Enhancing Farmers’ Capacity for Sustainable Management of Cassava Mosaic Disease in Côte d’Ivoire
Abstract
1. Introduction
- Analyse farmers’ level of knowledge of CMD and adoption of DMPs.
- Identify factors influencing the adoption and intensity of adoption of DMPs.
- Assess the epidemiological parameters of the disease in the study areas.
2. Description of the Intervention and DMP Advocated
2.1. Description of WAVE’s Training Method
2.2. Description of CMD Management Practices Advocated by WAVE
3. Methodology
3.1. Study Areas
3.2. Study Population and Sampling
3.3. Data Collection
3.4. Theoretical Framework and Outcome Variables
3.5. Econometric Analysis
3.5.1. Definition of the Adoption Index and Adoption Categories
- = 1 if individual has adopted practice 0 otherwise.
- = 1, 2, …, 6 represent the 6 management practices.
- Denominator 6 is the total number of practices available.
3.5.2. Impact Assessment Method
3.5.3. Adoption Intensity Model
4. Results
4.1. Descriptive Statistics
4.2. Level of CMD Knowledge and Management Practices Adopted by Farmers
I think it’s the phytosanitary products we use that make this disease attack our cassava fields [...] in addition, when the soil is tired and it doesn’t rain much in the field, the cassava leaves become like those in the picture you showed.(Interview with a farmer during the focus group held on 4 August 2023, at Débrimou (Dabou).)
There are little white beasts that can be seen behind cassava leaves. When they become many and last in the field, the cassava leaves become deformed, the plant can no longer grow properly and no longer produce normally.(Interview with a woman farmer during the focus group held on 11 August 2023, at Douagouin (Man).)
In the past, I didn’t sort cuttings before establishing a new field. But since the training, I use cuttings with clean, spotless, uncrumpled leaves. Afterwards, when it grows, I don’t see much disease in my field.(Interview with a cassava farmer during the focus group held on 10 August 2023, at Gbatongouin (Man).)
4.3. Impact of the Awareness Campaigns on Farmers’ CMD Knowledge and Adoption of Management Practices
4.4. Analysis of Factors Influencing the Adoption and Intensity of Adoption of DMP
4.5. Evaluation of CMD Epidemiological Parameters in Farmers’ Fields
4.5.1. Incidence and Severity
4.5.2. Mode of Spread and CMD Symptom Severity
5. Discussion
5.1. Training and Improvement of CMD Knowledge Among Farmers
5.2. Factors Influencing Adoption and Intensity of Adoption of DMPs Among Farmers
5.3. Effect of Trainings on CMD Epidemiological Parameters Assessed in the Study Areas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMD | Cassava Mosaic Disease |
WAVE | Central and West African Virus Epidemiology |
KAP | Knowledge Attitude and Practices |
DMP | Disease Management Practices |
ANADER | Agence Nationale d’Appui au Développement Rural |
Appendix A
Regions | Departments | Villages | Total |
---|---|---|---|
Grands-Ponts | Dabou | Armébé, Débrimou, Bouboury, N’gatty, Gbougbo, Kpass, Vieil Aklodj, Okpoyou | 08 |
Grand-Lahou | Sicor V1, Sicor V2 | 02 | |
Gbêkê | Bouaké | Sessenouan, Sessety, Koffikoffikro, Sinanvessou, Diedoukpli, Tchêlêkro, N’zanikro, Sakassou-Ottokoukro, Bamoro | 09 |
Sakassou | Angamankro, Sando | 02 | |
Tonkpi | Man | Gbatongouin, Douagouin, Guianlé, Kassiapleu, Petit Gbapleu, Klapleu, Glondouin, Gbepleu, Kondopleu, Kiélé, Kiriao | 11 |
Danané | Zoleu, Téapleu-Cavaly, Trodeleupleu, Petit Danané | 04 |
Study Areas | Region of Grand-Ponts | Region of Gbêkê | Region of Tonkpi | |||
---|---|---|---|---|---|---|
Department | Farmers Surveyed | Department | Farmers Surveyed | Department | Farmers Surveyed | |
Beneficiary areas | Dabou | 44 | Bouaké | 46 | Man | 56 |
Non-beneficiary areas | Grand-Lahou | 44 | Sakassou | 46 | Danané | 54 |
Total farmers surveyed | 88 | 92 | 110 |
References
- Leser, S. The 2013 FAO Report on Dietary Protein Quality Evaluation in Human Nutrition: Recommendations and Implications. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Vernier, P.; N’zué, B.; Zakhia-Rozis, N. Le Manioc, Entre Culture Alimentaire et Filière Agro-Industrielle Quae CTA Presses Agronomiques de Gembloux; Éditions Quae: Versailles, France, 2018. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/fr/#data/QCL (accessed on 13 October 2024).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 11 April 2025).
- Brou, G.; Zohouri, G.; N’zué, B.; Kouadio, Z.; N’guessan, A.; Dibi, K.; Sangaré, A. Reconnaître Les Principales Maladies Fongiques, Bactériennes et Virales Pour Mieux Protéger La Culture Du Manioc En Côte d’Ivoire [Guide technique]; 2015. [Google Scholar] [CrossRef]
- Djaha, K.E.; Abo, K.; Koné, T.; Koné, D.; Koné, M. Analysis of the Population Structure of Cassava Growers, Production Systems, and Plots’ Sanitary State in Côte d’Ivoire. J. Anim. Plant Sci. 2018, 36, 5833–5843. [Google Scholar]
- Yéo, E.F.; Houngue, J.A.; Pita, J.S.; Kouakou, B.S.M.; Naté, A.A.; Man, P.D.; Box, U.P.O.; Ivoire, C. Epidemiological Assessment of Cassava Mosaic Disease (CMD) in Côte D’Ivoire and Benin. Int. J. Agric. Biosci. 2025, 14, 589–595. [Google Scholar] [CrossRef]
- Njoroge, M.K.; Mutisya, D.L.; Miano, D.W.; Kilalo, D.C. Whitefly Species Efficiency in Transmitting Cassava Mosaic and Brown Streak Virus Diseases. Cogent Biol. 2017, 3, 1311499. [Google Scholar] [CrossRef]
- Soro, M.; Tiendrébéogo, F.; Pita, J.S.; Traoré, E.T.; Somé, K.; Tibiri, E.B.; Néya, J.B.; Mutuku, J.M.; Simporé, J.; Koné, D. Epidemiological Assessment of Cassava Mosaic Disease in Burkina Faso. Plant Pathol. 2021, 70, 2207–2216. [Google Scholar] [CrossRef]
- Combala, M.; Pita, J.S.; Gbonamou, M.; Samura, A.E.; Amoakon, W.J.L.; Kouakou, B.S.M.; Onile-ere, O.; Sawadogo, S.; Eboulem, G.R.; Otron, D.H.; et al. An Alarming Eastward Front of Cassava Mosaic Disease in Development in West Africa. Viruses 2024, 16, 1691. [Google Scholar] [CrossRef]
- Houngue, J.A.; Pita, J.S.; Cacaï, G.H.T.; Zandjanakou-Tachin, M.; Abidjo, E.A.E.; Ahanhanzo, C. Survey of Farmers’ Knowledge of Cassava Mosaic Disease and Their Preferences for Cassava Cultivars in Three Agro-Ecological Zones in Benin. J. Ethnobiol. Ethnomed. 2018, 14, 29. [Google Scholar] [CrossRef]
- Kouakou, B.S.M.; Yoboué, A.A.N.; Pita, J.S.; Mutuku, J.M.; Otron, D.H.; Kouassi, N.K.; Kouassi, K.M.; Vanié-Léabo, L.P.L.; Ndougonna, C.; Zouzou, M.; et al. Gradual Emergence of East African Cassava Mosaic Cameroon Virus in Cassava Farms in Côte d’Ivoire. Agronomy 2024, 14, 418. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Chen, H.p.; Nguyen, T.T.L.; Buntong, B.; Bouapao, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too Much to Handle? Pesticide Dependence of Smallholder Vegetable Farmers in Southeast Asia. Sci. Total Environ. 2017, 593–594, 470–477. [Google Scholar] [CrossRef]
- Ahoya, D.; Afouda, J.; Anani, J.; Serge, S.; Zandjanakou-tachin, M.; Antoine, E.; Marie, E.; Windinmi, F.; Simon, J. Towards Sustainable Management of Cassava Mosaic Disease: The Impact of Awareness Campaigns in Benin. J. Agric. Food Res. 2025, 21, 101827. [Google Scholar] [CrossRef] [PubMed]
- Eni, A.; Obiageli, O.; Pretty, O.-E.; Azeez, O. Farmer Knowledge of Cassava Mosaic Disease and Management Practices in Ogun State. In Proceedings of the Twenty Fourth Annual Conference of the Agricultural Extension Society of Nigeria, Abuja, Nigeria, 7–10 April 2019. [Google Scholar] [CrossRef]
- Nsiah Frimpong, B.; Oppong, A.; Prempeh, R.; Appiah-Kubi, Z.; Abrokwah, L.A.; Mochiah, B.M.; Lamptey, N.J.; Manu-Aduening, J.; Pita, J. Farmers’ Knowledge, Attitudes and Practices towards Management of Cassava Pests and Diseases in Forest Transition and Guinea Savannah Agro-Ecological Zones of Ghana. Gates Open Res. 2021, 4, 101. [Google Scholar] [CrossRef] [PubMed]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of Agricultural Innovations in Developing Countries: A Survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Just, R.E.; Zilberman, D. Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture. Oxf. Econ. Pap. 1983, 35, 307–328. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Chikoti, P.C.; Mulenga, R.M.; Tembo, M.; Sseruwagi, P. Correction to: Cassava Mosaic Disease: A Review of a Threat to Cassava Production in Zambia. J. Plant Pathol. 2019, 101, 467–477. [Google Scholar] [CrossRef]
- Thresh, J.M.; Cooter, R.J. Strategies for Controlling Cassava Mosaic Virus Disease in Africa. Plant Pathol. 2005, 54, 587–614. [Google Scholar] [CrossRef]
- Fargette, D.; Fauquet, C.; Grenier, E.; Thresh, J.M. The Spread of African Cassava Mosaic Virus into and within Cassava Fields. J. Phytopathol. 1990, 130, 289–302. [Google Scholar] [CrossRef]
- Mrisho, L.M.; Mbilinyi, N.A.; Ndalahwa, M.; Ramcharan, A.M.; Kehs, A.K.; McCloskey, P.C.; Murithi, H.; Hughes, D.P.; Legg, J.P. Accuracy of a Smartphone-Based Object Detection Model, PlantVillage Nuru, in Identifying the Foliar Symptoms of the Viral Diseases of Cassava–CMD and CBSD. Front. Plant Sci. 2020, 11, 590889. [Google Scholar] [CrossRef]
- Adjéi, E.A.; Traoré, K.; Sawadogo/Compaoré, E.M.F.W.; Amoakon, W.J.L.; Kouassi, N.K.; Kouassi, M.K.; Pita, J.S. Perception and Adoption by Cassava Farmers of the PlantVillage Nuru Application Disseminated in the Agricultural Environment of Côte d’Ivoire: A Case Study in the Departments of Dabou, Bouaké, and Man. Front. Agron. 2024, 6, 1–15. [Google Scholar] [CrossRef]
- Yamane, T. Statistiques: Une Analyse Introductive, 2nd ed.; Harper Row: New York, NY, USA, 1967. [Google Scholar]
- Yoboué, A.A.N.; Kouakou, B.S.M.; Pita, J.S.; N’Zué, B.; Amoakon, W.J.L.; Kouassi, K.M.; Vanié-Léabo, L.P.L.; Kouassi, N.K.; Sorho, F.; Zouzou, M. Emergence of Begomoviruses and DNA Satellites Associated with Weeds and Intercrops: A Potential Threat to Sustainable Production of Cassava in Côte d’Ivoire. Front. Plant Sci. 2025, 16, 1448189. [Google Scholar] [CrossRef] [PubMed]
- Bett, E.; Mugwe, J.; Nyalugwe, N.; Haraman, E.; Williams, F.; Tambo, J.; Wood, A.; Bundi, M. Impact of Plant Clinics on Disease and Pest Management, Tomato Productivity and Profitability in Malawi; CABI Working Paper: Wallingford, UK, 2018; ISBN 0000000264310. [Google Scholar] [CrossRef]
- Sseruwagi, P.; Sserubombwe, W.S.; Legg, J.P.; Ndunguru, J.; Thresh, J.M. Methods of Surveying the Incidence and Severity of Cassava Mosaic Disease and Whitefly Vector Populations on Cassava in Africa: A Review. Virus Res. 2004, 100, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Amoakon, W.J.L.; Yoboué, A.A.N.; Pita, J.S.; Mutuku, J.M.; N’Zué, B.; Combala, M.; Otron, D.H.; Koné, M.; Kouassi, N.K.; Sié, R. Occurrence of Cassava Mosaic Begomoviruses in National Cassava Germplasm Preserved in Two Agro-Ecological Zones of Ivory Coast. Plant Pathol. 2023, 72, 1011–1021. [Google Scholar] [CrossRef]
- Legg, J.P.; Owor, B.; Sseruwagi, P.; Ndunguru, J. Cassava Mosaic Virus Disease in East and Central Africa: Epidemiology and Management of A Regional Pandemic. Adv. Virus Res. 2006, 67, 355–418. [Google Scholar]
- Mwaura, G.G.; Kiboi, M.N.; Bett, E.K.; Mugwe, J.N.; Muriuki, A.; Nicolay, G.; Ngetich, F.K. Adoption Intensity of Selected Organic-Based Soil Fertility Management Technologies in the Central Highlands of Kenya. Front. Sustain. Food Syst. 2021, 4, 570190. [Google Scholar] [CrossRef]
- Midamba, D.C.; Kwesiga, M.; Ouko, K.O. Determinants of Adoption of Sustainable Agricultural Practices among Maize Producers in Northern Uganda. Cogent Soc. Sci. 2023, 10, 2286034. [Google Scholar] [CrossRef]
- Givord, P. Méthodes Économétriques Pour l’Évaluation de Politiques Publiques. Econ. Previs. 2015, 204205, 1–28. [Google Scholar]
- Miassi, Y.; Kossivi Dossa, F.; Adédédji Labiyi, I.; Dossouhoui, S.; Afouda Yabi, J.; Adededji Labiyi, I. Contract Farming and Cashew Production in North Benin: Socio-Economic Importance and Determinants of Profitability. J. Agric. Res. Adv. 2019, 1, 29–38. [Google Scholar]
- Ganewo, Z.; Balguda, T.; Alemu, A.; Mulugeta, M.; Legesse, T.; Kaske, D.; Ashebir, A. Are Smallholder Farmers Benefiting from Malt Barley Contract Farming Engagement in Ethiopia? Agric. Food Secur. 2022, 11, 58. [Google Scholar] [CrossRef]
- Tambo, J.A.; Matimelo, M.; Ndhlovu, M.; Mbugua, F.; Phiri, N. Gender-Differentiated Impacts of Plant Clinics on Maize Productivity and Food Security: Evidence from Zambia. World Dev. 2021, 145, 105519. [Google Scholar] [CrossRef]
- Tambo, J.A.; Mugambi, I.; Onyango, D.O.; Uzayisenga, B.; Romney, D. Using Mass Media Campaigns to Change Pesticide Use Behaviour among Smallholder Farmers in East Africa. J. Rural Stud. 2023, 99, 79–91. [Google Scholar] [CrossRef]
- Kouassi, J.L.; Diby, L.; Konan, D.; Kouassi, A.; Bene, Y.; Kouamé, C. Drivers of Cocoa Agroforestry Adoption by Smallholder Farmers around the Taï National Park in Southwestern Côte d’Ivoire. Sci. Rep. 2023, 13, 14309. [Google Scholar] [CrossRef]
- Guo, S.; Fraser, M.W. Propensity Score Analysis: Statistical Methods and Applications. Psychometrika 2010, 75, 775–777. [Google Scholar] [CrossRef]
- Pirracchio, R.; Resche-Rigon, M.; Chevret, S. Evaluation of the Propensity Score Methods for Estimating Marginal Odds Ratios in Case of Small Sample Size. BMC Med. Res. Methodol. 2012, 12, 70. [Google Scholar] [CrossRef]
- Abera, W.; Tamene, L.; Kassawmar, T.; Mulatu, K.; Kassa, H.; Verchot, L.; Quintero, M. Impacts of Land Use and Land Cover Dynamics on Ecosystem Services in the Yayo Coffee Forest Biosphere Reserve, Southwestern Ethiopia. Ecosyst. Serv. 2021, 50, 101338. [Google Scholar] [CrossRef]
- Tambo, J.A.; Aliamo, C.; Davis, T.; Mugambi, I.; Romney, D.; Onyango, D.O.; Kansiime, M.; Alokit, C.; Byantwale, S.T. The Impact of ICT-Enabled Extension Campaign on Farmers’ Knowledge and Management of Fall Armyworm in Uganda. PLoS ONE 2019, 14, e0220844. [Google Scholar] [CrossRef]
- Muhangi, J.; Nankinga, C.; Tushemereirwe, W.; Rutherford, M. Impact of Awareness Campaigns for Banana Bacterial Wilt Control in Uganda. Afr. Crop Sci. J. 2006, 14, 175–183. [Google Scholar]
- Yang, P.; Liu, W.; Shan, X.; Li, P.; Zhou, J.; Lu, J.; Li, Y. Effects of Training on Acquisition of Pest Management Knowledge and Skills by Small Vegetable Farmers. Crop Prot. 2008, 27, 1504–1510. [Google Scholar] [CrossRef]
- Komi, K.Y.; Mikémina, P.; Djodji, A.K.; Justin, P.S. Déterminants de l’adoption et de l’intensité d’utilisation Des Technologies de Gestion de Maladies de Manioc Au Togo. Afr. Sci. J. 2025, 3, 250. [Google Scholar]
- Kebede, Y.; Gunjal, K.; Coffin, G. Adoption of New Technologies in Ethiopian Agriculture: The Case of Tegulet-Bulga District, Shoa Province. Agric. Econ. 1990, 4, 27–43. [Google Scholar]
- Chirwa, E.W. Adoption of Fertiliser and Hybrid Seeds by Smallholder Maize Farmers in Southern Malawi. Dev. South. Afr. 2005, 22, 1–12. [Google Scholar] [CrossRef]
- Alene, A.D.; Manyong, V.M. Farmer-to-Farmer Technology Diffusion and Yield Variation among Adopters: The Case of Improved Cowpea in Northern Nigeria. Agric. Econ. 2006, 35, 203–211. [Google Scholar] [CrossRef]
- N’zi, J.C.; Kouame, C.; N’guetta, A.S.P. Influence of Some Climatic Parameters on the Numbers of Bemisia Tabaci on Tomato (Solanum Lycopersicum L.). Int. J. Biol. Chem. Sci. 2019, 13, 338–352. [Google Scholar] [CrossRef]
- Legg, J.P.; Sseruwagi, P.; Boniface, S.; Okao-Okuja, G.; Shirima, R.; Bigirimana, S.; Gashaka, G.; Herrmann, H.W.; Jeremiah, S.; Obiero, H.; et al. Spatio-Temporal Patterns of Genetic Change amongst Populations of Cassava Bemisia Tabaci Whiteflies Driving Virus Pandemics in East and Central Africa. Virus Res. 2014, 186, 61–75. [Google Scholar] [CrossRef]
- Pattanavongsawat, C.; Malichan, S.; Vannatim, N.; Chaowongdee, S.; Hemniam, N.; Paemanee, A.; Siriwan, W. Enhancing Plant Resistance to Sri Lankan Cassava Mosaic Virus Using Salicylic Acid. Metabolites 2025, 15, 261. [Google Scholar] [CrossRef]
Characteristics | Trained Farmers (n = 146) | Non-Trained Farmers (n = 144) | Chi2 (p-Value) |
---|---|---|---|
Gender | |||
Male | 86 | 49 | 0.000 *** |
Female | 60 | 95 | |
Age | |||
[Less than 20] | - | 3 | 0.357 ns |
[20–40] | 44 | 40 | |
[41–64] | 89 | 87 | |
[65 and more] | 13 | 14 | |
Education level | |||
Unschooled | 50 | 78 | 0.000 *** |
Primary | 37 | 38 | |
Secondary | 47 | 26 | |
Higher | 12 | 2 | |
Marital status | |||
Married | 99 | 104 | 0.511 ns |
Single | 19 | 13 | |
Widowed | 28 | 27 | |
Head of household | |||
Yes | 98 | 71 | 0.002 ** |
No | 48 | 73 | |
Main activity | |||
Agriculture | 117 | 118 | 0.695 ns |
Other activity | 29 | 26 | |
Farm Type | |||
Individual | 101 | 81 | 0.073 ns |
Family | 44 | 62 | |
Association/community | 1 | 1 | |
Type of cropping | |||
Mono-cropping | 81 | 55 | 0.003 ** |
Intercropping | 65 | 89 | |
Varieties cropped | |||
Local | 117 | 101 | 0.058 ns |
Improved | 6 | 4 | |
Both | 23 | 39 | |
Type of labour | |||
Salaried | 121 | 119 | 0.957 ns |
Family | 97 | 109 | 0.820 ns |
Community | 6 | 11 | 0.201 ns |
Years of experience in cassava cultivation | |||
[1–5] | 35 | 32 | 0.94 ns |
[6–10] | 28 | 28 | |
[More than 11] | 83 | 84 | |
Member of a farmer association | |||
Yes | 66 | 94 | 0.004 ** |
No | 80 | 50 | |
Monitored by an agricultural service | |||
Yes | 87 | 71 | 0.079 ns |
No | 59 | 73 | |
Owns a smartphone | |||
Yes | 59 | 40 | 0.023 * |
No | 87 | 104 |
Characteristics | Trained Farmers (n = 146) | Non-Trained Farmers (n = 144) | t-Test (p-Value) |
---|---|---|---|
Mean (Standard Error) | |||
Household size | 6.82 (0.26) | 7.27 (0.30) | 0.260 ns |
Household members involved in farming | 2.89 (0.18) | 3.08 (0.15) | 0.430 ns |
Area (ha) | 0.95 (0.05) | 1.68 (0.17) | 0.000 *** |
Outcome Variables | Total Farmers Surveyed (n = 290) | Trained Farmer (n = 146) | Non-Trained Farmers (n = 144) | t-Test (p-Value) |
---|---|---|---|---|
Mean (Standard Error) | ||||
CMD Knowledge | ||||
Symptoms’ recognition | 0.95 (0.11) | 0.97 (0.12) | 0.93 (0.18) | 0.236 ns |
Knowledge of the name | 0.14 (0.02) | 0.28 (0.03) | 0.00 (0.00) | 0.000 *** |
Knowledge of the cause | 0.16 (0.21) | 0.27 (0.03) | 0.05 (0.01) | 0.000 *** |
Knowledge of the modes of spread | 0.23 (0.02) | 0.43 (0.04) | 0.03 (0.01) | 0.000 *** |
Knowledge of the impacts | 0.64 (0.03) | 0.65 (0.05) | 0.63 (0.04) | 0.342 ns |
Knowledge of management practices | 0.36 (0.02) | 0.51 (0.03) | 0.22 (0.01) | 0.000 *** |
General knowledge of CMD (score/6) | 2.49 (0.07) | 3.12 (0.09) | 1.86 (0.07) | 0.000 *** |
Adoption of CMD management practices | ||||
Using healthy cuttings | 0.52 (0.02) | 0.61 (0.03) | 0.44 (0.04) | 0.000 *** |
Roguing infected plants | 0.46 (0.03) | 0.51 (0.03) | 0.38 (0.02) | 0.000 *** |
Replacing infected plants | 0.18 (0.02) | 0.25 (0.04) | 0.12 (0.01) | 0.000 *** |
Regular weeding of the field | 0.19 (0.02) | 0.24 (0.03) | 0.16 (0.02) | 0.021 ** |
Adhering to standard planting density | 0.39 (0.02) | 0.40 (0.04) | 0.38 (0.04) | 0.532 ns |
Using the PlantVillage Nuru Application | 0.21 (0.02) | 0.35 (0.04) | 0.07 (0.01) | 0.000 *** |
General adoption of CMD management practices | 1.95 (0.08) | 2.36 (0.10) | 1.55 (0.65) | 0.000 *** |
Variables | Mean of the Variables | ATT | ATT (%) | |
---|---|---|---|---|
Trained Farmers | Non-Trained Farmers | |||
General CMD knowledge | 3.12 | 1.86 | 1.3 *** | 69.9 |
General adoption of DMP | 2.36 | 1.55 | 0.81 *** | 52.2 |
Variables | Estimation Algorithm | ||
---|---|---|---|
Nearest Neighbour Matching (NNM) | Radius Matching | Weighted Regression (Fweight) | |
General knowledge of CMD | 1.3 | 1.27 | 1.28 |
General adoption of DMP | 0.81 | 0.79 | 0.83 |
Adoption Categories | Interpretation | Total Farmers Surveyed (n = 290) | Trained Farmers (n = 146) | Non-Trained Farmers (n = 144) | p > |z| |
---|---|---|---|---|---|
Non-adoption | The farmer does not use any of the proposed practices | 19 | 01 | 18 | 0.000 *** |
Low adoption | Adoption limited to one or two practices | 157 | 44 | 113 | 0.001 *** |
Moderate adoption | Adoption of three to four practices by the farmer | 95 | 82 | 13 | 0.000 *** |
High adoption | Virtually complete implementation of the proposed practices (five) | 09 | 09 | 0 | 0.002 ** |
Full adoption | Full use of all recommended practices | 10 | 10 | 0 | 0.000 *** |
Variables | Coef. | St.Err. | t-Value | p-Value | [95% Conf | Interval] |
---|---|---|---|---|---|---|
Education level | ||||||
Unschooled | 0 | - | - | - | - | - |
Primary | 0.074 | 0.026 | 2.82 | 0.005 *** | 0.022 | 0.125 |
Secondary | 0.051 | 0.028 | 1.86 | 0.064 | −0.003 | 0.106 |
Higher | 0.07 | 0.051 | 1.38 | 0.170 | −0.030 | 0.170 |
Main activity | ||||||
Other activities | 0 | - | - | - | - | - |
Cassava production | −0.025 | 0.026 | −0.93 | 0.351 | −0.077 | 0.027 |
Farm type | ||||||
Community | 0 | - | - | - | - | - |
Family | −0.101 | 0.130 | −0.77 | 0.440 | −0.358 | 0.156 |
Personal | −0.035 | 0.129 | −0.27 | 0.789 | −0.288 | 0.219 |
Age | ||||||
[Less than 20] | 0 | - | - | - | - | - |
[20 to 40] | −0.177 | 0.103 | −1.71 | 0.088 * | −0.381 | 0.026 |
[41 to 64] | −0.166 | 0.103 | −1.61 | 0.108 | −0.369 | 0.037 |
[65 and more] | −0.176 | 0.107 | −1.64 | 0.102 | −0.388 | 0.035 |
Type of cropping | ||||||
Intercropping | 0 | - | - | - | - | - |
Mono-cropping | −0.03 | 0.022 | −1.39 | 0.165 | −0.074 | 0.013 |
Experience in cassava cultivation | ||||||
1 to 5 years | 0 | - | - | - | - | - |
6 to 10 years | 0.027 | 0.033 | 0.82 | 0.412 | −0.038 | 0.091 |
11 years and more | −0.018 | 0.027 | −0.66 | 0.512 | −0.072 | 0.036 |
Knowledge of CMD (score) | 0.042 | 0.01 | 4.14 | 0.000 *** | 0.022 | 0.062 |
In contact with an extension officer | −0.007 | 0.021 | −0.35 | 0.730 | −0.048 | 0.034 |
Participated in awareness campaigns | 0.232 | 0.026 | 8.96 | 0.000 *** | 0.181 | 0.283 |
Acreage | −0.012 | 0.012 | −0.97 | 0.332 | −0.036 | 0.012 |
Type of labour | ||||||
Salaried | 0.088 | 0.03 | 2.96 | 0.003 *** | 0.030 | 0.147 |
Community | 0.007 | 0.047 | 0.14 | 0.889 | −0.086 | 0.099 |
Family | 0.039 | 0.026 | 1.54 | 0.124 | −0.011 | 0.090 |
Constant | 0.289 | 0.164 | 1.76 | 0.079 * | −0.034 | 0.612 |
Mean dependent var | 0.375 | SD dependent var | 0.227 | |||
Pseudo r-squared | 0.5552 | Number of obs | 290 | |||
Chi-square | 197.062 | Prob > chi2 | 0.000 | |||
Akaike crit. (AIC) | −110.131 | Bayesian crit. (BIC) | −33.063 |
CMD Parameters | Beneficiary Areas Fields Surveyed (n = 41) | Non-Beneficiary Areas Fields Surveyed (n = 41) | (p-Value) | |
---|---|---|---|---|
Frequency/Mean (Standard Error) | ||||
Incidence | 54.55 (3.83) | 54.95 (4.75) | 0.929 ns | |
Severity | 2.86 (0.10) | 2.94 (0.09) | 0.555 ns | |
Mode of infection | Cuttings | 96.59 | 98.08 | 0.094 ns |
Whiteflies | 3.41 | 1.92 | ||
Number of whiteflies per field | 34.34 (5.36) | 30.26 (3.98) | 0.974 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adjéi, E.A.; Traoré, K.; Sawadogo-Compaore, E.M.F.W.; Kouakou, B.S.M.; Séka, J.S.S.; Ahoya, D.K.D.; Kouassi, K.M.; Kouassi, N.K.; Pita, J.S. Enhancing Farmers’ Capacity for Sustainable Management of Cassava Mosaic Disease in Côte d’Ivoire. Agriculture 2025, 15, 1277. https://doi.org/10.3390/agriculture15121277
Adjéi EA, Traoré K, Sawadogo-Compaore EMFW, Kouakou BSM, Séka JSS, Ahoya DKD, Kouassi KM, Kouassi NK, Pita JS. Enhancing Farmers’ Capacity for Sustainable Management of Cassava Mosaic Disease in Côte d’Ivoire. Agriculture. 2025; 15(12):1277. https://doi.org/10.3390/agriculture15121277
Chicago/Turabian StyleAdjéi, Ettien Antoine, Kassoum Traoré, Eveline M. F. W. Sawadogo-Compaore, Bekanvié S. M. Kouakou, John Steven S. Séka, Dèwanou Kant David Ahoya, Kan Modeste Kouassi, Nazaire K. Kouassi, and Justin Simon Pita. 2025. "Enhancing Farmers’ Capacity for Sustainable Management of Cassava Mosaic Disease in Côte d’Ivoire" Agriculture 15, no. 12: 1277. https://doi.org/10.3390/agriculture15121277
APA StyleAdjéi, E. A., Traoré, K., Sawadogo-Compaore, E. M. F. W., Kouakou, B. S. M., Séka, J. S. S., Ahoya, D. K. D., Kouassi, K. M., Kouassi, N. K., & Pita, J. S. (2025). Enhancing Farmers’ Capacity for Sustainable Management of Cassava Mosaic Disease in Côte d’Ivoire. Agriculture, 15(12), 1277. https://doi.org/10.3390/agriculture15121277