32 c | 4.43 ± 0.30 c |
RDA1 | RDA2 | R2 | Pr(>r) | Significance | |
---|---|---|---|---|---|
DOC | 0.99804 | −0.0626 | 0.8757 | 0.001 | *** |
SWC | 0.94365 | 0.33094 | 0.6778 | 0.002 | ** |
TP | 0.89682 | 0.44241 | 0.2598 | 0.098 | |
pH | 0.78206 | −0.6232 | 0.2066 | 0.191 | |
BD | 0.98722 | 0.15937 | 0.2055 | 0.187 | |
SOC | 0.79798 | 0.60268 | 0.0789 | 0.543 | |
TN | 0.99968 | 0.02513 | 0.002 | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Abulaizi, M.; Hu, Y.; Hu, Y.; Chen, M.; Jia, Y.; Kou, T.; Zhou, J.; Jia, H. Microplastics Abundance and Spatial Distribution in Bayinbuluk Alpine Swamp Meadow. Agriculture 2025, 15, 1343. https://doi.org/10.3390/agriculture15131343
Tian Y, Abulaizi M, Hu Y, Hu Y, Chen M, Jia Y, Kou T, Zhou J, Jia H. Microplastics Abundance and Spatial Distribution in Bayinbuluk Alpine Swamp Meadow. Agriculture. 2025; 15(13):1343. https://doi.org/10.3390/agriculture15131343
Chicago/Turabian StyleTian, Yuxin, Maidinuer Abulaizi, Yunpeng Hu, Yang Hu, Mo Chen, Yuanbin Jia, Tianle Kou, Jianqin Zhou, and Hongtao Jia. 2025. "Microplastics Abundance and Spatial Distribution in Bayinbuluk Alpine Swamp Meadow" Agriculture 15, no. 13: 1343. https://doi.org/10.3390/agriculture15131343
APA StyleTian, Y., Abulaizi, M., Hu, Y., Hu, Y., Chen, M., Jia, Y., Kou, T., Zhou, J., & Jia, H. (2025). Microplastics Abundance and Spatial Distribution in Bayinbuluk Alpine Swamp Meadow. Agriculture, 15(13), 1343. https://doi.org/10.3390/agriculture15131343