A Comparative Water Footprint Analysis of Conventional versus Organic Citrus Production: A Case Study in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.1.1. Fields and Assessment Scope
2.1.2. Fertigation, Pest Control, and Harvesting
2.2. Components of Water Footprint Calculation
2.2.1. Direct Green Water Footprint
2.2.2. Direct Blue Water Footprint
2.2.3. Direct Grey Water Footprint
2.2.4. Secondary Water Footprint of Electricity and Fossil Fuel Consumption
2.3. Crop Irrigation and Water Scarcity Footprint
3. Results and Discussion
3.1. Organic and Conventional Water Footprint
3.2. Citrus Water Footprint in the Segura Basin vs. Other Studies
3.3. Future Management Perspectives on Water Footprint Scarcity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. The water footprint of the Spanish agricultural sector: 1860–2010. Ecol. Econ. 2014, 108, 200–207. [Google Scholar] [CrossRef]
- Borsato, E.; Rosa, L.; Marianello, F.; Tarolli, P.; D’Odorico, P. Weak and Strong Sustainability of Irrigation: A Framework for Irrigation Practices Under Limited Water Availability. Fron. Sustain. Food Syst. 2020, 4, 17. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean. Water. 2019, 2, 15. [Google Scholar] [CrossRef]
- Soto-García, M.; Martínez-Alvarez, V.; García-Bastida, P.A.; Alcon, F.; Martin-Gorriz, B. Effect of water scarcity on the performance of irrigation districts in south-eastern Spain. Agric. Water Manag. 2013, 124, 11–19. [Google Scholar] [CrossRef]
- Machin-Ferrero, L.M.; Araujo, P.Z.; Valdeón, D.H.; Nishihara Hun, A.L.; Mele, F.D. Water footprint of lemon production in Argentina. Sci. Total Environ. 2022, 816, 151614. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.; Belal, A.A.; Abd-Elmabod, S.K. Smart farming for improving agricultural management. Egypt J. Remote Sens. Space. Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; Imbernón-Mulero, A.; Gallego-Elvira, B.; Soto-García, M.; Maestre-Valero, J.F. Multidisciplinary assessment of the agricultural supply of desalinated seawater in south-eastern Spain. Desalination 2023, 548, 116252. [Google Scholar] [CrossRef]
- Jefferies, D.; Muñoz, I.; Hodges, J.; King, V.J.; Aldaya, M.; Ercin, A.E.; i Canals, L.M.; Hoekstra, A.Y. Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J Clean. Prod. 2012, 33, 155–166. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Hong, Y. Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta. Egypt Agric. Water Manag. 2020, 235, 106080. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade, Value of Water Research Report Series, No. 12, UNESCO-IHE, Delft, The Netherlands. Available online: www.waterfootprint.org/Reports/Report12.pdf (accessed on 17 January 2024).
- Hoekstra, A.Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 2016, 66, 564–573. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Gerbens-Leenes, W.; van der Meer, T.H. Reply to Pfister and Hellweg: Water footprint accounting, impact assessment, and life-cycle assessment. Proc. Natl. Acad. Sci. USA 2009, 106, E114. [Google Scholar] [CrossRef] [PubMed]
- Pfister, S.; Boulay, A.M.; Berger, M.; Hadjikakou, M.; Motoshita, M.; Hess, T.; Ridoutt, B.; Weinzettel, J.; Scherer, L.; Döll, P.; et al. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”. Ecol. Indic. 2017, 72, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y. Assessing water footprint at river basin level: A case study for the Heihe River Basin in Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2771–2781. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Garrido, A.; Llamas, R. Water Footprint and Virtual Water Trade: The Birth and Growth of a New Research Field in Spain. Water 2020, 12, 2641. [Google Scholar] [CrossRef]
- De Miguel, Á.; Kallache, M.; García-Calvo, E. The Water Footprint of Agriculture in Duero River Basin. Sustainability 2015, 7, 6759–6780. [Google Scholar] [CrossRef]
- Munro, S.A.; Fraser, G.C.G.; Snowball, J.D.; Pahlow, M. Water footprint assessment of citrus production in South Africa: A case study of the Lower Sundays River Valley. J. Clean. Prod. 2016, 135, 668–678. [Google Scholar] [CrossRef]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Sáez, K.; de la Barrera, F.; Arumí, J.L. Understanding agricultural water footprint variability to improve water management in Chile. Sci. Total Environ. 2019, 670, 188–199. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Quinteiro, P.; Vázquez-Rowe, I.; Rafael, S.; Arroja, L.; Moreira, M.; Feijoo, G.; Dias, A. Assessing water footprint in a wine appellation: A case study for Ribeiro in Galicia, Spain. J. Clean. Prod. 2018, 172, 2097–2107. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Kuboń, M. Assessing the impact of water use in conventional and organic carrot production in Poland. Sci. Rep. 2022, 12, 3522. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, E.; Andrade, E.P.; Bonmatí, A.; Antón, A. Critical analysis of life cycle inventory datasets for organic crop production systems. Int. J. Life Cycle Assess. 2022, 27, 543–563. [Google Scholar] [CrossRef]
- Joy, M.K.; Rankin, D.A.; Wöhler, L.; Boyce, P.; Canning, A.; Foote, K.J.; McNie, P.M. The grey water footprint of milk due to nitrate leaching from dairy farms in Canterbury, New Zealand. Australasian J. Environ. Manag. 2022, 29, 177–199. [Google Scholar] [CrossRef]
- Feng, B.; Zhuo, L.; Zie, D.; Mao, Y.; Gao, J.; Xie, P.; Wu, P. A quantitative review of water footprint accounting and simulation for crop production based on publications during 2002–2018. Ecol. Indic. 2020, 120, 106962. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA): Informe de Indicadores, Agricultura Pesca y Alimentación. 2021. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/iai2021_version_final_web_tcm30-626537.pdf (accessed on 2 October 2023).
- Central Union of Irrigators of the Tagus-Segura Water Transfer. ING Economic Impact of Tajo-Segura Aqueduct; SCRATS: Murcia, Spain, 2021. [Google Scholar]
- Alcon, F.; García-Bastida, P.A.; Soto-García, M.; Martínez-Alvarez, V.; Martin-Gorriz, B.; Baille, A. Explaining the performance of irrigation communities in a water-scarce region. Irrig. Sci. 2017, 35, 193–203. [Google Scholar] [CrossRef]
- Spanish River Basin Management Plans (2022–2027) Spanish Ministry for the Ecological Transition and the Demographic Challenge. Available online: https://www.miteco.gob.es/ca/agua/temas/planificacion-hidrologica/planificacion-hidrologica/planes-cuenca/default.aspx (accessed on 19 January 2024).
- CHS. Hydrological Plan for the Demarcation of Segura River Basin 2022/2027: Murcia, Spain. 2021. Available online: https://www.chsegura.es/en/cuenca/planificacion/planificacion-2022-2027/el-proceso-de-elaboracion/ (accessed on 19 January 2024).
- Cerutti, A.K.; Beccaro, G.L.; Bruun, S.; Bosco, S.; Donno, D.; Notarnicola, B.; Bounous, G. Life cycle assessment application in the fruit sector: State of the art and recommendations for environmental declarations of fruit products. J. Clean. Prod. 2014, 73, 125–135. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef]
- Franke, N.A.; Boyacioglu, H.; Hoekstra, A.Y. GreyWater Footprint Accounting: Tier 1 Supporting Guidelines. Value of Water Research Report Series No 65 UNESCO-IHE, Delft, The Netherlands. Available online: https://waterfootprint.org/media/downloads/Report65-GreyWaterFootprint-Guidelines_1.pdf (accessed on 21 March 2024).
- Gerbens-Leenes, T.; Berger, M.; Allan, J.A. Water Footprint and Life Cycle Assessment: The Complementary Strengths of Analyzing Global Freshwater Appropriation and Resulting Local Impacts. Water 2021, 13, 803. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van-Der-Meer, T.H. The Water Footprint of Bio-Energy: Global Water Use for Bio-Ethanol, Bio-Diesel, Heat and Electricity; Value of Water Research Report Series No. 29; UNESCO-IHE: Delft, The Netherlands, 2008. [Google Scholar]
- Pannunzio, A.; Holzapfel, E.A.; Texeira-Soria, P. Water footprint and energy used per kg by drip irrigation systems and sprinkler systems for frost protection in a blueberry crop in Concordia, Entre Ríos, Argentina. Acta Hortic. 2023, 1357, 305–312. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life. Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- WULCA. 2021. Available online: http://wulca-waterlca.org/aware/ (accessed on 22 June 2023).
- Mao, L.; Zhang, L.; Li, W.; van der Werf, W.; Sun, J.; Spiertz, H.; Li, L. Yield advantage and water saving in maize/pea intercrop. Field Crop Res. 2012, 138, 11–20. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef]
- Berríos, P.; Temnani, A.; Zapata-García, S.; Sánchez-Navarro, V.; Zornoza, R.; Pérez-Pastor, A. Effect of deficit irrigation and mulching on the agronomic and physiological response of mandarin trees as strategies to cope with water scarcity in a semi-arid climate. Sci. Horti. 2024, 324, 112572. [Google Scholar] [CrossRef]
- Pump System Optimization: A Guide for Improved Energy Efficiency, Reliability and Profitability. Hydraulic Institute 9781935762744. 2018. Available online: https://www.pumps.org/ (accessed on 12 April 2024).
- Ben Abdallah, S.; Gallego-Elvira, B.; Imbernón-Mulero, A.; Martínez-Alvarez, V.; Maestre-Valero, J. Environmental footprint of organic and conventional grapefruit production irrigated with desalinated seawater in Spain. Sust. Prod. Consum. 2023, 39, 326–335. [Google Scholar] [CrossRef]
- Pradeleix, L.; Roux, P.; Bouarfa, S.; Bellon-Maurel, V. Multilevel life cycle assessment to evaluate prospective agricultural development scenarios in a semi-arid irrigated region of Tunisia. Agric. Syst. 2023, 212, 103766. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Zabala, J.A.; Sánchez-Navarro, V.; Gallego-Elvira, B.; Martínez-García, V.; Alcon, F.; Maestre-Valero, J.F. Intercropping Practices in Mediterranean Mandarin Orchards from an Environmental and Economic Perspective. Agriculture 2022, 12, 574. [Google Scholar] [CrossRef]
- Ball, K.R.; Baldock, J.A.; Penfold, C.; Power, S.A.; Woodin, S.J.; Smith, P.; Pendall, E. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma 2020, 379, 114619. [Google Scholar] [CrossRef]
- Saitta, D.; Consoli, S.; Ferlito, F.; Torrisi, B.; Allegra, M.; Longo-Minnolo, G.; Ramírez-Cuesta, J.M.; Vanella, D. Adaptation of citrus orchards to deficit irrigation strategies. Agric. Water Manag. 2021, 247, 106734. [Google Scholar] [CrossRef]
- Gasque, M.; Martí, P.; Granero, B.; González-Altozano, P. Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees. Agric. Water Manag. 2016, 169, 140–147. [Google Scholar] [CrossRef]
- Mossad, A.; Farina, V.; Lo Bianco, R. Fruit yield and quality of ‘Valencia’ orange trees under long-term partial rootzone drying. Agronomy 2020, 10, 164. [Google Scholar] [CrossRef]
- Sgroi, F.; Candela, M.; Trapani, A.M.D.; Foderà, M.; Squatrito, R.; Testa, R.; Tudisca, S. Economic and Financial Comparison between Organic and Conventional Farming in Sicilian Lemon Orchards. Sustainability 2015, 7, 947–961. [Google Scholar] [CrossRef]
- Domínguez-Gento, A.; Di Giorgi, R.; García-Martínez, M.D.; Raigón, M.D. Effects of Organic and Conventional Cultivation on Composition and Characterization of Two Citrus Varieties ‘Navelina’ Orange and ‘Clemenules’ Mandarin Fruits in a Long-Term Study. Horticulturae 2023, 9, 721. [Google Scholar] [CrossRef]
- Vozhehova, R.A.; Lavrynenko, Y.O.; Kokovikhin, S.V.; Lykhovyd, P.V.; Biliaieva, I.M.; Drobitko, A.V.; Nesterchuk, V.V. Assessment of the CROPWAT 8.0 software reliability for evapotranspiration and crop water requirements calculations. J. Water Land. Develop. 2018, 39, 147–152. [Google Scholar] [CrossRef]
- Aldaya, M.M.; García-Novo, F.; Ramón-Llamas, M. Incorporating the water footprint and environmental water requirements into policy: Reflections from the Doñana Region (Spain). Sust. Prod. Consum. 2010, 35, 193–203. [Google Scholar]
- Bazrafshan, O.; Zamani, H.; Etedali, H.R.; Dehghanpir, S. Assessment of citrus water footprint components and impact of climatic and non-climatic factors on them. Sci. Horti. 2019, 250, 344–351. [Google Scholar] [CrossRef]
Attribute | Conventional | Organic | ||
---|---|---|---|---|
Field | A | B | C | D |
Crop | Lemon | Orange | Lemon | Orange |
Variety | Verna | Lane Late | Verna | Lane Late |
Surface (ha) | 16.36 | 5.76 | 18.61 | 7.20 |
Tree spacing (m × m) | 6 × 3 | 6 × 4 | 6 × 3 | 6 × 4 |
Tree age (years) | 5 | 12 | 5 | 12 |
Fertilization | Fertigation | Fertigation | Fertigation | Fertigation |
Disease control | Conventional and organic pesticides | Conventional and organic pesticides | Bio protection products | Bio protection products |
Weed control | Chemical and mechanical | Chemical and mechanical | Mechanical | Mechanical |
Harvesting | Manual | Manual | Manual | Manual |
Pruning | Manual and mechanical | Manual and mechanical | Manual and mechanical | Manual and mechanical |
Commercial yield (tonne ha−1 year−1) * | 25.07 | 40.59 | 27.87 | 34.08 |
Nearest meterological station | Almoradí, Alicante | Almoradí, Alicante | Pilar de la Horadada, Alicante | LO-11, Lorca, Murcia |
Public access | http://riegos.ivia.es/listado-de-estaciones/almoradi (accessed on 7 February 2024) | http://riegos.ivia.es/listado-de-estaciones/pilar-de-la-horadada (accessed on 7 February 2024) | http://siam.imida.es/apex/f?p=101:1:458639124210467 (accessed on 7 February 2024) |
UF (t) | Field A | Field B | Field C | Field D |
---|---|---|---|---|
N | 1.73 | 1.50 | 0.71 | 0.30 |
P | 0.13 | 0.10 | 0.05 | 0.02 |
K | 1.34 | 1.59 | 0.47 | 0.17 |
Ca | 0.26 | 0.29 | – | – |
Fertilizer | ||||
Conventional | Organic | |||
Commercial name (N–P–K–Ca) | Manure (2–0–0–0) | Ammonium nitrate (34.5–0–0–0) | Ecomed Brio K (0–0–20.8–0) | Agrimartin Biologico Fe (2–0–5–0) |
Acifort (15–0–0–0) | Monoammonium phosphate (12–26.6–0–0) | Ecomed Actiphos (7–0.9–3.3–0) | GepaBi PeptiBio (8–0–0–0) | |
Nutri Liquid (4–1.3–8.3–1.4) | Potassium nitrate (13–0–38.2–0) | Solublack H-87 (0.12–0.4–6.6–0) | RizoBioN Plenus (9–4.8–9.1–0) | |
Ammonium nitrate (34.5–0–0–0) | Potash (0–0–49.8–0) | RomBiogan (2.4–0–4–0) | RizoBioLiq Kyayum Plus (0–0–12.5–0) | |
Nova MAP (12–26.6–0–0) | Calcium nitrate (14.5–0–0–19.3) | |||
Nova Calcium (15.5–0–0–18.9) | ||||
Nova N–P (13–0–38.2–0) | ||||
Potassium nitrate (13–0–38.2–0) |
Source | Proportion (%) | Equivalence Factor (m3 GJ−1) * | Derived Equivalence Factor (m3 GJ−1) |
---|---|---|---|
Renewable | 43.6 | 22.300 | 9.723 |
Cogeneration | 11.0 | 1.058 | 0.116 |
Coal | 2.0 | 0.164 | 0.003 |
Gas | 1.7 | 0.109 | 0.002 |
Nuclear | 22.8 | 0.086 | 0.020 |
Natural gas | 1.0 | 0.265 | 0.003 |
Others | 17.9 | 0.109 | 0.020 |
Total | 100.0 | 9.886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imbernón-Mulero, A.; Martínez-Alvarez, V.; Ben Abdallah, S.; Gallego-Elvira, B.; Maestre-Valero, J.F. A Comparative Water Footprint Analysis of Conventional versus Organic Citrus Production: A Case Study in Spain. Agriculture 2024, 14, 1029. https://doi.org/10.3390/agriculture14071029
Imbernón-Mulero A, Martínez-Alvarez V, Ben Abdallah S, Gallego-Elvira B, Maestre-Valero JF. A Comparative Water Footprint Analysis of Conventional versus Organic Citrus Production: A Case Study in Spain. Agriculture. 2024; 14(7):1029. https://doi.org/10.3390/agriculture14071029
Chicago/Turabian StyleImbernón-Mulero, Alberto, Victoriano Martínez-Alvarez, Saker Ben Abdallah, Belén Gallego-Elvira, and José F. Maestre-Valero. 2024. "A Comparative Water Footprint Analysis of Conventional versus Organic Citrus Production: A Case Study in Spain" Agriculture 14, no. 7: 1029. https://doi.org/10.3390/agriculture14071029
APA StyleImbernón-Mulero, A., Martínez-Alvarez, V., Ben Abdallah, S., Gallego-Elvira, B., & Maestre-Valero, J. F. (2024). A Comparative Water Footprint Analysis of Conventional versus Organic Citrus Production: A Case Study in Spain. Agriculture, 14(7), 1029. https://doi.org/10.3390/agriculture14071029