Food Security: Nutritional Characteristics, Feed Utilization Status and Limiting Factors of Aged Brown Rice
Abstract
:1. Introduction
2. Nutritional Properties of Brown Rice
3. Influence of Storage Time on the Nutritional Properties of Brown Rice
3.1. Influence on the Starch Structure of Brown Rice
3.2. Influence on the Protein of Brown Rice
3.3. Influence on the Crude Fat of Brown Rice
3.4. Influence on the Enzymatic Activity of Brown Rice
4. Application of Aged Brown Rice in Feed
4.1. Advantages of Aged Brown Rice in Feed Applications
4.2. Application of Aged Brown Rice in Pig Feed
4.3. Application of Aged Brown Rice in Poultry Feed
4.4. Application of Aged Brown Rice in Ruminant Feed
4.5. Application of Aged Brown Rice in Fish Feed
5. Limiting Factors of Aged Brown Rice in Feed Application
5.1. Antinutritional Factors in Aged Brown Rice
5.1.1. Phytic Acid
5.1.2. Non-Starch Polysaccharides
5.1.3. Trypsin Inhibitors
5.2. Mycotoxins in Aged Brown Rice
5.3. High Fatty Acid Content in Aged Brown Rice
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Butt, A.; Yaseen, S.; Javaid, A. Seed-borne mycoflora of stored rice grains and its chemical control. J. Anim. Plant Sci. 2011, 21, 193–196. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Available online: https://fas.usda.gov/ (accessed on 16 April 2024).
- International Rice Outlook: International Rice Baseline Projections 2022–2032. 2023. Scholar Works @UARK. Available online: https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1055&context=aaesrb#:~:text=The%20international%20nominal%20price%20of,reach%20%241%2C172%2F%20mt%20by%20the (accessed on 16 April 2024).
- Jeong, O.-Y.; Park, H.-S.; Baek, M.-K.; Kim, W.-J.; Lee, G.-M.; Lee, C.-M.; Bombay, M.; Ancheta, M.B.; Lee, J.-H. Review of rice in Korea: Current status, future prospects, and comparisons with rice in other countries. J. Crop Sci. Biotechnol. 2021, 24, 1–11. [Google Scholar] [CrossRef]
- Guevara-Guerrero, B.; Fernández-Quintero, A.; Montero-Montero, J.C. Free fatty acids in rice bran during its storage after a treatment by twin-screw extrusion to prevent possible rapid hydrolytic rancidity of lipids. Dyna 2019, 86, 177–181. [Google Scholar] [CrossRef]
- Tamura, M.; Tsujii, H.; Saito, T.; Sasahara, Y. Relationship between starch digestibility and physicochemical properties of aged rice grain. LWT 2021, 150, 111887. [Google Scholar] [CrossRef]
- Cho, D.-H.; Lim, S.-T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mohanraj, R.; Sudha, V.; Wedick, N.M.; Malik, V.; Hu, F.B.; Spiegelman, D.; Mohan, V. Perceptions about varieties of brown rice: A qualitative study from Southern India. J. Am. Diet. Assoc. 2011, 111, 1517–1522. [Google Scholar] [CrossRef] [PubMed]
- Esa, N.M.; Kadir, K.-K.A.; Amom, Z.; Azlan, A. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemicrabbits. Food Chem. 2013, 141, 1306–1312. [Google Scholar] [CrossRef]
- Saikrishna, A.; Dutta, S.; Subramanian, V.; Moses, J.; Anandharamakrishnan, C. Ageing of rice: A review. J. Cereal Sci. 2018, 81, 161–170. [Google Scholar] [CrossRef]
- Shao, Y.; Bao, J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem. 2015, 180, 86–97. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Li, H.; Deng, Z.; Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci. Technol. 2020, 105, 347–362. [Google Scholar] [CrossRef]
- Donkor, O.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated grains–Sources of bioactive compounds. Food Chem. 2012, 135, 950–959. [Google Scholar] [CrossRef]
- Ravichanthiran, K.; Ma, Z.F.; Zhang, H.; Cao, Y.; Wang, C.W.; Muhammad, S.; Aglago, E.K.; Zhang, Y.; Jin, Y.; Pan, B. Phytochemical profile of brown rice and its nutrigenomic implications. Antioxidants 2018, 7, 71. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Huang, F.; Liu, L.; Deng, Y.; Ma, Y.; Zhang, Y.; Wei, Z.; Xiao, J. A comparison of the chemical composition, in vitro bioaccessibility and antioxidant activity of phenolic compounds from rice bran and its dietary fibres. Molecules 2018, 23, 202. [Google Scholar] [CrossRef]
- Keawpeng, I.; Venkatachalam, K. Effect of aging on changes in rice physical qualities. Int. Food Res. J. 2015, 22, 2180–2187. [Google Scholar]
- Matalanis, A.; Campanella, O.; Hamaker, B. Storage retrogradation behavior of sorghum, maize and rice starch pastes related to amylopectin fine structure. J. Cereal Sci. 2009, 50, 74–81. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, X.; Si, X.; Blanchard, C.; Strappe, P. The ageing mechanism of stored rice: A concept model from the past to the present. J. Stored Prod. Res. 2015, 64, 80–87. [Google Scholar] [CrossRef]
- Gu, F.; Gong, B.; Gilbert, R.G.; Yu, W.; Li, E.; Li, C. Relations between changes in starch molecular fine structure and in thermal properties during rice grain storage. Food Chem. 2019, 295, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Wang, H.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Luo, J. Effects of dietaryamylose/amylopectin ratio on growth performance, nutrient apparent digestibility, intestinal microflora number and volatile fatty acid concentrations and intramuscular fat content of finishing pigs. Chin. J. Anim. Nutr. 2018, 30, 4874–4885. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A.; Luo, H.; Wei, H.; Zhou, Z.; Peng, J.; Ru, Y. In vitro and in vivo digestibility of corn starch for weaned pigs: Effects of amylose: Amylopectin ratio, extrusion, storage duration, and enzyme supplementation. J. Anim. Sci. 2015, 93, 3512–3520. [Google Scholar] [CrossRef]
- Sodhi, N.; Singh, N.; Arora, M.; Singh, J. Changes in physico-chemical, thermal, cooking and textural properties of rice during aging. J. Food Process. Preserv. 2003, 27, 387–400. [Google Scholar] [CrossRef]
- Ning, J.; Guo, Y.; Song, R.; Zhu, S.; Dong, P. Spectral Analysis of Glutelin Changes During Rice Aging and Its Effects on Glutelin Functional Properties. Spectrosc. Spectral Anal. 2021, 41, 3431–3437. [Google Scholar] [CrossRef]
- Guo, Y.; Cai, W.; Tu, K.; Wang, S.; Zhu, X. Key proteins causing changes in pasting properties of rice during aging. Cereal Chem. 2015, 92, 384–388. [Google Scholar] [CrossRef]
- Guo, Y.; Cai, W.; Tu, K.; Wang, S.; Zhu, X. Infrared and Raman spectroscopic characterization of structural changes in albumin, globulin, glutelin, and prolamin during rice aging. J. Agric. Food Chem. 2013, 61, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, K. Lipid and Protein Oxidation of Brown Rice and Selenium-Rich Brown Rice during Storage. Foods 2022, 11, 3878. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, Y.; Chen, F.; Yong, F. Lipid oxidation of brown rice stored at different temperatures. Int. J. Food Sci. Technol. 2017, 52, 188–195. [Google Scholar] [CrossRef]
- Frame, C.A.; Johnson, E.; Kilburn, L.; Huff-Lonergan, E.; Kerr, B.J.; Serao, M.R. Impact of dietary oxidized protein on oxidative status and performance in growing pigs. J. Anim. Sci. 2020, 98, skaa097. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Fang, C.; Zhang, W.; Lu, L.; Guo, Z.; Li, S.; Chen, M. Change in volatiles, soluble sugars and fatty acids of glutinous rice, japonica rice and indica rice during storage. LWT 2023, 174, 114416. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, D.; Wang, Q.; Shang, B.; Liu, J.; Xing, X.; Hong, Y.; Duan, X.; Sun, H. Shotgun lipidomics reveals the changes in phospholipids of brown rice during accelerated aging. Food Res. Int. 2023, 171, 113073. [Google Scholar] [CrossRef]
- Rashid, M.T.; Liu, K.; Han, S.; Jatoi, M.A. The effects of thermal treatment on lipid oxidation, protein changes, and storage stabilization of Rice bran. Foods 2022, 11, 4001. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, S.; Wang, Q.; Shang, B.; Liu, J.; Xing, X.; Hong, Y.; Liu, H.; Duan, X.; Sun, H. Lipidomics and volatilomics reveal the changes in lipids and their volatile oxidative degradation products of brown rice during accelerated aging. Food Chem. 2023, 421, 136157. [Google Scholar] [CrossRef]
- Bechman, A.; Phillips, R.D.; Chen, J. Changes in Selected Physical Property and Enzyme Activity of Rice and Barley Koji during Fermentation and Storage. J. Food Sci. 2012, 77, M318–M322. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, C.; Fu, C.; Li, J. Effects of extrusion and supplementation of exogenous enzymes to diets containing Chinese storage brown rice on the carbohydrase activity in the digestive tract of piglets. J. Anim. Physiol. Anim. Nutr. 2010, 94, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Asyifah, M.; Abd-Aziz, S.; Phang, L.; Azlian, M. Brown rice as a potential feedstuff for poultry. J. Appl. Poult. Res. 2012, 21, 103–110. [Google Scholar] [CrossRef]
- He, B.; Shi, J.; Liu, K.; Cheng, J.; Wang, W.; Wang, Y.; Li, A. Evaluation of the Available Energy Value andAmino Acid Digestibility of Brown Rice Stored for 6 Years and Its Application in Pig Diets. Animals 2023, 13, 3381. [Google Scholar] [CrossRef]
- Kang, F.; He, B.; Wang, Y.; Aike, L. Research Progress on Application of Rice Resources in Livestock and Poultry Diet. Chin. J. Anim. Nutr. 2021, 33, 4271–4284. [Google Scholar] [CrossRef]
- Tan, F.P.; Beltranena, E.; Zijlstra, R.T. Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: A review. J. Anim. Sci. Biotechnol. 2021, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, S.; Piao, X.; Lai, C.; Zang, J.; Ding, Y.; Han, L.; Han, I.K. The nutritional value of brown riceand maize for growing pigs. Asian-Australas. J. Anim. Sci. 2006, 19, 892–897. [Google Scholar] [CrossRef]
- Cervantes-Pahm, S.K.; Liu, Y.; Stein, H.H. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs. J. Sci. Food Agric. 2014, 94, 841–849. [Google Scholar] [CrossRef]
- Wu, S.; Duan, J.Q.; Xiao, J.; Yong-Teng, S. Evaluation of effective performance and amino acid digestibility of pigs grown from brown rice with different varieties of feed. J. Anim. Nutr. 2020, 13, 3381. [Google Scholar]
- Kim, S.; Cho, J.H.; Kim, Y.; Kim, H.B.; Song, M. Effects of substitution of corn with ground brown rice on growth performance, nutrient digestibility, and gut microbiota of growing-finishing pigs. Animals 2021, 11, 375. [Google Scholar] [CrossRef]
- Katsumata, M.; Ashihara, A.; Ishida, A.; Kobayashi, H. Effects of replacement of all of corn contained in feed with brown rice and feeding brown rice together with sweet potato on growth performance and quality of pork of fattening pigs. Jap. J. Swine Sci. 2015, 52, 17–28. [Google Scholar] [CrossRef]
- Tasaka, Y.; Tachihara, K.; Kagawa, R.; Takada, R. Effects of rice feeding on growth performance and protein (amino acids) metabolism in weanling piglets. Anim. Sci. J. 2020, 91, e13311. [Google Scholar] [CrossRef]
- Tsukahara, T.; Kishino, E.; Inoue, R.; Nakanishi, N.; Nakayama, K.; Ito, T.; Ushida, K. Correlation between villous height and the disaccharidase activity in the small intestine of piglets from nursing to growing. Anim. Sci. J. 2013, 84, 54–59. [Google Scholar] [CrossRef]
- Yagami, K.; Takada, R. Dietary rice improves growth performance, mucosal enzyme activities and plasma urea nitrogen in weaning piglets. Anim. Sci. J. 2017, 88, 2010–2015. [Google Scholar] [CrossRef]
- Li, E.; Zhu, T.; Dong, W.; Huang, C. Effects of brown rice particle size on energy and nutrient digestibility in diets for young pigs and adult sows. Anim. Sci. J. 2019, 90, 108–116. [Google Scholar] [CrossRef]
- Li, T.; Huang, R.; Wu, G.; Lin, Y.; Jiang, Z.; Kong, X.; Chu, W.; Zhang, Y.; Kang, P.; Hou, Z. Growth performance and nitrogen metabolism in weaned pigs fed diets containing different sources of starch. Livest Sci. 2007, 109, 73–76. [Google Scholar] [CrossRef]
- Medel, P.; Latorre, M.; De Blas, C.; Lázaro, R.; Mateos, G. Heat processing of cereals in mash or pellet diets for young pigs. Anim. Feed Sci. Technol. 2004, 113, 127–140. [Google Scholar] [CrossRef]
- Pluske, J.R.; Siba, P.M.; Pethick, D.W.; Durmic, Z.; Mullan, B.P.; Hampson, D.J. The incidence of swine dysentery in pigs can be reduced by feeding diets that limit the amount of fermentable substrate entering the large intestine. J. Nutr. 1996, 126, 2920–2933. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Liu, M.; Zang, H.; Zhang, R.; Yang, H.; Jin, S.; Qi, X.; Shan, A.; Feng, X. Quality of chicken breast meat improved by dietary pterostilbene referring to up-regulated antioxidant capacity and enhanced protein structure. Food Chem. 2023, 405, 134848. [Google Scholar] [CrossRef]
- Onderci, M.; Sahin, N.; Cikim, G.; Aydin, A.; Ozercan, I.; Ozkose, E.; Ekinci, S.; Hayirli, A.; Sahin, K. β-Glucanase-producing bacterial culture improves performance and nutrient utilization and alters gut morphology of broilers fed a barley-based diet. Anim. Feed Sci. Technol. 2008, 146, 87–97. [Google Scholar] [CrossRef]
- Vahjen, W.; Busch, T.; Simon, O. Study on the use of soya bean polysaccharide degrading enzymes in broiler nutrition. Anim. Feed Sci. Technol. 2005, 120, 259–276. [Google Scholar] [CrossRef]
- Vicente, B.; Valencia, D.; Pérez-Serrano, M.; Lázaro, R.; Mateos, G. The effects of feeding rice in substitution of corn and the degree of starch gelatinization of rice on the digestibility of dietary components and productive performance of young pigs. J. Anim. Sci. 2008, 86, 119–126. [Google Scholar] [CrossRef]
- Shih, C.-H.; Lee, T.-T.; Kuo, W.H.-J.; Yu, B. Growth performance and intestinal microflora population of broilers fed aged brown rice. Ann. Anim. Sci. 2014, 14, 897–909. [Google Scholar] [CrossRef]
- Fujimoto, H.; Matsumoto, K.; Koseki, M.; Yamashiro, H.; Yamada, T.; Takada, R. Effects of rice feeding and carnitine addition on growth performance and mRNA expression of protein metabolism-related genes in broiler grower chicks. Anim. Sci. J. 2020, 91, e13390. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Chai, X.; Jiao, Y.; Sun, J.; Wang, S.; Yu, H.; Feng, X. Curcumin Mitigates Oxidative Damage in Broiler Liver and Ileum Caused by Aflatoxin B1-Contaminated Feed through Nrf2 Signaling Pathway. Animals 2024, 14, 409. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Yang, H.; Xu, L.; Xie, Y.; Jin, S.; Sheng, D. Effects of dietary fiber on growth performance, slaughter performance, serum biochemical parameters, and nutrient utilization in geese. Poult. Sci. 2017, 96, 1250–1256. [Google Scholar] [CrossRef]
- Guan, P.; Yu, H.; Wang, S.; Sun, J.; Chai, X.; Sun, X.; Qi, X.; Zhang, R.; Jiao, Y.; Li, Z.; et al. Dietary rutin alleviated the damage by cold stress on inflammation reaction, tight junction protein and intestinal microbial flora in the mice intestine. J. Nutr. Biochem. 2024, 130, 109658. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, H.; Yang, H.; Wang, Z. Effects of dietary paddy rice on growth performance, carcass traits, bareskin color, and nutrient digestibility in geese. Poult. Sci. 2022, 101, 101865. [Google Scholar] [CrossRef]
- Dabbert, C.B.; Powell, K.C.; Martin, T.E. Effects of monotypic diets of soybean, rice, and corn on Mallard (Anas platyrhynchos) physiological status. J. Zoo Wildlife Med. 1996, 27, 248–254. [Google Scholar]
- Yang, H.; Wang, Y.; Jin, S.; Pang, Q.; Shan, A.; Feng, X. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J. Anim. Physiol. Anim. Nutr. 2022, 106, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah, A. On Energy Policies in Animal Production: Avoiding Starchy Explosions. Innov. Energy Policies 2014, 3, 142. [Google Scholar] [CrossRef]
- Scheibler, R.; Schafhäuser, J.; Rizzo, F.; Nörnberg, J.; Vargas, D.; Silva, J.; Fluck, A.; Fioreze, V. Replacement of corn grain by brown rice grain in dairy cow rations: Nutritional and productive effects. Anim. Feed Sci. Technol. 2015, 208, 214–219. [Google Scholar] [CrossRef]
- Miyaji, M.; Matsuyama, H.; Hosoda, K. Effect of substituting brown rice for corn on lactation and digestion indairy cows fed diets with a high proportion of grain. J. Dairy Sci. 2014, 97, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, B.H.; Chemere, B.; Min, D.H.; Kim, B.W.; Sung, K.I. In vivo nutritive value of rice feed for sheep and its application for cattle feed. J. Anim. Sci. Technol. 2019, 61, 254. [Google Scholar] [CrossRef] [PubMed]
- Cattelam, J.; Argenta, F.M.; Alves, F.; Brondani, I.L.; Machado, D.S.; Pereira, L.B.; Cardoso, G.d.S.; da Silva, M.A.; Adams, S.M.; Viana, A.F.P. Non-carcass components of cattle finished in feedlot with high grain diet. Biosci. J. 2018, 34, 709–718. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022; p. 211. [Google Scholar]
- Zlaugotne, B.; Pubule, J.; Blumberga, D. Advantages and disadvantages of using more sustainable ingredients in fish feed. Heliyon 2022, 8, e10527. [Google Scholar] [CrossRef] [PubMed]
- Kamalam, B.; Medale, F.; Panserat, S. Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture 2017, 467, 3–27. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Cao, J.; Wang, G.; Hu, J.; Chen, B.; He, F.; Qiu, J. Apparent digestibility of nutrients in six types of carbohydrate ingredients for tilapia (Oreochromis niloticus). Chin. J. Anim. Nutr. 2015, 27, 3577–3586. [Google Scholar] [CrossRef]
- Khosravi, M.; Dastar, B.; Aalami, M.; Shawrang, P.; Ashayerizadeh, O. Comparison of gamma–Irradiation and enzyme supplementation to eliminate antinutritional factors in rice bran in broiler chicken diets. Livest. Sci. 2016, 191, 51–56. [Google Scholar] [CrossRef]
- Woyengo, T.; Nyachoti, C. Anti-nutritional effects of phytic acid in diets for pigs and poultry–current knowledge and directions for future research. Can. J. Anim. Sci. 2013, 93, 9–21. [Google Scholar] [CrossRef]
- Pasha, I.; Ahmad, F.; Siddique, Z.; Iqbal, F. Probing the effect of physical modifications on cereal bran chemistry and antioxidant potential. J. Food Meas Charact. 2020, 14, 1909–1918. [Google Scholar] [CrossRef]
- Selle, P.H.; Macelline, S.P.; Chrystal, P.V.; Liu, S.Y. The contribution of phytate-degrading enzymes to chicken-meat production. Animals 2023, 13, 603. [Google Scholar] [CrossRef]
- Zouaoui, M.; Létourneau-Montminy, M.; Guay, F. Effect of phytase on amino acid digestibility in pig: A meta-analysis. Anim. Feed Sci. Technol. 2018, 238, 18–28. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Yu, J.; Jin, Y.; Li, C.; Liu, J.; Zhang, J.; Zhang, L.; Wang, D.; Han, Y. Effects of non-starch polysaccharide enzyme on growth performance, carcass traits and meat quality of growing-finishing pigs. Chin. J. Vet. Sci. 2014, 34, 820–824. [Google Scholar]
- Kwak, M.; Kim, J.; Sung, K.; Whang, K. PSX-31 Effects of Dietary Non-starch Polysaccharide (NSP) and NSP-Degrading Enzyme Complex (Endo-PowerTM) Supplementation on Growth Performance, Intestinal Environments and Systemic Immune Responses in Growing Pigs. J. Anim. Sci. 2018, 96, 487–488. [Google Scholar] [CrossRef]
- Nisley, M.J.; Gabler, N.K.; Sparks, C.; Vanderbeke, E.; De Keyser, K. In The Impact of Dietary Crude Protein and Non-Starch Polysaccharidase Inclusion on Nursery Pig Performance. J. Anim. Sci. 2022, 100, 180. [Google Scholar] [CrossRef]
- Ajita, T. Extrusion cooking technology: An advance skill for manufacturing of extrudate food products. In Extrusion of Metals, Polymers and Food Products; Books on Demand: Norderstedt, Germany, 2018. [Google Scholar] [CrossRef]
- Datta, S.; Bouis, H.E. Application of biotechnology to improving the nutritional quality of rice. Food Nutr. Bull. 2000, 21, 451–456. [Google Scholar] [CrossRef]
- Zentek, J.; Boroojeni, F.G. (Bio) Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol. 2020, 268, 114576. [Google Scholar] [CrossRef]
- Ferrara, M.; Perrone, G.; Gallo, A. Recent advances in biosynthesis and regulatory mechanisms of principal mycotoxins. Curr. Opin. Food Sci. 2022, 48, 100923. [Google Scholar] [CrossRef]
- Silva, J.V.B.d.; Oliveira, C.A.F.d.; Ramalho, L.N.Z. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. Food Sci. Technol. 2021, 42, e48520. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Zang, H.; Yin, Z.; Guan, P.; Yu, C.; Shan, A.; Feng, X. Dietary pterostilbene exerts potential protective effects by regulating lipid metabolism and enhancing antioxidant capacity on liver in broilers. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1–13. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Xu, Z.; Liu, X.; Chen, L.; Dai, J.; Karrow, N.A.; Sun, L. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Q.; Zhang, Y.; Li, J.; Li, F. Further data on the levels of emerging Fusarium mycotoxins in cereals collected from Tianjin, China. Food Addit. Contam. Part B 2021, 14, 74–80. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- GB 13078-2017; Feed Hygiene Standards. Available online: http://www.foodmate.net/ (accessed on 16 April 2024).
- FDA. Available online: https://www.fda.gov/food/natural-toxins-food/mycotoxins (accessed on 16 April 2024).
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32023R0915 (accessed on 16 April 2024).
- Khodaei, D.; Javanmardi, F.; Khaneghah, A.M. The global overview of the occurrence of mycotoxins in Cereals: A three-year survey. Curr. Opin. Food Sci. 2020, 39, 36–42. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Asi, M.R.; Hanif, U.; Zuber, M.; Jinap, S. The presence of aflatoxins and ochratoxin A in rice and rice products; And evaluation of dietary intake. Food Chem. 2016, 210, 135–140. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal Derived Food Products: PublicHealth Perspectives of Their Co-Occurrence. J. Agric. Food. Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Zheng, Y. Differences in Rice Quality, Mold Flora and Mycotoxins at Different Storage Stages. Master’s Thesis, The Nanjing University of Finance and Economics, Nanjing, China, 2020. [Google Scholar]
- Wang, X.; Yan, S. Regulation and mechanism of lipid metabolism by polyunsaturated fatty acids of animals. Chin. J. Anim. Nutr. 2019, 31, 2471–2478. [Google Scholar]
- Zhao, Q.; Guo, H.; Hou, D.; Laraib, Y.; Xue, Y.; Shen, Q. Influence of temperature on storage characteristics of different rice varieties. Cereal Chem. 2021, 98, 935–945. [Google Scholar] [CrossRef]
- Wang, T.; She, N.; Wang, M.; Zhang, B.; Qin, J.; Dong, J.; Fang, G.; Wang, S. Changes in Physicochemical Properties and Qualities of Red Brown Rice at Different Storage Temperatures. Foods 2021, 10, 2658. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Xia, B.; Tang, S.; Cao, A.; Liu, L.; Zhong, R.; Chen, L.; Zhang, H. The effect of exogenous bile acids on antioxidant status and gut microbiota in heat-stressed broiler chickens. Front. Nutr. 2021, 8, 747136. [Google Scholar] [CrossRef] [PubMed]
General Nutrition Facts, % | Aged Brown Rice | Maize |
---|---|---|
Total Energy, MJ/kg | 16.00 | 16.20 |
Dry Matter | 89.5 | 86.0 |
Crude Protein | 8.67 | 8.70 |
Crude Fat | 2.75 | 3.60 |
Crude Ash | 1.41 | 1.20 |
Crude Fiber | 0.90 | 2.30 |
Neutral Detergent Fiber | 2.23 | 9.30 |
Acid Detergent Fiber | 1.31 | 2.70 |
Nitrogen Free Leachate | 74.1 | 70.7 |
Total Starch | 79.6 | 75.0 |
Amylose | 14.4 | 18.8 |
Amylopectin | 66.2 | 56.3 |
Calcium | 0.03 | 0.02 |
Total Phosphorus | 0.41 | 0.27 |
Effective Phosphorus | 0.15 | 0.05 |
Amino Acid, % | Aged Brown Rice | Maize |
---|---|---|
Arginine | 0.53 | 0.39 |
Histidine | 0.17 | 0.21 |
Isoleucine | 0.30 | 0.25 |
Leucine | 0.68 | 0.93 |
Lysine | 0.30 | 0.24 |
Methionine | 0.20 | 0.18 |
Phenylalanine | 0.41 | 0.41 |
Threonine | 0.31 | 0.30 |
Tryptophan | 0.08 | 0.07 |
Alanine | 0.53 | 0.60 |
Cysteine | 0.12 | 0.18 |
Tyrosine | 0.22 | 0.33 |
European Union | America | China | |
---|---|---|---|
AFB1 (µg/kg) | 20 | - | 30 |
AFT (µg/kg) | - | 200 | - |
OTA (µg/kg) | 250 | - | 100 |
DON (µg/kg) | 8000 | 5000 | 5000 |
ZEN (µg/kg) | 2000 | - | 500 |
FBs (µg/kg) | 60,000 | 30,000 | 60,000 |
Items | Africa | America | Asia | Europe | |
---|---|---|---|---|---|
AFT | Incidence (%) | 53 | - | 63 | 9 |
Range (µg/kg) | 20–1642 | 0.1–308 | 0.45–3 | ||
OTA | Incidence (%) | 38 | 42 | 18 | 7 |
Range (µg/kg) | 0–1164 | 0–12.5 | 0.08–4.34 | 1.0–7.5 | |
FBs | Incidence (%) | 10 | - | 29 | 2 |
Range (µg/kg) | 0.4–4.4 | - | 0–500 | - | |
DON | Incidence (%) | 24 | - | 23 | 3 |
Range (µg/kg) | 0–112.2 | - | 6.2–81.2 | 71–176 | |
ZEN | Incidence (%) | 47 | - | 19 | - |
Range (µg/kg) | 0–1169 | - | 1.5–51.1 | - |
Regions | Year | DON (µg/kg) | ZEN (µg/kg) | AFT (µg/kg) | OTA (µg/kg) |
---|---|---|---|---|---|
Heilongjiang Province | 2017 | 11.3 | 0.46 | - | - |
2018 | 10.5 | 0.72 | |||
2019 | 13.2 | 0.49 | |||
Anhui Province | 2017 | 7.20 | 1.18 | - | - |
2018 | 19.3 | 1.63 | |||
2019 | 52.6 | 1.78 | |||
Hunan Province | 2017 | 28.4 | 0.82 | - | - |
2018 | 29.0 | 1.40 | |||
2019 | 26.8 | 1.15 | |||
Sichuan Province | 2016 | - | - | 8.24 | 1.25 |
2017 | 8.98 | 0.985 | |||
2018 | 4.84 | 1.17 |
Regions | Year | Fatty Acid Value (mg KOH/100 g) |
---|---|---|
Heilongjiang Province | 2017 | 20.0 |
2018 | 21.3 | |
2019 | 18.3 | |
Anhui Province | 2017 | 31.0 |
2018 | 31.1 | |
2019 | 20.8 | |
Hunan Province | 2017 | 30.4 |
2018 | 26.7 | |
2019 | 21.5 | |
Sichuan Province | 2016 | 53.9 |
2017 | 57.2 | |
2018 | 43.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, X.; Sun, X.; Qi, X.; Shan, A.; Feng, X. Food Security: Nutritional Characteristics, Feed Utilization Status and Limiting Factors of Aged Brown Rice. Agriculture 2024, 14, 858. https://doi.org/10.3390/agriculture14060858
Chai X, Sun X, Qi X, Shan A, Feng X. Food Security: Nutritional Characteristics, Feed Utilization Status and Limiting Factors of Aged Brown Rice. Agriculture. 2024; 14(6):858. https://doi.org/10.3390/agriculture14060858
Chicago/Turabian StyleChai, Xuehong, Xue Sun, Xueyan Qi, Anshan Shan, and Xingjun Feng. 2024. "Food Security: Nutritional Characteristics, Feed Utilization Status and Limiting Factors of Aged Brown Rice" Agriculture 14, no. 6: 858. https://doi.org/10.3390/agriculture14060858
APA StyleChai, X., Sun, X., Qi, X., Shan, A., & Feng, X. (2024). Food Security: Nutritional Characteristics, Feed Utilization Status and Limiting Factors of Aged Brown Rice. Agriculture, 14(6), 858. https://doi.org/10.3390/agriculture14060858