The Effect of Renewable Phosphorus Biofertilizers on Selected Wheat Grain Quality Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fertilizers and Experiments
2.2. Experimental Site Description
2.3. Grain Sampling and Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Zou, T.; Lassaletta, L.; Quan, Z.; Li, T.; Zhang, W. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles 2020, 34, e2018GB006060. [Google Scholar] [CrossRef]
- Salim, N.; Raza, A. Nutrient use efficiency (NUE) for sustainable wheat production: A review. J. Plant Nutr. 2020, 43, 297–315. [Google Scholar] [CrossRef]
- Hermann, L.; McGrath, J.W.; Kabbe, C.; Macintosh, K.A.; van Dijk, K.; Brownlie, W.J. Opportunities for recovering phosphorus from residue streams. In Our Phosphorus Future; Brownlie, W.J., Sutton, M.A., Heal, K.V., Reay, D.S., Spears, B.M., Eds.; UK Centre for Ecology and Hydrology: Edinburgh, UK, 2022; pp. 277–312. [Google Scholar]
- Solangi, F.; Zhu, X.; Khan, S.; Rais, N.; Majeed, A.; Sabir, M.A.; Iqbal, R.; Ali, S.; Hafeez, A.; Ali, B.; et al. The global dilemma of soil legacy phosphorus and its improvement strategies under recent changes in agro-ecosystem sustainability. ACS Omega 2023, 8, 23271–23282. [Google Scholar] [CrossRef] [PubMed]
- Dissanayaka, D.; Ghahremani, M.; Siebers, M.; Wasaki, J.; Plaxton, W.C. Recent insights into the metabolic adaptations of phosphorus-deprived plants. J. Exp. Bot. 2021, 72, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yi, K. Unloading phosphate for starch synthesis in cereal grains. Mol. Plant 2021, 14, 1232–1233. [Google Scholar] [CrossRef] [PubMed]
- Faucon, M.-P.; Houben, D.; Reynoird, J.-P.; Mercadal-Dulaurent, A.-M.; Armand, R.; Lambers, H. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 134, pp. 51–79. [Google Scholar]
- Yi, H.; Hu, S.; Zhang, Y.; Wang, X.; Xia, Z.; Lei, Y.; Duan, M. Proper delay of phosphorus application promotes wheat growth and nutrient uptake under low phosphorus condition. Agriculture 2023, 13, 884. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database 2021, Food and Agriculture Organization of the United Nations. Crops. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 January 2024).
- USGS. Mineral Commodity Summaries 2024. Phosphate Rock; USGS: Reston, VA, USA, 2024; pp. 134–135.
- Mew, M.C. Why and when do reserves estimates in mining change and innovations take place? Ecol. Econ. 2024, 217, 108085. [Google Scholar] [CrossRef]
- Stamm, C.; Binder, C.R.; Frossard, E.; Haygarth, P.M.; Oberson, A.; Richardson, A.E.; Schaum, C.; Schoumans, O.; Udert, K.M. Towards circular phosphorus: The need of inter- and transdisciplinary research to close the broken cycle. Ambio 2022, 51, 611–622. [Google Scholar] [CrossRef] [PubMed]
- EC. Study on the Critical Raw Materials for the EU 2023–Final Report; Publications Office of the European Union: Luxemburg, 2023; p. 158. [Google Scholar]
- Szołdrowska, D.; Smol, M. Chapter 18—Phosphorus raw materials in sustainable agriculture. In Sustainable and Circular Management of Resources and Waste towards a Green Deal; Vara Prasad, M.N., Smol, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 247–255. [Google Scholar]
- Brownlie, W.J.; Sutton, M.A.; Cordell, D.; Reay, D.S.; Heal, K.V.; Withers, P.J.A.; Vanderbeck, I.; Spears, B.M. Phosphorus price spikes: A wake-up call for phosphorus resilience. Front. Sustain. Food Syst. 2023, 7, 1088776. [Google Scholar] [CrossRef]
- Brownlie, W.J.; Spears, B.M.; Heal, K.V.; Reay, D.S.; Sutton, M.A.; Benton, T.G.; Cordell, D.; Heathwaite, A.L.; Hermann, L.; Penny, J.J.; et al. Towards our phosphorus future. In Our Phosphorus Future; Brownlie, W.J., Sutton, M.A., Heal, K.V., Reay, D.S., Spears, B.M., Eds.; UK Centre for Ecology and Hydrology: Edinburgh, UK, 2022; pp. 339–369. [Google Scholar]
- Brownlie, W.J.; Sutton, M.A.; de Boer, M.A.; Camprubí, L.; Hamilton, H.A.; Heal, K.V.; Morgandi, T.; Neset, T.-S.; Spears, B.M. Phosphorus reserves, resources and uses. In Our Phosphorus Future; Brownlie, W.J., Sutton, M.A., Heal, K.V., Reay, D.S., Spears, B.M., Eds.; UK Centre for Ecology and Hydrology: Edinburgh, UK, 2022; pp. 21–71. [Google Scholar]
- Brownlie, W.J.; Sakrabani, R.; Metson, G.S.; Blackwell, M.S.A.; Spears, B.M. Opportunities to recycle phosphorus-rich organic materials. In Our Phosphorus Future; Brownlie, W.J., Sutton, M.A., Heal, K.V., Reay, D.S., Spears, B.M., Eds.; UK Centre for Ecology and Hydrology: Edinburgh, UK, 2022; pp. 219–270. [Google Scholar]
- Kabbe, C.; Rinck-Pfeiffer, S. Global Compendium on Phosphorus Recovery from Sewage/Sludge/Ash; Christian Kabbe: Berlin, Germany, 2019. [Google Scholar]
- Severin, M.; Breuer, J.; Rex, M.; Stemann, J.; Adam, C.; Van den Weghe, H.; Kücke, M. Phosphate fertilizer value of heat treated sewage sludge ash. Plant Soil Environ. 2014, 60, 555–561. [Google Scholar] [CrossRef]
- Huygens, D.; Saveyn, H.G.M. Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 52. [Google Scholar] [CrossRef]
- Kratz, S.; Vogel, C.; Adam, C. Agronomic performance of P recycling fertilizers and methods to predict it: A review. Nutr. Cycl. Agroecosyst. 2019, 115, 1–39. [Google Scholar] [CrossRef]
- Grames, J.; Zoboli, O.; Laner, D.; Rechberger, H.; Zessner, M.; Sánchez-Romero, M.; Prskawetz, A. Understanding feedbacks between economic decisions and the phosphorus resource cycle: A general equilibrium model including material flows. Resour. Policy 2019, 61, 311–347. [Google Scholar] [CrossRef]
- Raniro, H.R.; Soares, T.d.M.; Adam, C.; Pavinato, P.S. Waste-derived fertilizers can increase phosphorus uptake by sugarcane and availability in a tropical soil. J. Plant Nutr. Soil Sci. 2022, 185, 391–402. [Google Scholar] [CrossRef]
- Günther, S.; Grunert, M.; Müller, S. Overview of recent advances in phosphorus recovery for fertilizer production. Eng. Life Sci. 2018, 18, 434–439. [Google Scholar] [CrossRef] [PubMed]
- EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance). Off. J. Eur. Union 2019, L170, 1–114. [Google Scholar]
- Boix-Fayos, C.; de Vente, J. Challenges and potential pathways towards sustainable agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Saeid, A. Phosphorus microbial solubilization as a key for phosphorus recycling in agriculture. In Phosphorus-Recovery and Recycling; Zhang, T., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, R.; Sarma, A.K. Phosphate solubilizing microorganisms: A Review. Commun. Soil Sci. Plant Anal. 2023, 54, 1306–1315. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Galavi, M.; Yosefi, K.; Ramrodi, M.; Mousavi, S.R. Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with foliar application of micronutrients on yield, quality and phosphorus and zinc concentration of maize. J. Agric. Sci. 2011, 3, 22. [Google Scholar] [CrossRef]
- Qian, T.; Yang, Q.; Jun, D.C.F.; Dong, F.; Zhou, Y. Transformation of phosphorus in sewage sludge biochar mediated by a phosphate-solubilizing microorganism. Chem. Eng. J. 2019, 359, 1573–1580. [Google Scholar] [CrossRef]
- Torres-Cuesta, D.; Mora-Motta, D.; Chavarro-Bermeo, J.P.; Olaya-Montes, A.; Vargas-Garcia, C.; Bonilla, R.; Estrada-Bonilla, G. Phosphate-solubilizing bacteria with low-solubility fertilizer improve soil P availability and yield of kikuyu grass. Microorganisms 2023, 11, 1748. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Li, P.-S.; Zhang, B.-X.; Wang, Y.-P.; Meng, J.; Gao, Y.-F.; He, X.-M.; Hu, X.-M. Identification of phosphate-solubilizing microorganisms and determination of their phosphate-solubilizing activity and growth-promoting capability. BioResources 2020, 15, 2560–2578. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Frąc, M. Chapter Two—Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 162, pp. 31–87. [Google Scholar]
- Saeid, A.; Wyciszkiewicz, M.; Jastrzebska, M.; Chojnacka, K.; Gorecki, H. A concept of production of new generation of phosphorus-containing biofertilizers. BioFertP project. Przem. Chem. 2015, 94, 361–365. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.; Treder, K.; Makowski, P.; Saeid, A.; Jastrzębski, W.; Okorski, A. Fertiliser from sewage sludge ash instead of conventional phosphorus fertilisers? Plant Soil Environ. 2018, 64, 504–511. [Google Scholar] [CrossRef]
- Jastrzȩbska, M.; Saeid, A.; Kostrzewska, M.K.; Basladyńska, S. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants. Open Chem. 2018, 16, 35–49. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.K.; Saeid, A. Can phosphorus from recycled fertilisers replace conventional sources? An agronomic evaluation in field-scale experiments on temperate Luvisols. Appl. Sci. 2019, 9, 2086. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.K.; Saeid, A.; Jastrzębski, W.P. Do new-generation recycled phosphorus fertilizers increase the content of potentially toxic elements in soil and plants? Minerals 2021, 11, 999. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.K.; Saeid, A. Phosphorus fertilizers from sewage sludge ash and animal blood as an example of biobased environment-friendly agrochemicals: Findings from field experiments. Molecules 2022, 27, 2769. [Google Scholar] [CrossRef] [PubMed]
- Helguera, M.; Abugalieva, A.; Battenfield, S.; Békés, F.; Branlard, G.; Cuniberti, M.; Hüsken, A.; Johansson, E.; Morris, C.F.; Nurit, E.; et al. Grain Quality in Breeding. In Wheat Quality for Improving Processing and Human Health; Igrejas, G., Ikeda, T.M., Guzmán, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 273–307. [Google Scholar]
- Singh, A.; Gupta, O.P.; Pandey, V.; Ram, S.; Kumar, S.; Singh, G.P. Physicochemical Components of Wheat Grain Quality and Advances in Their Testing Methods. In New Horizons in Wheat and Barley Research: Global Trends, Breeding and Quality Enhancement; Kashyap, P.L., Gupta, V., Prakash Gupta, O., Sendhil, R., Gopalareddy, K., Jasrotia, P., Singh, G.P., Eds.; Springer: Singapore, 2022; pp. 741–757. [Google Scholar]
- Baniwal, P.; Mehra, R.; Kumar, N.; Sharma, S.; Kumar, S. Cereals: Functional constituents and its health benefits. Pharma Innov. 2021, 10, 343–349. [Google Scholar] [CrossRef]
- Sabiha, J.; Siddque, N.; Waheed, S.; uz Zaman, Q.; Aslam, A.; Tufail, M.; Nasir, R. Uptake of heavy metal in wheat from application of different phosphorus fertilizers. J. Food Compos. Anal. 2023, 115, 104958. [Google Scholar] [CrossRef]
- Wyciszkiewicz, M.; Saeid, A.; Malinowski, P.; Chojnacka, K. Valorization of phosphorus secondary raw materials by Acidithiobacillus ferrooxidans. Molecules 2017, 22, 473. [Google Scholar] [CrossRef] [PubMed]
- WRB. World reference base for soil resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- ISO/IEC 17025; Testing and calibration laboratories. ISO: Geneva, Switzerland, 2017.
- ISO 13903:2005; Animal Feeding Stuffs—Determination of Amino Acids Content. ISO: Geneva, Switzerland, 2005; p. 11.
- EC. Commission Regulation (EC) No. 152/2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, L54, 1–130. [Google Scholar]
- Górecka, H.; Chojnacka, K.; Górecki, H. The application of ICP-MS and ICP-OES in determination of micronutrients in wood ashes used as soil conditioners. Talanta 2006, 70, 950–956. [Google Scholar] [CrossRef] [PubMed]
- StatSoft Inc. Statistica (Data Analysis Software System), Version 13.3; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Jastrzębska, M.; Kostrzewska, M.K.; Saeid, A. Sewage sludge ash-based biofertilizers as a circular approach to phosphorus: The issue of fe and al in soil and wheat and weed plants. Agronomy 2022, 12, 1475. [Google Scholar] [CrossRef]
- Nuttall, J.G.; O’Leary, G.J.; Panozzo, J.F.; Walker, C.K.; Barlow, K.M.; Fitzgerald, G.J. Models of grain quality in wheat—A review. Field Crops Res. 2017, 202, 136–145. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Müller, T.; Lakshmanan, P.; Liu, Y.; Liang, T.; Wang, L.; Yang, H.; Chen, X. Soil phosphorus availability and fractionation in response to different phosphorus sources in alkaline and acid soils: A short-term incubation study. Sci. Rep. 2023, 13, 5677. [Google Scholar] [CrossRef] [PubMed]
- Manley, M.; Engelbrecht, M.L.; Williams, P.C.; Kidd, M. Assessment of variance in the measurement of hectolitre mass of wheat, using equipment from different grain producing and exporting countries. Biosyst. Eng. 2009, 103, 176–186. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Markowska-Mendik, A.; Warechowska, M. An analysis of the correlations between the hardness index and selected physicochemical properties of wheat grain. J. Cereal Sci. 2023, 110, 103643. [Google Scholar] [CrossRef]
- Schuster, C.; Huen, J.; Scherf, K.A. Comprehensive study on gluten composition and baking quality of winter wheat. Cereal Chem. 2023, 100, 142–155. [Google Scholar] [CrossRef]
- Gaj, R.; Górski, D.; Przybył, J. Effect of differentiated phosphorus and potassium fertilization on winter wheat yield and quality. J. Elem. 2013, 18, 55–67. [Google Scholar] [CrossRef]
- Boukhalfa-Deraoui, N.; Hanifi-Mekliche, L.; Mekliche, A.; Cheloufi, H.; Babahani, S. Influence of phosphorus fertilizers application on phosphorus use efficiency and grain protein of winter wheat in alkaline-calcareous soil, Southern Algeria. Indian J. Agric. Res. 2020, 54, 51–57. [Google Scholar] [CrossRef]
- Woloszyk, C.; Stankowski, S.; Izewska, A.; Swiderska-Ostapiak, M. Wpływ następczy kompostów z komunalnego osadu sciekowego z dodatkiem różnych komponentów, przy dwóch poziomach NPK, na wielkość plonu i jakość ziarna pszenicy ozimej. Zesz. Probl. Post. Nauk Rol. 2003, 494, 551–557. [Google Scholar]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Agapie, A.L.; Bostan, C. The influence of mineral fertilization on the quality of winter wheat. Life Sci. Sustain. Dev. 2021, 1, 45–50. [Google Scholar] [CrossRef]
- Eppendorfer, W.H. Effects of nitrogen, phosphorus and potassium on amino acid composition and on relationships between nitrogen and amino acids in wheat and oat grain. J. Sci. Food Agric. 1978, 29, 995–1001. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Nazir, F.; Maheshwari, C.; Chopra, P.; Chhillar, H.; Sreenivasulu, N. Mineral nutrients in plants under changing environments: A road to future food and nutrition security. Plant Genome 2023, 16, e20362. [Google Scholar] [CrossRef] [PubMed]
- Naz, F. Plant nutrition, transport, mechanism and sensing in plants. In Sustainable Plant Nutrition; Aftab, T., Hakeem, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 209–228. [Google Scholar]
- Kizilgeci, F. Physiological, agronomical and quality response of bread wheat to phosphorus application under dryland condition. Appl. Ecol. Environ. Res. 2019, 17, 1979–1987. [Google Scholar] [CrossRef]
- Zheng, Z.-S.; Wang, C.-Y.; Niu, J.-Y.; Zhang, M.-W.; Zhang, J.; Yao, Y.-Q. Effects of irrigation and fertilization coupling on protein and amino acids contents in grains of winter wheat. Chin. J. Eco-Agric. 2011, 19, 788–793. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Holland, J.E.; McGrath, S.P.; Glendining, M.J.; Thomas, C.L.; Haefele, S.M. The grain mineral composition of barley, oat and wheat on soils with pH and soil phosphorus gradients. Eur. J. Agron. 2021, 126, 126281. [Google Scholar] [CrossRef]
- Moradi, M.; Siadat, S.A.; Khavazi, K.; Naseri, R.; Maleki, A.; Mirzaei, A. Effect of application of biofertilizers and phosphorus fertilizers on qualitative and quantitative traits of spring wheat (Triticum aestivum L.). Crop Ecophysiol. 2011, 5, 51–66. [Google Scholar]
- Feng, K.K.; Zhang, Y.F.; Feng, M.C.; Wang, H.Y.; Wan, G.C.; Yang, W.D. Combined nitrogen and phosphorus application synergistically regulate grain yield and protein content in winter wheat (Triticum aestivum L.). Appl. Ecol. Environ. Res. 2022, 20, 1599–1611. [Google Scholar] [CrossRef]
- Stefanova-Dobreva, S.; Muhova, A.; Bonchev, B. Nitrogen and phosphorus fertilizers affecting the quality and quantity of the durum wheat. Sci. Papers Ser. A. Agron. 2022, 65, 533–539. [Google Scholar]
- Fana, G.; Deressa, H.; Dargie, R.; Bogale, M.; Mehadi, S.; Getachew, F. Grain hardness, hectolitre weight, nitrogen and phosphorus concentrations of durum wheat (Triticum turgidum L.var. Durum) as influenced by nitrogen and phosphorus fertilisation. World Appl. Sci. J. 2012, 20, 1322–1327. [Google Scholar]
- Tanács, L.; Matuz, J.; Bartók, T.; Gerö, L. Effect of NPK fertilization on the individual amino acid content of wheat grain. Cereal Res. Commun. 1995, 23, 403–409. [Google Scholar]
- Mishra, L.K. Effect of phosphorus and zinc fertilization on biochemical composition of wheat. Bioscan 2012, 7, 445–449. [Google Scholar]
- Chaikovskaya, L.; Iakusheva, N.; Ovsienko, O.; Radchenko, L.; Pashtetskiy, V.; Baranskaya, M. Influence of microbial preparations on Triticum aestivum L. grain quality. Int. J. Plant Biol. 2022, 13, 535–545. [Google Scholar] [CrossRef]
- Kumar, A.; Behera, U.K.; Dhar, S.; Babu, S.; Singh, R.; Upadhyay, P.K.; Saha, S.; Devadas, R.; Kumar, A.; Gupta, G.; et al. Deciphering the role of phosphorus management under conservation agriculture based wheat production system. Front. Sustain. Food Syst. 2023, 7, 1235141. [Google Scholar] [CrossRef]
- Gaj, R.; Górski, D. Effects of different phosphorus and potassium fertilization on contents and uptake of macronutrients (N, P, K, Ca, Mg) in winter wheat I. Content of macronutrients. J. Cent. Eur. Agric. 2014, 15, 169–187. [Google Scholar] [CrossRef]
- Rawal, N.; Pande, K.R.; Shrestha, R.; Vista, S.P. Nutrient concentration and its uptake in various stages of wheat (Triticum aestivum L.) as influenced by nitrogen, phosphorus, and potassium fertilization. Commun. Soil Sci. Plant Anal. 2023, 54, 1151–1166. [Google Scholar] [CrossRef]
- Panayotova, G.; Kostadinova, S.; Valkova, N. Grain quality of durum wheat as affected by phosphorus and combined nitrogen-phosphorus fertilization. Sci. Papers Ser. A Agron. 2017, 60, 356–363. [Google Scholar]
- Zhang, W.; Liu, D.; Liu, Y.; Chen, X.; Zou, C. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). J. Agric. Food Chem. 2017, 65, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Bulut, S. Evaluation of yield and quality parameters of phosphorous-solubilizing and N-fixing bacteria inoculated in wheat (Triticum aestivum L.). Turk. J. Agric. For. 2013, 37, 545–554. [Google Scholar] [CrossRef]
- Shabbir, I.; Ayub, M.; Tahir, M.; Ahmad, R. Effect of phosphorus solubilizing bacterial inoculation and phosphorus fertilizer application on forage yield and quality of oat (Avena sativa L.). Int. J. Mod. Agric. 2020, 2, 85–94. [Google Scholar]
- Zafar, M.; Rahim, N.; Shaheen, A.; Khaliq, A.; Arjamand, T.; Jamil, M.; Rehman, Z.-U.; Sultan, T. Effect of combining poultry manure, inorganic phosphorus fertilizers and phosphate solublizing bacteria on growth, yield, protein content and P uptake in maize. Adv. Agric. Bot. 2011, 3, 46–58. [Google Scholar]
- Majeed, A.; Farooq, M.; Naveed, M.; Hussain, M. Combined application of inorganic and organic phosphorous with inoculation of phosphorus solubilizing bacteria improved productivity, grain quality and net economic returns of pearl millet (Pennisetum glaucum [L.] R. Br.). Agronomy 2022, 12, 2412. [Google Scholar] [CrossRef]
- Erdemci, I.; Aktas, H.; Eren, A. Quantitative and qualitative response of wheat to Pseudomonas fluorescens rhizobacteria application. J. Anim. Plant Sci. 2019, 29, 476–482. [Google Scholar]
- Harish, M.N.; Choudhary, A.K.; Kumar, S.; Dass, A.; Singh, V.K.; Sharma, V.K.; Varatharajan, T.; Dhillon, M.K.; Sangwan, S.; Dua, V.K.; et al. Double zero tillage and foliar phosphorus fertilization coupled with microbial inoculants enhance maize productivity and quality in a maize–wheat rotation. Sci. Rep. 2022, 12, 3161. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, Ö.; Bulut, S.; Öztürk, A. Determination of yield parameters of barley (Hordeum vulgare L.) inoculated with phosphorous-solubilizing and nitrogen-fixing bacteria. Pol. J. Environ. Stud. 2024, 33, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Erdemci, İ. Effects of seed microbial inoculant on growth, yield, and nutrition of durum wheat (Triticum Durum L.). Commun. Soil Sci. Plant Anal. 2021, 52, 792–801. [Google Scholar] [CrossRef]
- Youssef, S.M.; Shaaban, A.; Abdelkhalik, A.; Abd El Tawwab, A.R.; Abd Al Halim, L.R.; Rabee, L.A.; Alwutayd, K.M.; Ahmed, R.M.M.; Alwutayd, R.; Hemida, K.A. Compost and phosphorus/potassium-solubilizing fungus effectively boosted quinoa’s physio-biochemical traits, nutrient acquisition, soil microbial community, and yield and quality in normal and calcareous soils. Plants 2023, 12, 3071. [Google Scholar] [CrossRef] [PubMed]
- Moradgholi, A.; Mobasser, H.; Ganjali, H.; Fanaie, H.; Mehraban, A. WUE, protein and grain yield of wheat under the interaction of biological and chemical fertilizers and different moisture regimes. Cereal Res. Commun. 2022, 50, 147–155. [Google Scholar] [CrossRef]
- Sonkurt, M.; Çiğ, F. The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Appl. Ecol. Environ. Res. 2019, 17, 3877–3896. [Google Scholar] [CrossRef]
- Rostamian, A.; Moaveni, P.; MehdiSadeghi, S.; Mozafari, H.; Rajabzadeh, F. Effective drought mitigation by rhizobacteria consortium in wheat field trials. Rhizosphere 2023, 25, 100653. [Google Scholar] [CrossRef]
- Raymond, N.S.; Jensen, L.S.; van der Bom, F.; Nicolaisen, M.H.; Müller-Stöver, D. Fertilising effect of sewage sludge ash inoculated with the phosphate-solubilising fungus Penicillium bilaiae under semi-field conditions. Biol. Fert. Soils 2019, 55, 43–51. [Google Scholar] [CrossRef]
- Sárdi, K. Short-Term Transformation and Dynamics of Main Nutrients in Soil. In Essential Plant Nutrients: Uptake, Use Efficiency, and Management; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 379–401. [Google Scholar]
- Iżewska, A.; Wołoszyk, C. Contents of heavy metals in plants and soil fertilization of ash from sewage sludge combustion. Ecol. Chem. Eng. A 2013, 20, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Yi, H.; Wang, T.; Zhang, Y.; Zhu, X.; Yao, J. Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ. Sci. Pollut. Res. 2017, 24, 21877–21884. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-C.; Huang, L.-M.; Chen, C.; Wang, J.; Long, X.-X. Effective lead immobilization by phosphate rock solubilization mediated by phosphate rock amendment and phosphate solubilizing bacteria. Chemosphere 2019, 237, 124540. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Nawaz, H.; Khan, K.; Haq, M.U.; Khan, H.; Manan, U.; Tariq, M. Integrated effect of heavy metal-tolerant rhizobacteria and phosphorus on maize growth and phosphorus bioavailability in contaminated soil. J. Soil Plant Environ. 2023, 2, 21–52. [Google Scholar] [CrossRef]
- Saeed, Q.; Xiukang, W.; Haider, F.U.; Kučerik, J.; Mumtaz, M.Z.; Holatko, J.; Naseem, M.; Kintl, A.; Ejaz, M.; Naveed, M.; et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 2021, 22, 529. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Adam, C.; Kugler, S.A. Thermochemical treatment of Sewage Sludge Ash (SSA)-potential and perspective in Poland. Energies 2020, 13, 5461. [Google Scholar] [CrossRef]
- Chetyrbotskiy, V.A.; Chetyrbotskiy, A.N.; Levin, B.V. Mathematical modeling of the dynamics of plant mineral nutrition in the fertilizer–soil–plant system. Biophysics 2020, 65, 1036–1045. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–520. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Polish Scientific Publishing Company: Warsaw, Poland, 1999; pp. 1–400. [Google Scholar]
- MH-PL. Ordinance by the Minister of Health (Poland) of 13 January 2003 on maximum concentrations of chemical and biological impurities which may be present in food, food ingredients, permitted supplementary substances and substances helpful in food processing. J. Laws 2003, 37, 326. [Google Scholar]
- MARD-PL. Ordinance by the Minister of Agriculture and Rural Development (Poland) of 25 August 2014 amending the ordinance on the content of undesirable substances in animal feed. J. Laws 2014, 37, 1213. [Google Scholar]
- MARD-PL. Ordinance by the Minister of Agriculture and Rural Development (Poland) of 29 June 2019 amending the ordinance on the content of undesirable substances in animal feed. J. Laws 2018, 2018, 1213. [Google Scholar]
- FAO-WHO. Codex Alimentarius. General Standard for Contaminants and Toxins in Food and Feed. CXS 193-1995; Food and Agricultural Organization of the United Nation, World Health Organization: Rome, Italy, 2023. [Google Scholar]
- EU. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Off. J. Eur. Union 2023, L119, 103–157. [Google Scholar]
- USDA-FAS. China Releases the Standard for Maximum Levels of Contaminants in Foods; Foreign Agricultural Service, GAIN Report Number CH2023-0040; U.S. Department of Agriculture: Washington, DC, USA, 2023. [Google Scholar]
- Kabata-Pendias, A.; Motowicka-Terelak, T.; Piotrowska, M.; Terelak, H.; Witek, T. Ocena stopnia zanieczyszczenia gleb i roślin metalami ciężkimi i siarką. Ramowe Wytyczne Dla Rolnictwa. IUNG Puławy 1993, 53, 1–20. [Google Scholar]
Symbol | Raw Material | Bacteria |
---|---|---|
Suspension biofertilizers | ||
AsBm | Sewage sludge ash 1 | Bacillus megaterium 3 |
BsBm | Animal bones 2 | Bacillus megaterium |
Granular biofertilizers | ||
AgAf | Sewage sludge ash | Acidithiobacillus ferrooxidans 4 |
ABgAf | Sewage sludge ash + animal bones | Acidithiobacillus ferrooxidans |
ABgBm | Sewage sludge ash + animal bones | Bacillus megaterium |
AHgBm | Sewage sludge ash + dried animal blood 2 | Bacillus megaterium |
Experiment | Biofertilizers Tested | Reference Treatments | P Doses, kg ha−1 | P-Treatment Number (n) | Test Crop | Growing Season |
---|---|---|---|---|---|---|
I | AsBm, BsBm | no P, SP, PR, A + H2O | 0, 21 | 6 (24) | Spring wheat | 2014 |
II | AsBm | no P, SP, PR | 0, 17.6, 26.4, 35.2 | 10 (80) | Spring wheat | 2015 |
III | AgAf, ABgAf | no P, SP | 0, 17.6, 26.4, 35.2 | 10 (40) | Winter wheat | 2014/2015 |
IV | ABgBm | no P, SP, ABg | 0, 17.6, 26.4, 35.2 | 10 (40) | Winter wheat | 2015/2016 |
V | AHgBm | no P, SP, AHg | 0, 17.6, 26.4, 35.2 | 10 (40) | Spring wheat | 2016 |
VI | AHgBm | no P, SP, AHg | 0, 17.6, 26.4, 35.2 | 10 (40) | Winter wheat | 2016/2017 |
VII | AHgBm | no P, SP, AHg | 0, 17.6, 26.4, 35.2 | 10 (40) | Spring wheat | 2017 |
Traits | Statistics | Experiments | |||||
---|---|---|---|---|---|---|---|
II | III | IV | V | VI | VII | ||
Hectoliter (test) weight, kg/hL | mean | 79.6 | 83.0 | 76.9 | 76.7 | 79.4 | 75.1 |
median | 79.7 | 83.1 | 76.9 | 76.7 | 79.4 | 75.1 | |
SE | 0.08 | 0.06 | 0.05 | 0.08 | 0.08 | 0.12 | |
p | 0.771 | 0.816 | 0.851 | 0.842 | 0.991 | 0.719 | |
Hardness index | mean | 87.4 | 95.0 | 50.9 | 59.0 | 67.4 | 54.0 |
median | 81.5 | 96.6 | 51.2 | 58.1 | 67.7 | 54.2 | |
SE | 2.89 | 1.16 | 0.48 | 0.56 | 0.47 | 0.36 | |
p | 0.471 | 0.188 | 0.693 | 0.133 | 0.397 | 0.849 | |
Zeleny (sedimentation) index | mean | 50.0 | 33.3 | 32.7 | 44.5 | 23.8 | 38.3 |
median | 45.5 | 32.6 | 32.4 | 44.6 | 23.9 | 38.3 | |
SE | 0.48 | 0.49 | 0.36 | 0.34 | 0.25 | 0.42 | |
p | 0.860 | 0.969 | 0.855 | 0.841 | 0.842 | 0.817 | |
Starch content, % | mean | 67.3 | 70.8 | 69.9 | 68.1 | 69.4 | 68.3 |
median | 65.8 | 70.9 | 69.9 | 68.1 | 69.4 | 68.4 | |
SE | 0.32 | 0.09 | 0.08 | 0.06 | 0.06 | 0.06 | |
p | 0.845 | 0.222 | 0.867 | 0.794 | 0.987 | 0.509 | |
Wet gluten content, % | mean | 33.2 | 26.4 | 24.3 | 28.2 | 21.3 | 26.3 |
median | 33.4 | 26.3 | 24.2 | 28.3 | 21.4 | 26.3 | |
SE | 0.28 | 0.18 | 0.15 | 0.12 | 0.10 | 0.13 | |
p | 0.877 | 0.940 | 0.922 | 0.887 | 0.982 | 0.872 | |
Protein content, % | mean | 14.3 | 11.8 | 11.9 | 13.3 | 10.3 | 12.6 |
median | 14.2 | 11.7 | 11.9 | 13.3 | 10.3 | 12.6 | |
SE | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.05 | |
p | 0.996 | 0.876 | 0.782 | 0.987 | 0.980 | 0.883 |
Essential Amino Acids | Statistics | Experiments | Non-Essential Amino Acids | Statistics | Experiments | ||
---|---|---|---|---|---|---|---|
II | V | II | V | ||||
Histidine | mean | 2.99 | 2.74 | Alanine | mean | 4.63 | 4.20 |
median | 2.99 | 2.75 | median | 4.63 | 4.21 | ||
SE | 0.02 | 0.02 | SE | 0.03 | 0.03 | ||
p | 0.989 | 0.593 | p | 0.982 | 0.667 | ||
Isoleucine | mean | 4.47 | 3.97 | Arginine | mean | 6.21 | 5.69 |
median | 4.44 | 6.96 | median | 6.20 | 5.72 | ||
SE | 0.03 | 0.03 | SE | 0.05 | 0.06 | ||
p | 0.990 | 0.921 | p | 0.946 | 0.379 | ||
Leucine | mean | 9.01 | 8.06 | Aspartic acid | mean | 6.78 | 5.91 |
median | 8.93 | 8.05 | median | 6.78 | 5.88 | ||
SE | 0.06 | 0.07 | SE | 0.05 | 0.06 | ||
p | 0.983 | 0.585 | p | 0.748 | 0.396 | ||
Lysine | mean | 3.52 | 3.32 | Cysteine | mean | 2.81 | 2.55 |
median | 3.52 | 3.28 | median | 2.83 | 2.57 | ||
SE | 0.02 | 0.05 | SE | 0.02 | 0.02 | ||
p | 0.991 | 0.689 | p | 0.796 | 0.352 | ||
Methionine | mean | 2.08 | 1.85 | Glutamic acid | mean | 43.8 | 37.1 |
median | 2.10 | 1.88 | median | 43.6 | 37.0 | ||
SE | 0.02 | 0.02 | SE | 0.42 | 0.35 | ||
p | 0.497 | 0.161 | p | 0.915 | 0.752 | ||
Phenylalanine | mean | 6.45 | 5.60 | Glycine | mean | 5.63 | 5.09 |
median | 6.41 | 5.62 | median | 5.60 | 5.10 | ||
SE | 0.05 | 0.05 | SE | 0.04 | 0.04 | ||
p | 0.985 | 0.377 | p | 0.985 | 0.602 | ||
Threonine | mean | 3.91 | 3.51 | Proline | mean | 14.2 | 12.2 |
median | 3.92 | 3.51 | median | 14.1 | 12.3 | ||
SE | 0.03 | 0.03 | SE | 0.14 | 0.11 | ||
p | 0.918 | 0.576 | p | 0.998 | 0.692 | ||
Tryptophan | mean | 1.53 | 1.41 | Serine | mean | 6.61 | 5.77 |
median | 1.54 | 1.42 | median | 6.59 | 5.77 | ||
SE | 0.01 | 0.01 | SE | 0.06 | 0.07 | ||
p | 0.437 | 0.617 | p | 0.992 | 0.523 | ||
Valine | mean | 5.62 | 5.14 | Tyrosine | mean | 3.61 | 3.23 |
median | 5.59 | 5.14 | median | 3.60 | 3.22 | ||
SE | 0.03 | 0.04 | SE | 0.03 | 0.05 | ||
p | 0.992 | 0.903 | p | 0.988 | 0.697 |
Elements | Statistics | Experiments | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
P 2 | mean | 3.63 | 3.51 | 1.97 | 2.84 | 3.84 |
median | 3.62 | 3.49 | 1.98 | 2.84 | 3.83 | |
SE | 0.024 | 0.027 | 0.025 | 0.014 | 0.018 | |
p | 0.291 | 0.141 | 0.359 | 0.795 | 0.995 | |
C | mean | 406 | 409 | 341 | 416 | 413 |
median | 405 | 406 | 341 | 416 | 413 | |
SE | 0.46 | 1.52 | 1.85 | 0.25 | 0.28 | |
p | 0.895 | 0.340 | 0.910 | 0.482 | 0.934 | |
N | mean | 22.4 | 22.8 | 19.0 | 18.9 | 21.5 |
median | 22.3 | 22.6 | 18.7 | 18.7 | 21.5 | |
SE | 0.12 | 0.09 | 0.10 | 0.12 | 0.06 | |
p | 0.836 | 0.431 | 0.910 | 0.826 | 0.358 | |
K | mean | 4.03 | 4.62 | 3.86 | 3.88 | 4.20 |
median | 4.00 | 4.29 | 3.82 | 3.87 | 4.219 | |
SE | 0.030 | 0.024 | 0.031 | 0.020 | 0.019 | |
p | 0.395 | 0.791 | 0.386 | 0.985 | 0.988 | |
Ca | mean | 0.49 | 0.33 | 0.29 | 0.32 | 0.33 |
median | 0.49 | 0.32 | 0.27 | 0.31 | 0.33 | |
SE | 0.005 | 0.007 | 0.017 | 0.006 | 0.004 | |
p | 0.855 | 0.516 | 0.991 | 0.847 | 0.608 | |
Mg | mean | 1.40 | 1.40 | 1.01 | 1.06 | 1.34 |
median | 1.39 | 1.39 | 1.00 | 1.06 | 1.34 | |
SE | 0.011 | 0.009 | 0.008 | 0.004 | 0.006 | |
p | 0.529 | 0.200 | 0.364 | 0.695 | 0.995 | |
S | mean | 1.35 | 1.38 | 1.18 | 1.16 | 1.34 |
median | 1.34 | 1.38 | 1.16 | 1.16 | 1.35 | |
SE | 0.010 | 0.010 | 0.010 | 0.007 | 0.007 | |
p | 0.276 | 0.544 | 0.388 | 0.909 | 0.511 |
Elements | Statistics | Experiments | ||||
---|---|---|---|---|---|---|
I | II | III | IV | V | ||
B | mean | <LoD | <LoD | 0.54 | 0.53 | 0.57 |
median | <LoD | <LoD | <LoD | <LoD | <LoD | |
SE | 0.024 | 0.014 | 0.022 | |||
p | 0.571 | 0.720 | 0.749 | |||
Cu 2 | mean | 2.84 | 3.81 | 2.29 | 3.81 | 4.37 |
median | 2.79 | 3.80 | 2.29 | 3.81 | 4.12 | |
SE | 0.067 | 0.051 | 0.051 | 0.113 | 0.276 | |
p | 0.536 | 0.525 | 0.608 | 0.966 | 0.994 | |
Fe 3 | mean | 39.7 | 56.3 | 59.6 | 32.7 | 40.8 |
median | 39.2 | 55.2 | 56.9 | 31.7 | 39.4 | |
SE | 0.51 | 1.91 | 2.09 | 0.72 | 1.03 | |
p | 0.917 | 0.882 | 0.523 | 0.348 | 0.385 | |
Mn | mean | 26.5 | 20.7 | 21.6 | 24.5 | 23.5 |
median | 26.9 | 20.4 | 22.2 | 24.9 | 23.3 | |
SE | 0.51 | 0.26 | 0.36 | 0.25 | 0.18 | |
p | 0.133 | 0.376 | 0.217 | 0.668 | 0.985 | |
Mo | mean | 1.01 | 1.99 | 1.84 | 1.21 | 1.70 |
median | 0.98 | 2.11 | 1.76 | 0.95 | 1.16 | |
SE | 0.127 | 0.138 | 0.180 | 0.217 | 0.244 | |
p | 0.053 | 0.122 | 0.585 | 0.732 | 0.512 | |
Ni 2 | mean | 0.107 | 0.038 | 0.197 | 0.155 | 0.187 |
median | 0.096 | 0.021 | 0.164 | 0.126 | 0.059 | |
SE | 0.024 | 0.005 | 0.022 | 0.014 | 0.043 | |
p | 0.131 | 0.258 | 0.922 | 0.421 | 0.868 | |
Zn 2 | mean | 22.2 | 40.5 | 25.6 | 24.9 | 26.3 |
median | 22.1 | 40.3 | 25.4 | 24.8 | 26. | |
SE | 0.42 | 0.52 | 0.47 | 0.38 | 0.27 | |
p | 0.597 | 0.226 | 0.576 | 0.405 | 0.823 | |
As 2 | mean | <LoD | 0.058 | 0.061 | 0.056 | 0.100 |
median | <LoD | <LoD | <LoD | <LoD | 0.076 | |
SE | 0.003 | 0.004 | 0.002 | 0.009 | ||
p | 0.252 | 0.776 | 0.468 | 0.713 | ||
Al 3 | mean | 8.98 | <LoD | <LoD | 2.69 | 2.51 |
median | 8.95 | <LoD | <LoD | 2.11 | 2.05 | |
SE | 0.353 | 0.354 | 0.324 | |||
p | 0.721 | 0.170 | 0.590 | |||
Cd 4 | mean | 0.086 | 0.039 | 0.012 | 0.016 | 0.036 |
median | 0.082 | 0.040 | 0.011 | 0.016 | 0.038 | |
SE | 0.004 | 0.001 | 0.001 | 0.002 | 0.002 | |
p | 0.489 | 0.452 | 0.638 | 0.085 | 0.463 | |
Cr 2 | mean | 0.193 | 0.087 | 0.082 | 0.253 | 0.432 |
median | 0.141 | <LoD | <LoD | 0.168 | 0.292 | |
SE | 0.047 | 0.015 | 0.025 | 0.043 | 0.071 | |
p | 0.477 | 0.268 | 0.754 | 0.284 | 0.984 | |
Pb 4 | mean | 0.014 | 0.046 | 0.078 | 0.019 | 0.038 |
median | 0.012 | 0.027 | 0.041 | <LoD | <LoD | |
SE | 0.001 | 0.005 | 0.010 | 0.004 | 0.007 | |
p | 0.590 | 0.686 | 0.888 | 0.725 | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastrzębska, M.; Kostrzewska, M.K.; Saeid, A. The Effect of Renewable Phosphorus Biofertilizers on Selected Wheat Grain Quality Parameters. Agriculture 2024, 14, 727. https://doi.org/10.3390/agriculture14050727
Jastrzębska M, Kostrzewska MK, Saeid A. The Effect of Renewable Phosphorus Biofertilizers on Selected Wheat Grain Quality Parameters. Agriculture. 2024; 14(5):727. https://doi.org/10.3390/agriculture14050727
Chicago/Turabian StyleJastrzębska, Magdalena, Marta K. Kostrzewska, and Agnieszka Saeid. 2024. "The Effect of Renewable Phosphorus Biofertilizers on Selected Wheat Grain Quality Parameters" Agriculture 14, no. 5: 727. https://doi.org/10.3390/agriculture14050727
APA StyleJastrzębska, M., Kostrzewska, M. K., & Saeid, A. (2024). The Effect of Renewable Phosphorus Biofertilizers on Selected Wheat Grain Quality Parameters. Agriculture, 14(5), 727. https://doi.org/10.3390/agriculture14050727