Effects of Storage Time and Temperature on the Fermentation Characteristics of Rumen Fluid from a High-Forage Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Rumen Fluid
2.2. Experimental Design
2.3. Parameter Determination
2.4. Statistical Analysis
3. Results
3.1. Rumen Fermentation Parameter
3.2. VFA Concentration
3.3. VFA Proportion
4. Discussion
4.1. Dynamic Changes in Fermentation Parameters of Rumen Fluid as Preservation Time and Temperature Varied
4.2. Dynamic Changes in VFA Concentration and Proportion of Rumen Fluid as Preservation Time and Temperature Varied
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paswan, V.K.; Kumar, K.; Shehata, A.M. Rumen Microbiology and Microbial Degradation of Feedstuffs. In Animal Manure: Agricultural and Biotechnological Applications; Mahajan, S., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 45–60. [Google Scholar]
- Liang, J.; Zhang, R.; Chang, J.; Chen, L.; Nabi, M.; Zhang, H.; Zhang, G.; Zhang, P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion—A comprehensive review. Biotechnol. Adv. 2024, 71, 108308. [Google Scholar] [CrossRef]
- Belanche, A.; Palma-Hidalgo, J.; Nejjam, I.; Serrano, R.; Jiménez, E.; Martín-García, I.; Yáñez-Ruiz, D. In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J. Sci. Food Agric. 2019, 99, 163–172. [Google Scholar] [CrossRef]
- Dhanoa, M.; Sanderson, R.; Lister, S.; Mauricio, R.; López, S.; Ellis, J.; Powell, C.; France, J. Statistical options for the analysis of in vitro gas production profiles illustrated using rumen liquor as the inoculum. J. Agric. Sci. 2023, 161, 686–695. [Google Scholar] [CrossRef]
- Jeong, S.; Joo, Y.; Seo, M.; Lee, S.; Kim, S. Effects of wheat cultivars on chemical composition, in vitro digestibility, and rumen fermentation characteristic of sprouted grains. J. Anim. Sci. 2022, 100, 379–380. [Google Scholar] [CrossRef]
- Tunkala, B.; Digiacomo, K.; Alvarez Hess, P.; Dunshea, F.; Leury, B. Impact of rumen fluid storage on in vitro feed fermentation characteristics. Fermentation 2023, 9, 392. [Google Scholar] [CrossRef]
- Tunkala, B.Z.; Digiacomo, K.; Hess, P.S.A.; Dunshea, F.R.; Leury, B.J. Rumen fluid preservation for in vitro gas production systems. Anim. Feed Sci. Technol. 2022, 292, 115405. [Google Scholar] [CrossRef]
- Spanghero, M.; Chiaravalli, M.; Colombini, S.; Fabro, C.; Froldi, F.; Mason, F.; Moschini, M.; Sarnataro, C.; Schiavon, S.; Tagliapietra, F. Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals 2019, 9, 815. [Google Scholar] [CrossRef]
- Chaudhry, A.S.; Mohamed, R.A.I. Fresh or frozen rumen contents from slaughtered cattle to estimate in vitro degradation of two contrasting feeds. Czech J. Anim. Sci. 2012, 57, 265–273. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, J.; Yi, S.; Wang, M.; Tan, Z. In vitro Inoculation of fresh or frozen rumen fluid distinguishes contrasting microbial communities and fermentation induced by increasing forage to concentrate ratio. Front. Nutr. 2022, 8, 772645. [Google Scholar] [CrossRef]
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen fluid from slaughtered animals: A standardized procedure for sampling, storage and use in digestibility trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef]
- Jones, R.J.; Stoltz, M.A.; Meyer, J.H.F.; Bechaz, F.M. The effect of rumen fluid storage time on digestive capacity with five forage/browse samples. Trop. Grassl. 1998, 32, 270–272. [Google Scholar]
- Fabro, C.; Sarnataro, C.; Spanghero, M. Impacts of rumen fluid, refrigerated or reconstituted from a refrigerated pellet, on gas production measured at 24h of fermentation. Anim. Feed Sci. Technol. 2020, 268, 114585. [Google Scholar] [CrossRef]
- Qiu, Q.; Long, T.; Ouyang, K.; Lei, X.; Qiu, J.; Zhang, J.; Li, Y.; Zhao, X.; Qu, M.; Ouyang, K. Effect of preservation temperature and time on fermentation characteristics, bacterial diversity and community composition of rumen fluid collected from high-grain feeding sheep. Fermentation 2023, 9, 466. [Google Scholar] [CrossRef]
- Martin, C.C.; Hilgert, A.R.; Guirro, E. Influence of food, storage temperature, and time on the extracorporeal viability of ruminal fluid of cattle. Semin. Cienc. Agrar. 2018, 39, 1181–1188. [Google Scholar] [CrossRef]
- Poulsen, C.S.; Kaas, R.S.; Aarestrup, F.M.; Pamp, S.J. Standard sample storage conditions have an impact on inferred microbiome composition and antimicrobial resistance patterns. Microbiol. Spectr. 2021, 9, e01387-21. [Google Scholar] [CrossRef]
- Mulder, T.; Vandaele, L.; Peiren, N.; Haegeman, A.; Ruttink, T.; De Campeneere, S.; Van De Wiele, T.; Goossens, K. Cow responses and evolution of the rumen bacterial and methanogen community following a complete rumen content transfer. J. Agric. Sci. 2018, 156, 1047–1058. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Sharma, O.P.; Dawra, R.K.; Negi, S.S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Ouyang, K.; Long, T.; Liu, Z.; Li, Y.; Qiu, Q. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation. Fermentation 2022, 8, 276. [Google Scholar] [CrossRef]
- Wei, X.; Long, T.; Li, Y.; Ouyang, K.; Qiu, Q. Diet shift may trigger LuxS/AI-2 quorum sensing in rumen bacteria. Bioengineering 2022, 9, 379. [Google Scholar] [CrossRef]
- Pereira, D.H.; Pereira, O.G.; Da Silva, B.C.; Leão, M.I.; Valadares Filho, S.; Chizzotti, F.; Garcia, R. Intake and total and partial digestibility of nutrients, ruminal pH and ammonia concentration and microbial efficiency in beef cattle fed with diets containing sorghum (Sorghum bicolor (L.) Moench) silage and concentrate in different ratios. Livest. Sci. 2007, 107, 53–61. [Google Scholar] [CrossRef]
- Weinert-Nelson, J.R.; Ely, D.G.; Flythe, M.D.; Hamilton, T.A.; May, J.B.; Ferrell, J.L.; Hamilton, M.C.; Jacks, W.L.; Davis, B.E. Red clover supplementation modifies rumen fermentation and promotes feed efficiency in ram lambs. J. Anim. Sci. 2023, 101, skad036. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, T.; Martins, L.F.; Cueva, S.F.; Wasson, D.E.; Stepanchenko, N.; Raisanen, S.E.; Sommai, S.; Hile, M.L.; Hristov, A.N. Lactational performance, rumen fermentation, nutrient use efficiency, enteric methane emissions, and manure greenhouse gas-emitting potential in dairy cows fed a blend of essential oils. J. Dairy Sci. 2023, 106, 7661–7674. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Z.; Fan, Q.; Chang, S.; Yan, T.; Hou, F. Ligularia virgaurea improved nutrient digestion, ruminal fermentation, and bacterial composition in Tibetan sheep grazing on the Qinghai-Tibetan plateau in winter. Anim. Feed Sci. Technol. 2023, 299, 115628. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Y.; Xue, S.; Wang, W.; Wang, Y.; Cao, Z.; Yang, H.; Li, S. Feeding value assessment of substituting cassava (Manihot esculenta) residue for concentrate of dairy cows using an in vitro gas test. Animals 2021, 11, 307. [Google Scholar] [CrossRef]
- Prates, A.; De Oliveira, J.A.; Abecia, L.; Fondevila, M. Effects of preservation procedures of rumen inoculum on in vitro microbial diversity and fermentation. Anim. Feed Sci. Technol. 2010, 155, 186–193. [Google Scholar] [CrossRef]
- Nocek, J.E.; Hart, S.P.; Polan, C.E. Rumen ammonia concentration as influenced by storage time, freezing and thawing, acid preservative, and method of ammonia determination. J. Dairy Sci. 1987, 70, 601–607. [Google Scholar] [CrossRef]
- Qiu, Q.; Wei, X.; Zhang, L.; Li, Y.; Qu, M.; Ouyang, K. Effect of dietary inclusion of tea residue and tea leaves on ruminal fermentation characteristics and methane production. Anim. Biotechnol. 2023, 34, 825–834. [Google Scholar] [CrossRef]
- Baetz Albert, L.; Faidley Terry, D.; Allison Milton, J. Automated enzymatic method for the determination of ammonia: Application to rumen fluid, gut fluid, and plasma. Appl. Environ. Microbiol. 1979, 38, 212–215. [Google Scholar] [CrossRef]
- Han, C.S.; Kaur, U.; Bai, H.; Roqueto Dos Reis, B.; White, R.; Nawrocki, R.A.; Voyles, R.M.; Kang, M.G.; Priya, S. Invited review: Sensor technologies for real-time monitoring of the rumen environment. J. Dairy Sci. 2022, 105, 6379–6404. [Google Scholar] [CrossRef]
- Dijkstra, J. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 1994, 39, 61–69. [Google Scholar] [CrossRef]
- Takizawa, S.; Baba, Y.; Tada, C.; Fukuda, Y.; Nakai, Y. Preservation of rumen fluid for the pretreatment of waste paper to improve methane production. Waste Manag. 2019, 87, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Van Nespen, T.; Van Straalen, W.; Fievez, V. Milk odd and branched chain fatty acids in relation to rumen protein digestion. J. Anim. Sci. 2006, 84, 79. [Google Scholar]
- Huhtanen, P.; Ahvenjärvi, S. Review: Problems in determining metabolisable protein value of dairy cow diets and the impact on protein feeding. Animal 2022, 16, 100539. [Google Scholar] [CrossRef]
Ingredient | % of DM | Chemical Composition | Value |
---|---|---|---|
Peanut straw | 68.58 | Metabolizable energy, Mcal/kg | 1.93 |
Corn | 11.22 | Crude protein, % | 14.64 |
Soybean meal | 11.17 | Neutral detergent fiber, % | 40.67 |
Wheat bran | 4.65 | Acid detergent fiber, % | 29.87 |
Calcium hydrogen phosphate | 0.15 | ||
Sodium bicarbonate | 0.24 | ||
Salt | 0.49 | ||
Premix 1 | 3.50 | ||
Total | 100.00 |
Item | Storage Temperature | Preservation Time 1 | SEM 3 | p-Value 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
pH value | −80 °C | 6.93 | 7.00 | 7.00 | 6.95 | 6.99 | 6.98 | 6.84 | ||||
−20 °C | 6.93 | 7.06 | 7.14 | 6.93 | 7.06 | 7.08 | 7.03 | 0.351 | 0.002 | 0.877 | 0.164 | |
Average | 6.93 | 7.03 | 7.07 | 6.94 | 7.03 | 7.03 | 6.93 | |||||
P1* 2 | 0.003 | 0.001 | 0.804 | 0.040 | 0.059 | 0.836 | ||||||
MCP (mg·L−1) | −80 °C | 438.37 | 395.33 | 388.57 | 347.48 | 543.55 | 273.54 | 318.30 | ||||
−20 °C | 438.37 | 391.47 | 371.24 | 331.91 | 480.22 | 223.35 | 273.26 | 70.382 | <0.001 | 0.781 | 0.455 | |
Average | 438.37 | 393.40 | 379.90 | 339.69 | 511.88 | 248.44 | 295.78 | |||||
P1* | 0.031 | 0.001 | <0.001 | 0.002 | <0.001 | <0.001 | ||||||
NH3-N (mg·dL−1) | −80 °C | 13.41 | 13.25 | 12.81 | 13.50 | 15.11 | 12.18 | 12.56 | ||||
−20 °C | 13.41 | 13.20 | 12.35 | 12.61 | 13.74 | 12.61 | 11.60 | 2.166 | <0.001 | 0.885 | 0.637 | |
Average | 13.41 | 13.22 | 12.58 | 13.05 | 14.43 | 12.40 | 12.03 | |||||
P1* | 0.487 | 0.042 | 0.418 | 0.271 | 0.087 | 0.085 |
Item | Storage Temperature | Preservation Time 1 | SEM 3 | p-Value 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Acetate | −80 °C | 40.70 | 40.15 | 39.39 | 42.93 | 46.42 | 44.62 | 40.54 | ||||
−20 °C | 40.70 | 39.99 | 39.74 | 44.83 | 48.86 | 42.15 | 42.70 | 9.953 | <0.001 | 0.966 | 0.640 | |
Average | 40.70 | 40.07 | 39.57 | 43.88 | 47.64 | 43.39 | 41.62 | |||||
P1* 2 | 0.345 | 0.356 | 0.009 | 0.001 | 0.034 | 0.447 | ||||||
Propionate | −80 °C | 9.84 | 9.39 | 9.13 | 9.90 | 11.24 | 11.07 | 10.23 | 3.225 | 0.022 | 0.964 | 0.752 |
−20 °C | 9.84 | 9.41 | 9.30 | 10.24 | 12.12 | 10.68 | 10.69 | |||||
Average | 9.84 | 9.40 | 9.21 | 10.07 | 11.68 | 10.88 | 10.46 | |||||
P1* | 0.056 | 0.178 | 0.560 | 0.006 | 0.014 | 0.227 | ||||||
Isobutyrate | −80 °C | 0.44 | 0.42 | 0.43 | 0.42 | 0.48 | 0.34 | 0.28 | <0.001 | 0.932 | 0.301 | |
−20 °C | 0.44 | 0.42 | 0.43 | 0.53 | 0.47 | 0.32 | 0.28 | 0.068 | ||||
Average | 0.44 | 0.42 | 0.43 | 0.47 | 0.47 | 0.33 | 0.28 | |||||
P1* | 0.159 | 0.247 | 0.192 | 0.478 | <0.001 | <0.001 | ||||||
Butyrate | −80 °C | 6.12 | 5.90 | 5.99 | 6.01 | 8.03 | 7.41 | 6.30 | 0.001 | 0.952 | 0.705 | |
−20 °C | 6.12 | 5.82 | 5.82 | 6.66 | 8.34 | 7.20 | 6.98 | 1.974 | ||||
Average | 6.12 | 5.86 | 5.91 | 6.34 | 8.18 | 7.30 | 6.64 | |||||
P1* | 0.154 | 0.365 | 0.513 | 0.005 | 0.013 | 0.112 | ||||||
Isovalerate | −80 °C | 0.76 | 0.74 | 0.76 | 0.73 | 0.60 | 0.56 | 0.44 | <0.001 | 0.907 | 0.107 | |
−20 °C | 0.76 | 0.74 | 0.75 | 0.88 | 0.55 | 0.52 | 0.50 | 0.104 | ||||
Average | 0.76 | 0.74 | 0.75 | 0.80 | 0.57 | 0.54 | 0.47 | |||||
P1* | 0.321 | 0.590 | 0.295 | <0.001 | <0.001 | <0.001 | ||||||
Valerate | −80 °C | 0.57 | 0.55 | 0.55 | 0.56 | 0.75 | 0.76 | 0.64 | <0.001 | 0.942 | 0.701 | |
−20 °C | 0.57 | 0.55 | 0.55 | 0.61 | 0.78 | 0.73 | 0.69 | 0.124 | ||||
Average | 0.57 | 0.55 | 0.55 | 0.58 | 0.76 | 0.75 | 0.67 | |||||
P1* | 0.384 | 0.510 | 0.621 | <0.001 | <0.001 | <0.001 | ||||||
Branched chain volatile fatty acids | −80 °C | 1.77 | 1.72 | 1.74 | 1.70 | 1.82 | 1.67 | 1.37 | <0.001 | 0.909 | 0.116 | |
−20 °C | 1.77 | 1.71 | 1.73 | 2.02 | 1.80 | 1.56 | 1.47 | 0.237 | ||||
Average | 1.77 | 1.71 | 1.73 | 1.86 | 1.81 | 1.61 | 1.42 | |||||
P1* | 0.237 | 0.401 | 0.327 | 0.405 | 0.005 | <0.001 | ||||||
Total volatile fatty acids | −80 °C | 58.44 | 57.17 | 56.26 | 60.54 | 67.52 | 64.77 | 58.43 | <0.001 | 0.962 | 0.741 | |
−20 °C | 58.44 | 56.94 | 56.58 | 63.75 | 71.11 | 61.59 | 61.83 | 14.826 | ||||
Average | 58.44 | 57.05 | 56.42 | 62.15 | 69.31 | 63.18 | 60.13 | |||||
P1* | 0.170 | 0.288 | 0.054 | 0.001 | 0.020 | 0.374 |
Item | Storage Temperature | Preservation Time 1 | SEM 3 | p-Value 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D0 | D7 | D14 | D30 | D60 | D120 | D240 | Time | Temperature | Interaction | |||
Acetate | −80 °C | 70.13 | 70.54 | 70.14 | 71.33 | 69.82 | 69.97 | 70.66 | ||||
−20 °C | 70.13 | 70.46 | 70.42 | 70.44 | 69.86 | 69.52 | 70.30 | 1.083 | 0.227 | 0.889 | 0.669 | |
Average | 70.13 | 70.50 | 70.28 | 70.88 | 69.84 | 69.74 | 70.48 | |||||
P1* 2 | 0.204 | 0.653 | 0.041 | 0.518 | 0.378 | 0.457 | ||||||
Propionate | −80 °C | 16.52 | 16.26 | 16.22 | 16.08 | 16.32 | 16.67 | 16.54 | 0.238 | 0.997 | 0.982 | |
−20 °C | 16.52 | 16.21 | 16.21 | 16.06 | 16.34 | 16.71 | 16.61 | 1.496 | ||||
Average | 16.52 | 16.24 | 16.21 | 16.07 | 16.33 | 16.69 | 16.57 | |||||
P1* | 0.030 | 0.016 | 0.003 | 0.454 | 0.324 | 0.888 | ||||||
Isobutyrate | −80 °C | 0.99 | 0.97 | 0.96 | 0.89 | 0.89 | 0.67 | 0.69 | <0.001 | 0.977 | 0.271 | |
−20 °C | 0.99 | 0.96 | 0.97 | 1.05 | 0.87 | 0.68 | 0.61 | 0.182 | ||||
Average | 0.99 | 0.97 | 0.97 | 0.97 | 0.88 | 0.68 | 0.65 | |||||
P1* | 0.142 | 0.182 | 0.647 | 0.007 | <0.001 | <0.001 | ||||||
Butyrate | −80 °C | 9.65 | 9.53 | 9.96 | 9.19 | 10.63 | 10.28 | 9.89 | 0.005 | 0.935 | 0.561 | |
−20 °C | 9.65 | 9.65 | 9.67 | 9.73 | 10.67 | 10.66 | 10.15 | 1.285 | ||||
Average | 9.65 | 9.59 | 9.81 | 9.46 | 10.65 | 10.47 | 10.02 | |||||
P1* | 0.683 | 0.474 | 0.311 | 0.002 | 0.009 | 0.108 | ||||||
Isovalerate | −80 °C | 1.68 | 1.65 | 1.67 | 1.53 | 1.10 | 1.12 | 1.00 | <0.001 | 0.939 | 0.420 | |
−20 °C | 1.68 | 1.68 | 1.68 | 1.71 | 1.03 | 1.11 | 1.07 | 0.284 | ||||
Average | 1.68 | 1.67 | 1.68 | 1.62 | 1.07 | 1.12 | 1.03 | |||||
P1* | 0.296 | 0.907 | 0.095 | <0.001 | <0.001 | <0.001 | ||||||
Valerate | −80 °C | 1.03 | 1.05 | 1.05 | 0.98 | 1.23 | 1.28 | 1.23 | <0.001 | 0.929 | 0.788 | |
−20 °C | 1.03 | 1.04 | 1.05 | 1.01 | 1.22 | 1.31 | 1.26 | 0.093 | ||||
Average | 1.03 | 1.05 | 1.05 | 0.99 | 1.22 | 1.30 | 1.24 | |||||
P1* | 0.437 | 0.334 | 0.116 | 0.001 | <0.001 | 0.001 | ||||||
Acetate/Propionate | −80 °C | 4.43 | 4.50 | 4.48 | 4.60 | 4.48 | 4.37 | 4.53 | 0.202 | 0.958 | 0.979 | |
−20 °C | 4.43 | 4.51 | 4.50 | 4.53 | 4.46 | 4.33 | 4.43 | 0.393 | ||||
Average | 4.43 | 4.50 | 4.49 | 4.56 | 4.47 | 4.35 | 4.48 | |||||
P1* | 0.048 | 0.162 | 0.002 | 0.546 | 0.282 | 0.648 | ||||||
Branched chain volatile fatty acids | −80 °C | 3.69 | 3.67 | 3.68 | 3.40 | 3.22 | 3.08 | 2.91 | <0.001 | 0.949 | 0.177 | |
−20 °C | 3.69 | 3.68 | 3.70 | 3.78 | 3.12 | 3.10 | 2.94 | 0.546 | ||||
Average | 3.69 | 3.68 | 3.69 | 3.59 | 3.17 | 3.09 | 2.92 | |||||
P1* | 0.669 | 0.943 | 0.161 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Qu, M.; Ouyang, K.; Qiu, Q. Effects of Storage Time and Temperature on the Fermentation Characteristics of Rumen Fluid from a High-Forage Diet. Agriculture 2024, 14, 1481. https://doi.org/10.3390/agriculture14091481
Fu C, Qu M, Ouyang K, Qiu Q. Effects of Storage Time and Temperature on the Fermentation Characteristics of Rumen Fluid from a High-Forage Diet. Agriculture. 2024; 14(9):1481. https://doi.org/10.3390/agriculture14091481
Chicago/Turabian StyleFu, Chuanpei, Mingren Qu, Kehui Ouyang, and Qinghua Qiu. 2024. "Effects of Storage Time and Temperature on the Fermentation Characteristics of Rumen Fluid from a High-Forage Diet" Agriculture 14, no. 9: 1481. https://doi.org/10.3390/agriculture14091481
APA StyleFu, C., Qu, M., Ouyang, K., & Qiu, Q. (2024). Effects of Storage Time and Temperature on the Fermentation Characteristics of Rumen Fluid from a High-Forage Diet. Agriculture, 14(9), 1481. https://doi.org/10.3390/agriculture14091481