Comparative Analyses of Green Plantlet Regeneration in Barley (Hordeum vulgare L.) Anther Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of In Vitro Anther Cultures
2.3. Plant Regeneration and Acclimatization of Anther Culture-Derived Green Plants
2.4. Ploidy-Level Analyses of Anther Culture-Derived Green Plantlets
2.5. Statistical Analyses
3. Results
3.1. Androgenesis Induction in Anther Culture of Barley F1 Combinations
3.2. Production of Anther Culture-Derived ELSs for Plant Regeneration Experiments
3.3. Plant Regeneration of Anther Culture-Derived ELSs
3.4. Rooting of Anther Culture-Derived Green Plantlets
3.5. Application of Anther Culture with Eight F1 Cross-combinations
3.6. Determination of Ploidy Level of Anther Culture-Derived Plantlets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef] [PubMed]
- Germana, M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011, 30, 839–857. [Google Scholar] [CrossRef]
- Hensel, G.; Oleszczuk, S.; Daghma, D.E.S.; Zimny, J.; Melzer, M.; Kumlehn, J. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (X Triticosecale Wittmack). BMC Plant Biol. 2012, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Lantos, C.; Purgel, S.; Ács, K.; Langó, B.; Bóna, L.; Boda, K.; Békés, F.; Pauk, J. Utilization of in vitro anther culture in spelt wheat breeding. Plants 2019, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Lantos, C.; Jenes, B.; Bóna, L.; Cserháti, M.; Pauk, J. High frequency of doubled haploid plant production in spelt wheat. Acta Biol. Crac. Ser. Bot. 2016, 58, 107–112. [Google Scholar] [CrossRef]
- Cistué, L.; Echávarri, B. Barley isolated microspore culture. In Doubled Haploid Technology; Methods in Molecular Biology; Segui-Simarro, J., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 187–197. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M.; Moreno, J.B.; Fernández, M.G.; Mir, R. Species with haploid or doubled haploid protocols. In Doubled Haploid Technology; Methods in Molecular Biology; Segui-Simarro, J., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 41–103. [Google Scholar] [CrossRef]
- Weyen, J. Application of doubled haploids in plant breeding and applied research. In Doubled Haploid Technology; Methods in Molecular Biology; Segui-Simarro, J., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 23–39. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Britt, A.B.; Tripathi, L.; Sharma, S.; Upadhyaya, H.D.; Ortiz, R. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. 2015, 33, 812–829. [Google Scholar] [CrossRef]
- Castillo, A.M.; Cistué, L.; Vallés, M.P.; Sanz, J.M.; Romagosa, I.; Molina-Cano, J.L. Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep. 2001, 20, 105–111. [Google Scholar] [CrossRef]
- Vagera, J.; Novotny, J.; Ohnutková, L. Induced androgenesis in vitro in mutated populations of barley, Hordeum vulgare. Plant Cell Tissue Organ Cult. 2004, 77, 55–61. [Google Scholar] [CrossRef]
- Otto, I.; Müller, A.; Kumlehn, J. Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures. Methods Mol. Biol. 2015, 1223, 85–99. [Google Scholar] [CrossRef]
- Chen, Z.W.; Jiang, Q.; Guo, G.M.; Shen, Q.F.; Yang, J.; Wang, E.T.; Zhang, G.P.; Lu, R.J.; Liu, C.H. Rapid generation of barley Homozygous Transgenic Lines based on microspore culture: HvPR1 overexpression as an example. Int. J. Mol. Sci. 2023, 24, 4945. [Google Scholar] [CrossRef]
- Han, Y.; Broughton, S.; Liu, L.; Zhang, X.Q.; Zeng, J.B.; He, X.Y.; Li, C.D. Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Commun. 2021, 2, 100082. [Google Scholar] [CrossRef] [PubMed]
- Hoffie, R.E.; Otto, I.; Hisano, H.; Kumlehn, J. Site-directed mutagenesis in barley using RNA-guided Cas endonucleases during microspore-derived generation of doubled haploids. In Doubled Haploid Technology; Methods in Molecular Biology; Segui-Simarro, J., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 199–214. [Google Scholar] [CrossRef]
- Huang, B.; Sunderland, N. Temperature stress pretreatment in barley anther culture. Ann. Bot. 1982, 49, 77–88. [Google Scholar] [CrossRef]
- Robers-Oehlschlager, S.L.; Dunwell, J.M. Barley anther culture: Pretreatment on mannitol stimulates production of microspore-derived embryos. Plant Cell Tissue Organ Cult. 1990, 20, 235–240. [Google Scholar] [CrossRef]
- Cistué, L.; Ramos, A.; Castillo, A.M.; Romagosa, I. Production of large number of doubled haploid plants from barley anthers pretreated with high concentration of mannitol. Plant Cell Rep. 1994, 13, 709–712. [Google Scholar] [CrossRef]
- Cistué, L.; Vallés, M.P.; Echávarri, B.; Sanz, J.; Castillo, A. Barley anther culture. In Doubled Haploid Production in Crop Plants; A Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 29–34. [Google Scholar] [CrossRef]
- Castillo, A.M.; Nielsen, N.H.; Jensen, A.; Vallés, M.P. Effects on n-butanol on barley microspore embryogenesis. Plant Cell Tissue Organ Cult. 2014, 117, 411–418. [Google Scholar] [CrossRef]
- Kao, K.N. Plant formation from barley anther cultures with Ficoll media. Z. Pflanzenphysiol. 1981, 103, 437–443. [Google Scholar] [CrossRef]
- Hunter, C.P. Plant regeneration from microspores of barley, Hordeum vulgare. Ph.D. Thesis, Wye College, University of London, London, UK, 1988. [Google Scholar]
- Devaux, P.; Kasha, K.J. Overview of barley doubled haploid production. In Advances in Haploid Production in Higher Plants; Springer: New York, NY, USA, 2009; pp. 47–63. [Google Scholar]
- Kuhlman, U.; Foroughy-Wehr, B. Production of doubled haploid lines in frequencies sufficient for barley breeding programmes. Plant Cell Rep. 1989, 8, 78–81. [Google Scholar] [CrossRef]
- Makowska, K.; Kaluzniak, M.; Oleszczuk, S.; Zimny, J.; Czaplicki, A.; Koniecznyy, R. Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Cult. 2017, 131, 247–257. [Google Scholar] [CrossRef]
- Klajmon, A.; Makowska, K.; Zimny, J.; Oleszczuk, S.; Libik-Konieczny, M.; Sebela, M.; Gasparíková, I.; Baba, W.; Konieczny, R. Gum Arabic influences the activity of antioxidant enzymes during androgenesis in barley anthers. Plant Cell Tissue Organ Cult. 2023, 153, 145–157. [Google Scholar] [CrossRef]
- Ohnoutkova, L.; Vlcko, T.; Ayalew, M. Barley Anther Culture. In Barley; Methods in Molecular Biology; Harwood, W., Ed.; Humana Press: New York, NY, USA, 2019; Volume 1900, pp. 37–52. [Google Scholar] [CrossRef]
- Ohnoutkova, L.; Vlcko, T. Homozygous transgenic barley (Hordeum vulgare L.) plants by anther culture. Plants 2020, 9, 918. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Zebrowski, J.; Orlowska, R. Exploring the Biochemical origin of DNA sequence variation in barley plants regenerated via in vitro anther culture. Int. J. Mol. Sci. 2020, 21, 5770. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.L.; Gao, G.Q.; Jiang, C.C.; Guo, G.M.; He, Q.; Zong, Y.J.; Liu, C.H.; Yang, P. Generating homozygous mutant populations of barley microspores by ethyl methanesulfonate treatment. aBIOTECH 2023, 4, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, P.T.; Orlowska, R. Time of in vitro anther culture may moderate action of copper and silver ions that affect the relationship between DNA methylation change and the yield of barley green regenerants. Plants 2020, 9, 1064. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, P.T.; Orlowska, R. CG demethylation leads to sequence mutations in an anther culture of barley due to the presence of Cu, Ag ions in the medium and culture time. Int. J. Mol. Sci. 2020, 21, 4401. [Google Scholar] [CrossRef] [PubMed]
- Makowska, K.; Oleszczuk, S.; Zimny, A.; Czaplicki, A.; Zimny, J. Androgenic capability among genotypes of winter and spring barley. Plant Breed. 2015, 134, 668–674. [Google Scholar] [CrossRef]
- Kumlehn, J.; Serazetdinova, L.; Hensel, G.; Becker, D.; Loerz, H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 2006, 4, 251–261. [Google Scholar] [CrossRef]
- Chu, C.C.; Wang, C.C.; Sun, C.S.; Hsu, C.; Yin, K.C.; Chu, C.Y.; Bi, F.Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 1975, 18, 659–668. [Google Scholar]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef]
- Hayes, P.; Carrijo, D.R.; Filichkin, T.; Fisk, S.; Helgerson, L.; Hernandez, J.; Meints, B.; Sorrells, M.E. Registration of ’Lightning’ barley. J. Plant Regist. 2021, 15, 407–414. [Google Scholar] [CrossRef]
- Zur, I.; Adamus, A.; Cegielska-Taras, T.; Cichorz, S.; Dubas, E.; Gajecka, M.; Juzon-Sikora, K.; Kielkowska, A.; Malicka, M.; Oleszczuk, S.; et al. Doubled Haploids: Contributions of Poland’s Academies in Recognizing the Mechanism of Gametophyte Cell Reprogramming and Their Utilization in Breeding of Agricultural and Vegetable Crops. Acta Soc. Bot. Pol. 2022, 91, 9128. [Google Scholar] [CrossRef]
- Massman, C.; Hernandez, J.; Clare, S.J.; Brooke, M.; Filichkin, T.; Fisk, S.; Helgerson, L.; Matny, O.N.; del Blanco, I.A.; Rouse, M.N.; et al. Registration of “Woodies” multi-rust-resistant barley germplasm. J. Plant Regist. 2024, 18, 393–401. [Google Scholar] [CrossRef]
- Morrissy, C.P.; Filichkin, T.; Fisk, S.; Helgerson, L.; Davenport, C.; Silberstein, R.; Culp, D.; Hayes, P.M. Registration of ’Lontra’ malting barley: A two-row, winter habit cultivar of interest tot he craft malting and brewing industries. J. Plant Regist. 2024, 18, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Devaux, P. Isolated microspore culture overperforms anther culture for green plant regeneration in barley (Hordeum vulgare L.). Acta Physiol. Plant. 2005, 27, 611–619. [Google Scholar] [CrossRef]
- Monostori, T.; Lantos, C.; Mihály, R.; Pauk, J. Induction of embryogenesis without exogenous hormone-supplement in barley microspore culture. Cereal Res. Commun. 2003, 31, 297–300. [Google Scholar] [CrossRef]
- Makowska, K.; Oleszczuk, S. Albinism in barley androgenesis. Plant Cell Rep. 2014, 33, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Gajecka, M.; Marzec, M.; Chmielewska, B.; Jelonek, J.; Zbieszczyk, J.; Szarejko, I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC Plant Biol. 2021, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Echávarri, B.; Cistué, L. Enhancement in androgenesis efficiency in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) by the addition of dimethyl sulfoxide to the mannitol pretreatment medium. Plant Cell Tissue Organ Cult. 2016, 125, 11–22. [Google Scholar] [CrossRef]
- Makowska, K.; Oleszczuk, S.; Zimny, J. The effect of copper on plant regeneration in barley microspore culture. Czech J. Genet. Plant Breed. 2017, 53, 17–22. [Google Scholar] [CrossRef]
- Orłowska, R.; Pachota, K.A.; Machczy’nska, J.; Niedziela, A.; Makowska, K.; Zimny, J.; Bednarek, P.T. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron. J. Biotechnol. 2020, 43, 8–15. [Google Scholar] [CrossRef]
- Cistué, L.; Ramos, A.; Castillo, A.M. Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tissue Organ Cult. 1999, 55, 159–166. [Google Scholar] [CrossRef]
- Marchand, S.; Fonquerne, G.; Clermont, I.; Laroche, L.; Huynh, T.T.; Belzile, F.J. Androgenic response of barley accessions and F1s with Fusarium head blight resistance. Plant Cell Rep. 2008, 27, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Zur, I.; Gajecka, M.; Dubas, E.; Krzewska, M.; Szarejko, I. Albino plant formation in androgenic cultures: An old problem and new facts. In Doubled Haploid Technology; Methods in Molecular Biology; Segui-Simarro, J., Ed.; Humana: New York, NY, USA, 2021; Volume 2287, pp. 3–23. [Google Scholar] [CrossRef]
- Davies, P.A. Barley isolated microspore culture (IMC) method. In Doubled Haploid Production in Crop Plants; A Manual; Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 29–34. [Google Scholar] [CrossRef]
- Orlowska, R.; Bednarek, P.T. Precise evaluation of tissue culture-induced variation during optimisation of in vitro regeneration regime in barley. Plant Mol. Biol. 2020, 103, 33–50. [Google Scholar] [CrossRef] [PubMed]
Genotype | ‘SU Ellen×GKH-88-19’ | ‘GKH-88-19×GKH-39-18’ | ‘Leopard×GK Judy’ | ‘GK Stramm×Leopard’ | Mean of Genotypes |
---|---|---|---|---|---|
Mean of ELSs/100 anthers | 317.00 b | 435.50 a | 221.71c | 325.00 b | 324.80 |
df | MS of Green Plantlets/100 Anthers | MS of Albinos/100 Anthers | MS of Total Plantlets/100 Anthers | |
---|---|---|---|---|
Regeneration Media | 1 | 5632.145 * | 1453.062 ** | 12,806.690 ** |
Genotype | 3 | 31,738.660 *** | 3007.715 *** | 49,421.820 *** |
Interaction | 3 | 117.447 ns | 435.030 ns | 1003.139 ns |
Error | 56 | 930.846 | 169.334 | 1555.050 |
Genotype | Number of Regenerated Plantlets/100 Anthers | ||
---|---|---|---|
Plant Regeneration Media | |||
FHGR | K4NB | Mean of Media (CV) | |
‘SU Ellen×GKH-88-19’ (6-row) | 143.5 b A | 164.83 a A | 154.17 (9.78) |
‘GKH-88-19×GKH-39-18’ (6-row) | 99.5 b B | 138.67 a A | 119.08 (23.26) |
‘Leopard×GK Judy’ (2-row) | 26.86 a C | 36.19 a C | 31.52 (20.94) |
‘GK Stramm×Leopard’ (2-row) | 38.5 b C | 81.83 a B | 60.17 (50.93) |
Mean of Genotypes | 77.09 | 105.38 | 91.24 (21.93) |
Number of Albinos/100 Anthers | |||
Plant Regeneration Media | |||
FHGR | K4NB | Mean of Media (CV) | |
‘SU Ellen×GKH-88-19’ (6-row) | 30.00 a A | 35.17 a B | 32.58 (11.21) |
‘GKH-88-19×GKH-39-18’ (6-row) | 34.00 b A | 50.33 a A | 42.17 (27.39) |
‘Leopard×GK Judy’ (2-row) | 14.29 a B | 11.24 a D | 12.76 (16.89) |
‘GK Stramm×Leopard’ (2-row) | 7.00 b B | 26.67 a C | 16.83 (82.61) |
Mean of Genotypes | 21.32 | 30.85 | 26.09 (25.83) |
Number of Green Plantlets/100 Anthers | |||
Plant Regeneration Media | |||
FHGR | K4NB | Mean of Media (CV) | |
‘SU Ellen×GKH-88-19’ (6-row) | 113.50 b A | 129.67 a A | 121.58 (9.4) |
‘GKH-88-19×GKH-39-18’ (6-row) | 65.50 b B | 88.33 a B | 76.92 (20.99) |
‘Leopard×GK Judy’ (2-row) | 12.57 a C | 24.95 a D | 18.76 (46.66) |
‘GK Stramm×Leopard’ (2-row) | 31.50 b C | 55.17 a C | 43.33 (38.62) |
Mean of Genotypes | 55.77 | 74.53 | 65.15 (20.36) |
df | MS of Rooted Plantlets | MS of Acclimatized Plantlets | |
---|---|---|---|
Genotype | 3 | 8597.083 * | 90.816 ** |
Media | 3 | 44,734.420 *** | 187.982 *** |
Error | 9 | 1341.250 | 10.583 |
Genotype | Number of Rooted Plantlets | ||||
---|---|---|---|---|---|
Plant Reg. (FHGR or K4NB) and Rooting Media (MSr, N6I or ½N6I + Ca) | |||||
FHGR, MSr | K4NB, N6I | K4NB, ½N6I + Ca | K4NB, MSr | Mean of Media (CV) | |
‘SU Ellen×GKH-88-19’ (6-row) | 130 b A | 285 a A | 309 a A | 341 a A | 266.25 (49.09) |
‘GKH-88-19×GKH-39-18’ (6-row) | 102 b A | 214 a B | 35 c B | 75 bc B | 172.75 (46.32) |
‘Leopard×GK Judy’ (2-row) | 11 a B | 35 a C | 29 a B | 53 a B | 32.00 (58.52) |
‘GK Stramm×Leopard’ (2-row) | 27 b B | 75 ab C | 66 ab B | 110 a B | 69.50 (55.78) |
Mean of Genotypes | 54.2 | 122.2 | 119.0 | 139.0 | 108.6 |
Number of Acclimatized Plantlets | |||||
Plant Reg. (FHGR or K4NB) and Rooting Media (MSr, N6I or ½N6I + Ca) | |||||
FHGR, MSr | K4NB, N6I | K4NB, ½N6I + Ca | K4NB, MSr | Mean of Media | |
‘SU Ellen×GKH-88-19’ (6-row) | 11 c A | 72 b A | 186 a A | 183 a A | 113.00 (71.84) |
‘GKH-88-19×GKH-39-18’ (6-row) | 1 b A | 60 ab AB | 85 a B | 70 a B | 54.00 (66.73) |
‘Leopard×GK Judy’ (2-row) | 1 a A | 3 a B | 11 a C | 14 a B | 7.25 (78.16) |
‘GK Stramm×Leopard’ (2-row) | 0 a A | 7 a B | 16 a C | 48 a B | 17.75 (101.14) |
Mean of Genotypes | 2.8 | 28.8 | 60.2 | 63.80 | 38.90 |
Percentage of Acclimatization (%) | |||||
Plant Reg. (FHGR or K4NB) and Rooting Media (MSr, N6I or ½N6I + Ca) | |||||
FHGR, MSr | K4NB, N6I | K4NB, ½N6I + Ca | K4NB, MSr | Mean of Media | |
‘SU Ellen×GKH-88-19’ (6-row) | 8.50 c A | 25.30 b A | 60.20 a A | 53.70 a A | 36.9 (65.3) |
‘GKH-88-19×GKH-39-18’ (6-row) | 1.00 c A | 28.00 b A | 45.20 a B | 37.40 ab B | 27.9 (67.3) |
‘Leopard×GK Judy’ (2-row) | 9.10 b A | 8.60 b B | 37.90 a BC | 26.40 a B | 20.5 (67.64) |
‘GK Stramm×Leopard’ (2-row) | 0.00 c A | 9.30 c B | 24.20 b C | 43.60 a AB | 19.3 (86.66) |
Mean of Genotypes | 3.91 | 14.64 | 34.12 | 33.03 | 21.42 (59.44) |
Genotype | Number of Green plantlets/100 Anthers | Number of Albinos/100 Anthers | Total Transplanted Plantlets | Total Acclimatized Plantlets | Percentage of Acclimatization |
---|---|---|---|---|---|
‘GK Árpád×Quadriga’ | 89.38 | 15.38 | 432 | 358 | 82.9% |
‘GKH-36-20×GKH-88-19’ | 56.33 | 13.75 | 391 | 290 | 74.2% |
‘SU Ellen×GKH-88-19’ | 129.67 | 35.17 | 341 | 183 | 53.7% |
‘GKH-88-19×GKH-39-18’ | 88.33 | 50.33 | 187 | 70 | 37.4% |
‘GW3801×GKH-36-20’ | 28.13 | 17.38 | 195 | 146 | 74.9% |
‘Leopard×GK Judy’ | 24.95 | 11.24 | 53 | 14 | 26.4% |
‘Monroe×Leopard’ | 63.50 | 25.63 | 560 | 294 | 52.5% |
‘GK Stramm×Leopard’ | 55.17 | 26.67 | 110 | 48 | 43.6% |
Summa (Mean) | (66.93) | (24.44) | 2269 (283.625) | 1403 (175.375) | 61.83% |
Genotype | Haploid (n) | DH (2n) | Tetraploid (4n) | Number of Tested Acclimatized Plantlets |
---|---|---|---|---|
‘SU Ellen×GKH-88-19’ | 12 (23.08%) | 36 (69.23%) | 4 (7.69%) | 52 |
‘GKH-88-19×GKH-39-18’ | 13 (22.03%) | 41 (69.49%) | 5 (8.47%) | 59 |
Total Number (Percentage) of Plantlets with Different Ploidy Levels | 25 (22.52%) | 77 (69.37%) | 9 (8.11%) | 111 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lantos, C.; Markó, F.; Mihály, R.; Pauk, J. Comparative Analyses of Green Plantlet Regeneration in Barley (Hordeum vulgare L.) Anther Culture. Agriculture 2024, 14, 1440. https://doi.org/10.3390/agriculture14091440
Lantos C, Markó F, Mihály R, Pauk J. Comparative Analyses of Green Plantlet Regeneration in Barley (Hordeum vulgare L.) Anther Culture. Agriculture. 2024; 14(9):1440. https://doi.org/10.3390/agriculture14091440
Chicago/Turabian StyleLantos, Csaba, Ferenc Markó, Róbert Mihály, and János Pauk. 2024. "Comparative Analyses of Green Plantlet Regeneration in Barley (Hordeum vulgare L.) Anther Culture" Agriculture 14, no. 9: 1440. https://doi.org/10.3390/agriculture14091440
APA StyleLantos, C., Markó, F., Mihály, R., & Pauk, J. (2024). Comparative Analyses of Green Plantlet Regeneration in Barley (Hordeum vulgare L.) Anther Culture. Agriculture, 14(9), 1440. https://doi.org/10.3390/agriculture14091440