Oxalic Acid Boosts Phosphorus Release from Sewage Sludge Biochar: A Key Mechanism for Biochar-Based Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of SSB
2.2. Chemical, Mineralogical, and Thermogravimetric Characterization of SS and SSB
2.2.1. Chemical Characterization of SSB
2.2.2. X-ray Diffraction (XRD)
2.3. Phosphorus Sequential Extraction
2.4. Experiment I: Solubilization of P from Biochar by an Oxalic Acid Solution
2.5. Experiment II: Incubation of Biochar in Soil
2.6. Statistical Analysis
3. Results and Discussion
3.1. Mineralogical Characteristics of SSB
3.2. Sequential Extraction of P Present in SSB300 and SSB500
3.3. Solubilization of P from Biochar in Oxalic Acid Solution
3.4. Solubilization of P from Biochar in the Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, A.; Zhang, R.; Ngo, H.H.; He, X.; Ma, J.; Nan, J.; Li, G. Life Cycle Assessment of Sewage Sludge Treatment and Disposal Based on Nutrient and Energy Recovery: A Review. Sci. Total Environ. 2021, 769, 144451. [Google Scholar] [CrossRef]
- Pujara, Y.; Pathak, P.; Sharma, A.; Govani, J. Review on Indian Municipal Solid Waste Management Practices for Reduction of Environmental Impacts to Achieve Sustainable Development Goals. J. Environ. Manag. 2019, 248, 109238. [Google Scholar] [CrossRef]
- D’Imporzano, G.; Adani, F. Measuring the Environmental Impacts of Sewage Sludge Use in Agriculture in Comparison with the Incineration Alternative. Sci. Total Environ. 2023, 905, 167025. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.F.; Pan, X.W.; Tan, J.Y.; Yang, S.S.; Wu, J.T.; Chen, C.; Yuan, Y.; Ren, N.Q. Sewage Sludge Derived Biochar for Environmental Improvement: Advances, Challenges, and Solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef]
- Bloem, E.; Albihn, A.; Elving, J.; Hermann, L.; Lehmann, L.; Sarvi, M.; Schaaf, T.; Schick, J.; Turtola, E.; Ylivainio, K. Contamination of Organic Nutrient Sources with Potentially Toxic Elements, Antibiotics and Pathogen Microorganisms in Relation to P Fertilizer Potential and Treatment Options for the Production of Sustainable Fertilizers: A Review. Sci. Total Environ. 2017, 607–608, 225–242. [Google Scholar] [CrossRef]
- Elkhlifi, Z.; Sellaoui, L.; Zhao, M.; Ifthikar, J.; Jawad, A.; Shahib, I.I.; Sijilmassi, B.; Lahori, A.H.; Selvasembian, R.; Meili, L.; et al. Lanthanum Hydroxide Engineered Sewage Sludge Biochar for Efficient Phosphate Elimination: Mechanism Interpretation Using Physical Modelling. Sci. Total Environ. 2022, 803, 149888. [Google Scholar] [CrossRef]
- de Figueiredo, C.C.; de Souza Prado Junqueira Reis, A.; de Araujo, A.S.; Blum, L.E.B.; Shah, K.; Paz-Ferreiro, J. Assessing the Potential of Sewage Sludge-Derived Biochar as a Novel Phosphorus Fertilizer: Influence of Extractant Solutions and Pyrolysis Temperatures. Waste Manag. 2021, 124, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov Vladimir, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of Pyrolysis Temperature on Production and Nutrient Properties of Wastewater Sludge Biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.S.; Sheng, Q.; Wang, J.J.; Yuan, S.J.; Dong, B.; Xu, Z.X. A Combination of Conventional Extraction and Advanced Analytical Techniques Afford a Comprehensive Understanding of Phosphorus Distribution and Transformation in Sewage Sludge Biochars. Chem. Eng. J. 2023, 477, 146954. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global Nitrogen and Phosphorus Fertilizer Use for Agriculture Production in the Past Half Century: Shifted Hot Spots and Nutrient Imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, H.A.; Ivanova, D.; Stadler, K.; Merciai, S.; Schmidt, J.; Van Zelm, R.; Moran, D.; Wood, R. Trade and the Role of Non-Food Commodities for Global Eutrophication. Nat. Sustain. 2018, 1, 314–321. [Google Scholar] [CrossRef]
- Mogollón, J.M.; Bouwman, A.F.; Beusen, A.H.W.; Lassaletta, L.; van Grinsven, H.J.M.; Westhoek, H. More Efficient Phosphorus Use Can Avoid Cropland Expansion. Nat. Food 2021, 2, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global Phosphorus Shortage Will Be Aggravated by Soil Erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, Z.; Liu, Y.; Liu, Y.; Xu, Y.; Ruan, X.; Zhang, X.; Cao, W. Phosphorus Speciation and Bioavailability of Sewage Sludge Derived Biochar Amended with CaO. Waste Manag. 2019, 87, 71–77. [Google Scholar] [CrossRef]
- Sichler, T.C.; Adam, C.; Montag, D.; Barjenbruch, M. Future Nutrient Recovery from Sewage Sludge Regarding Three Different Scenarios—German Case Study. J. Clean. Prod. 2022, 333, 130130. [Google Scholar] [CrossRef]
- Fachini, J.; de Figueiredo, C.C.; Frazão, J.J.; Rosa, S.D.; da Silva, J.; Vale, A.T. do Novel K-Enriched Organomineral Fertilizer from Sewage Sludge-Biochar: Chemical, Physical and Mineralogical Characterization. Waste Manag. 2021, 135, 98–108. [Google Scholar] [CrossRef]
- Hansen, D.S.; Turcios, A.E.; Klamt, A.M.; Wieth, C.; Reitzel, K.; Thomsen, M.H.; Papenbrock, J. Characterization of Biochar Produced from Sewage Sludge and Its Potential Use as a Substrate and Plant Growth Improver. J. Environ. Manag. 2023, 348, 119271. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Oleszczuk, P. Biochar and Engineered Biochar as Slow- and Controlled-Release Fertilizers. J. Clean. Prod. 2022, 339. [Google Scholar] [CrossRef]
- Qian, T.T.; Jiang, H. Migration of Phosphorus in Sewage Sludge during Different Thermal Treatment Processes. ACS Sustain. Chem. Eng. 2014, 2, 1411–1419. [Google Scholar] [CrossRef]
- de Figueiredo, C.C.; Pinheiro, T.D.; de Oliveira, L.E.Z.; de Araujo, A.S.; Coser, T.R.; Paz-Ferreiro, J. Direct and Residual Effect of Biochar Derived from Biosolids on Soil Phosphorus Pools: A Four-Year Field Assessment. Sci. Total Environ. 2020, 739, 140013. [Google Scholar] [CrossRef] [PubMed]
- Steckenmesser, D.; Vogel, C.; Adam, C.; Steffens, D. Effect of Various Types of Thermochemical Processing of Sewage Sludges on Phosphorus Speciation, Solubility, and Fertilization Performance. Waste Manag. 2017, 62, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Luo, J.; Xie, H.; Yang, H.; Chen, S.; Liu, J.; Zhang, R.; Li, Y.Y. Species, Fractions, and Characterization of Phosphorus in Sewage Sludge: A Critical Review from the Perspective of Recovery. Sci. Total Environ. 2021, 786, 147437. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of Pyrolysis Parameters on Phosphorus Fractions of Biosolids Derived Biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
- Marra, L.M.; de Oliveira-Longatti, S.M.; Soares, C.R.F.S.; Olivares, F.L.; de, S. Moreira, F.M. The Amount of Phosphate Solubilization Depends on the Strain, C-Source, Organic Acids and Type of Phosphate. Geomicrobiol. J. 2019, 36, 232–242. [Google Scholar] [CrossRef]
- Sun, H.; Luo, L.; Wang, J.; Wang, D.; Huang, R.; Ma, C.; Zhu, Y.G.; Liu, Z. Speciation Evolution of Phosphorus and Sulfur Derived from Sewage Sludge Biochar in Soil: Ageing Effects. Environ. Sci. Technol. 2022, 56, 6639–6646. [Google Scholar] [CrossRef]
- Suh, S.; Yee, S. Phosphorus Use-Efficiency of Agriculture and Food System in the US. Chemosphere 2011, 84, 806–813. [Google Scholar] [CrossRef]
- Schneider, F.; Haderlein, S.B. Potential Effects of Biochar on the Availability of Phosphorus—Mechanistic Insights. Geoderma 2016, 277, 83–90. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P. Does a Rhizospheric Microorganism Enhance K+ Availability in Agricultural Soils? Microbiol. Res. 2014, 169, 337–347. [Google Scholar] [CrossRef]
- Kpomblekou-A, K.; Tabatabai, M.A. Effect of Low-Molecular Weight Organic Acids on Phosphorus Release and Phytoavailabilty of Phosphorus in Phosphate Rocks Added to Soils. Agric. Ecosyst. Environ. 2003, 100, 275–284. [Google Scholar] [CrossRef]
- de Oliveira Mendes, G.; Dyer, T.; Csetenyi, L.; Gadd, G.M. Rock Phosphate Solubilization by Abiotic and Fungal-Produced Oxalic Acid: Reaction Parameters and Bioleaching Potential. Microb. Biotechnol. 2022, 15, 1189–1202. [Google Scholar] [CrossRef]
- Sindhu, S.S.; Sehrawat, A.; Glick, B.R. The Involvement of Organic Acids in Soil Fertility, Plant Health and Environment Sustainability. Arch. Microbiol. 2022, 204, 720. [Google Scholar] [CrossRef] [PubMed]
- Rossati, K.F.; de Figueiredo, C.C.; de, O. Mendes, G. Aspergillus Niger Enhances the Efficiency of Sewage Sludge Biochar as a Sustainable Phosphorus Source. Sustainability 2023, 15, 6940. [Google Scholar] [CrossRef]
- Vause, D.; Heaney, N.; Lin, C. Differential Release of Sewage Sludge Biochar-Borne Elements by Common Low-Molecular-Weight Organic Acids. Ecotoxicol. Environ. Saf. 2018, 165, 219–223. [Google Scholar] [CrossRef]
- USEPA. Soil and Waste pH. Method 9045D; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- American Society for Testing and Materials—ASTM. ASTM D1762: Standard Test Method for Chemical Analysis of Wood Charcoal; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- da Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes; Embrapa Informação Tecnológica: Rio de Janeiro, Brazil, 2009; 627p. [Google Scholar]
- Ministério da Agricultura, Pecuária e Abastecimento. Manual De Métodos Analíticos Oficiais Para Fertilizantes e Corretivos; Ministério da Agricultura, Pecuária e Abastecimento (MAPA): Brasília, Brazil, 2017; ISBN 9788579911095. [Google Scholar]
- Ruban, V.; López-Sánchez, J.F.; Pardo, P.; Rauret, G.; Muntau, H.; Quevauviller, P. Selection and Evaluation of Sequential Extraction Procedures for the Determination of Phosphorus Forms in Lake Sediment. J. Environ. Monit. 1999, 1, 51–56. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Bley, H.; Gianello, C.; Santos, L.D.S.; Selau, L.P.R. Nutrient Release, Plant Nutrition, and Potassium Leaching from Polymer-Coated Fertilizer. Rev. Bras. Cienc. Solo 2017, 41, 1–11. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa Solos: Brasília, Brazil, 2017; ISBN 9788570357717. [Google Scholar]
- Leão, T.P.; Domingues Da Costa, B.F.; Bof Bufon, V.; Fidel, F.; Aragón, H. Using Time Domain Reflectometry to Estimate Water Content of Three Soil Orders under Savanna in Brazil. Geoderma Reg. 2020, 21, e00280. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; de Souza, L.R.; Fachini, J.; Leão, T.P.; Sandri, D.; de Figueiredo, C.C. Dynamics of Potassium Released from Sewage Sludge Biochar Fertilizers in Soil. J. Environ. Manag. 2023, 346, 119057. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Liu, F.; Zhang, X.; Song, M.; Li, R. Pyrolysis of Sewage Sludge to Biochar: Transformation Mechanism of Phosphorus. J. Anal. Appl. Pyrolysis 2023, 173, 106065. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, S.; Wang, J.; Ko, J.H. Pyrolysis Kinetics of Sewage Sludge and Its Biochar Characteristics. Process Saf. Environ. Prot. 2018, 115, 49–56. [Google Scholar] [CrossRef]
- Schrödter, K.; Al, E. Phosphoric Acid and Phosphates. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000; pp. 1–55. [Google Scholar] [CrossRef]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus Adsorption by Functionalized Biochar: A Review. Environ. Chem. Lett. 2023, 21, 497–524. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, B.; Gao, Q.; Gao, Y.; Liu, S. Adsorption of Phosphorus by Different Biochars. Spectrosc. Lett. 2017, 50, 73–80. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, L.; Xu, X.; Ma, M.; Zou, G.; Wei, D. Competitive or Synergetic? Adsorption Mechanism of Phosphate and Oxytetracycline on Chestnut Shell-Derived Biochar. J. Clean. Prod. 2022, 370, 133526. [Google Scholar] [CrossRef]
- Khater, E.S.; Bahnasawy, A.; Hamouda, R.; Sabahy, A.; Abbas, W.; Morsy, O.M. Biochar Production under Different Pyrolysis Temperatures with Different Types of Agricultural Wastes. Sci. Rep. 2024, 14, 2625. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of Pyrolysis Temperature, Heating Rate, and Residence Time on Rapeseed Stem Derived Biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Khalid, U.; Ali, M. The Influence of Pyrolysis Temperature on the Performance of Cotton Stalk Biochar for Hexavalent Chromium Removal from Wastewater. Water Air Soil Pollut. 2024, 235, 1–19. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhou, B.; Awasthi, M.K.; Ali, A.; Zhang, Z.; Lahori, A.H.; Mahar, A. Recovery of Phosphate from Aqueous Solution by Magnesium Oxide Decorated Magnetic Biochar and Its Potential as Phosphate-Based Fertilizer Substitute. Bioresour. Technol. 2016, 215, 209–214. [Google Scholar] [CrossRef]
- Rehman, R.A.; Qayyum, M.F.; Haider, G.; Schofield, K.; Abid, M.; Rizwan, M.; Ali, S. The Sewage Sludge Biochar and Its Composts Influence the Phosphate Sorption in an Alkaline-Calcareous Soil. Sustainability 2021, 13, 1779. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, B.; Wester, A.E.; Chen, J.; He, F.; Chen, H.; Gao, B. Reclaiming Phosphorus from Secondary Treated Municipal Wastewater with Engineered Biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Brazil. Instrução Normativa SDA No 27, 05 De Junho De 2006. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-27-de-05-06-2006-alterada-pela-in-sda-07-de-12-4-16-republicada-em-2-5-16.pdf (accessed on 28 August 2024).
- European Union. Regulamento (UE) 2019/1009 Do Parlamento Europeu e Do Conselho de 5 de Junho de 2019 Que Estabelece Regras Relativas à Disponibilização de Produtos Fertilizantes No Mercado e Que Altera Os Regulamentos (CE) n.o 1069/2009 e (CE) n.o 1107/2009 e Revoga o Regulamento (CE) n.o 2003/2003. J. Of. Da União Eur. 2019. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/PDF/?uri=CELEX:32022D1244&from=EN (accessed on 28 August 2024).
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (Aka IBI Biochar Standards); International Biochar Initiative: Norfolk, VA, USA, 2015. [Google Scholar]
- Bogusz, A.; Oleszczuk, P. Effect of Biochar Addition to Sewage Sludge on Cadmium, Copper and Lead Speciation in Sewage Sludge-Amended Soil. Chemosphere 2020, 239, 124719. [Google Scholar] [CrossRef] [PubMed]
- Chagas, J.K.M.; de Figueiredo, C.C.; da Silva, J.; Paz-Ferreiro, J. The Residual Effect of Sewage Sludge Biochar on Soil Availability and Bioaccumulation of Heavy Metals: Evidence from a Three-Year Field Experiment. J. Environ. Manag. 2021, 279, 111824. [Google Scholar] [CrossRef] [PubMed]
- Van Hees, P.A.W.; Vinogradoff, S.I.; Edwards, A.C.; Godbold, D.L.; Jones, D.L. Low Molecular Weight Organic Acid Adsorption in Forest Soils: Effects on Soil Solution Concentrations and Biodegradation Rates. Soil Biol. Biochem. 2003, 35, 1015–1026. [Google Scholar] [CrossRef]
- Rodrigues, N.A.; Buffo, M.M.; Casciatori, F.P.; Farinas, C.S. New Approaches for Solubilization of Phosphate Rocks through Solid-State Fermentation by Optimization of Oxalic Acid Production. Bioresour. Technol. 2024, 408, 131165. [Google Scholar] [CrossRef]
- do Nascimento, J.M.; Vieira Netto, J.A.F.; Valadares, R.V.; de Oliveira Mendes, G.; da Silva, I.R.; Vergütz, L.; Costa, M.D. Aspergillus Niger as a Key to Unlock Fixed Phosphorus in Highly Weathered Soils. Soil Biol Biochem. 2021, 156, 108190. [Google Scholar] [CrossRef]
- Aktar, S.; Hossain, M.A.; Rathnayake, N.; Patel, S.; Gasco, G.; Mendez, A.; de Figueiredo, C.; Surapaneni, A.; Shah, K.; Paz-Ferreiro, J. Effects of Temperature and Carrier Gas on Physico-Chemical Properties of Biochar Derived from Biosolids. J. Anal. Appl. Pyrolysis 2022, 164, 105542. [Google Scholar] [CrossRef]
- Palmieri, F.; Estoppey, A.; House, G.L.; Lohberger, A.; Bindschedler, S.; Chain, P.S.G.; Junier, P. Oxalic Acid, a Molecule at the Crossroads of Bacterial-Fungal Interactions. In Advances in Applied Microbiology; Academic Press Inc.: Cambridge, MA, USA, 2019; Volume 106, pp. 49–77. ISBN 9780128169759. [Google Scholar]
Properties | SS | SSB300 | SSB500 |
---|---|---|---|
pH (CaCl2) | 6.4 | 6.0 | 6.4 |
Moisture (%) | 18.5 | 6.6 | 1.5 |
Total C (%) | 28.8 | 25.04 | 23.16 |
P (Total) (%) | 2.2 | 3.9 | 4.6 |
K2O (Total) (%) | 0.24 | 0.24 | 0.43 |
Total N (%) | 3.7 | 4.21 | 3.40 |
Ca (%) | 0.5 | 0.64 | 0.85 |
Mg (%) | 0.21 | 0.25 | 0.29 |
S (%) | 0.82 | 0.75 | 1.18 |
Cu (mg kg−1) | 105 | 115 | 168 |
Fe (mg kg−1) | 19,800 | 20,500 | 20,490 |
Mn (mg kg−1) | 100 | 105 | 149 |
Zn (mg kg−1) | 460 | 480 | 690 |
C:N Ratio | 7.8 | 5.9 | 6.8 |
Cd (mg kg−1) | 3 | 3.0 | 2.0 |
Ni (mg kg−1) | 13 | 15 | 12 |
Pb (mg kg−1) | 63 | 32.0 | 44.0 |
Atribute 1 | Unity | Value |
---|---|---|
pH (CaCl2) | - | 5.2 |
P (Mehlich 1) | mg dm−3 | 1.0 |
K | mg dm−3 | 26.0 |
Ca | cmolc dm−3 | 2.0 |
Mg | cmolc dm−3 | 0.8 |
H + Al | cmolc dm−3 | 1.6 |
CEC 1 | cmolc dm−3 | 4.47 |
M 2 | % | 0.0 |
V 3 | % | 64.0 |
OM 4 | g kg−1 | 20.0 |
Clay | g kg−1 | 105.3 |
Sand | g kg−1 | 846.8 |
Silt | g kg−1 | 47.9 |
Bulk density | g cm−3 | 1.1 |
Particle density | g cm−3 | 2.5 |
Specific surface area | m2 g−1 | 3.0 |
Electrical conductivity | mS cm−1 | 0.157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.G.B.d.; Costa, C.R.; Mendes, G.d.O.; Blasi Paiva, A.; Peixoto, L.S.; Costa, J.d.L.; Marchi, G.; Martins, É.d.S.; Figueiredo, C.C.d. Oxalic Acid Boosts Phosphorus Release from Sewage Sludge Biochar: A Key Mechanism for Biochar-Based Fertilizers. Agriculture 2024, 14, 1607. https://doi.org/10.3390/agriculture14091607
Santos MGBd, Costa CR, Mendes GdO, Blasi Paiva A, Peixoto LS, Costa JdL, Marchi G, Martins ÉdS, Figueiredo CCd. Oxalic Acid Boosts Phosphorus Release from Sewage Sludge Biochar: A Key Mechanism for Biochar-Based Fertilizers. Agriculture. 2024; 14(9):1607. https://doi.org/10.3390/agriculture14091607
Chicago/Turabian StyleSantos, Marcela Granato Barbosa dos, Camila Rodrigues Costa, Gilberto de Oliveira Mendes, Andressa Blasi Paiva, Ludmila Soares Peixoto, Jéssica da Luz Costa, Giuliano Marchi, Éder de Souza Martins, and Cícero Célio de Figueiredo. 2024. "Oxalic Acid Boosts Phosphorus Release from Sewage Sludge Biochar: A Key Mechanism for Biochar-Based Fertilizers" Agriculture 14, no. 9: 1607. https://doi.org/10.3390/agriculture14091607
APA StyleSantos, M. G. B. d., Costa, C. R., Mendes, G. d. O., Blasi Paiva, A., Peixoto, L. S., Costa, J. d. L., Marchi, G., Martins, É. d. S., & Figueiredo, C. C. d. (2024). Oxalic Acid Boosts Phosphorus Release from Sewage Sludge Biochar: A Key Mechanism for Biochar-Based Fertilizers. Agriculture, 14(9), 1607. https://doi.org/10.3390/agriculture14091607