Intercropping Industrial Hemp and Cowpea Enhances the Yield of Squash—A Pollinator-Dependent Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Pollinator Sampling
2.3. Assessment of Crop Yield
2.4. Statistical Analyses
3. Results
3.1. Effects of Intercropping on Pollinator Abundance and Diversity in the Cropping Systems
3.2. Effects of Intercropping on Crop Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallai, N.; Salles, J.; Settele, J.; Vaissière, B. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Calderone, N.W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 2012, 7, e37235. [Google Scholar] [CrossRef]
- Free, J.B. Insect Pollination of Crops, 2nd ed.; Academic Press: London, UK, 1993; p. 684. [Google Scholar]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Bauer, D.; Wing, I. The macroeconomic cost of catastrophic pollinator declines. Ecol. Econ. 2016, 126, 1–13. [Google Scholar] [CrossRef]
- Reilly, J.R.; Artz, D.R.; Biddinger, D.; Bobiwash, K.; Boyle, N.K.; Brittain, C.; Brokaw, J.; Campbell, J.W.; Daniels, J.; Elle, E.; et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 2020, 287, 20200922. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Raemakers, I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 2008, 89, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Winfree, R.; Aguilar, R.; Vázquez, D.; LeBuhn, G.; Aizen, M.A. Meta-analysis of bees’ response to anthropogenic disturbance. Ecology 2009, 90, 2068–2076. [Google Scholar] [CrossRef]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Olsen, D.W.; Thornsbury, S.D.; Scott, S. Hope for Hemp: New Opportunities and Challenges for an Old Crop. In Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2020. [Google Scholar]
- Flicker, N.R.; Poveda, K.; Grab, H. The bee community of Cannabis sativa and corresponding effects of landscape composition. Environ. Entomol. 2020, 49, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Dalio, J.S. Cannabis sativa-An important subsistence pollen source for Apis mellifera. IOSR J. Pharm. Biol. Sci. 2012, 1, 1–3. [Google Scholar] [CrossRef]
- O’Brien, C.; Arathi, H.S. Bee diversity and abundance on flowers of industrial hemp (Cannabis sativa L.). Biomass Bioenergy 2019, 122, 331–335. [Google Scholar] [CrossRef]
- Ely, K.; Podder, S.; Reiss, M.; Fike, J. Industrial hemp as a crop for a sustainable agriculture. In Cannabis/Hemp for Sustainable Agriculture and Materials; Agrawal, D.C., Kumar, R., Dhanasekaran, M., Eds.; Springer: Singapore, 2022; pp. 1–28. [Google Scholar]
- Dingha, B.N.; Jackai, L.E. Chemical composition of four industrial hemp (Cannabis sativa L.) pollen and bee preference. Insects 2023, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- USDA-NASS. Agricultural Statistics 2022; National Hemp Report; USDA-NASS: Washington, DC, USA, 2022.
- Kaur, N.; Brym, Z.; Oyola, L.A.M.; Sharma, L.K. Nitrogen fertilization impact on hemp (Cannabis sativa L.) crop production: A review. Agron. J. 2023, 4, 1557–1570. [Google Scholar] [CrossRef]
- Awonaike, K.O.; Kumarasinghe, K.S.; Danso, S.K.A. Nitrogen fixation and yield of cowpea (Vigna unguiculata) as influenced by cultivar and Bradyrhizobium strain. Field Crops Res. 1990, 24, 163–171. [Google Scholar] [CrossRef]
- Hall, A.E.; Frate, C.A. Blackeye Bean Production in California; University of California Division of Agriculture and Natural Resources: Oakland, CA, USA, 1996; p. 24. [Google Scholar]
- Ongom, P.O.; Fatokun, C.; Togola, A.; Mohammed, S.B.; Ishaya, D.J.; Bala, G.; Popoola, B.; Mansur, A.; Tukur, S.; Ibikunle, M.; et al. Exploiting the genetic potential of cowpea in an intercropping complex. Agronomy 2023, 13, 1594. [Google Scholar] [CrossRef]
- Dingha, B.N.; Jackai, L.E.; Amoah, B.A.; Akotsen-Mensah, C. Pollinators on cowpea Vigna unguiculata: Implications for intercropping to enhance biodiversity. Insects 2021, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Dingha, B.N.; Omaliko, P.C.; Amoah, B.A.; Jackai, L.E.; Shrestha, D. Evaluation of cowpea (Vigna unguiculata) in an intercropping system as pollinator enhancer for increased crop yield. Sustainability 2021, 13, 9612. [Google Scholar] [CrossRef]
- Dingha, B.; Sandler, L.; Bhowmik, A.; Akotsen-Mensah, C.; Jackai, L.; Gibson, K.; Turco, R. Industrial hemp knowledge and interest among North Carolina organic farmers in the United States. Sustainability 2019, 11, 2691. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-1. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 23 September 2023).
- Ogle, D.H.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R Package Version 0.8.26. Available online: https://github.com/droglenc/FSA (accessed on 23 September 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 1 September 2023).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D. Paleontological Data Analysis, 2nd ed.; Blackwell Publishing: Oxford, UK, 2006; p. 351. [Google Scholar]
- Lago, P.K.; Stanford, D.F. Phytophagous insects associated with cultivated marijuana (Cannabis sativa L.) in northern Mississippi. J. Entomol. Sci. 1989, 24, 437–445. [Google Scholar] [CrossRef]
- Shuler, R.E.; Roulston, T.H.; Farris, G.E. Farming practices influence wild pollinator populations on squash and pumpkin. J. Econ. Entomol. 2005, 98, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Kamo, T.; Nikkeshi, A.; Tawaratsumida, T.; Tanaka, Y.; Nakamura, S.; Kishi, S. Pollination efficiency of bumblebee, honeybee, and hawkmoth in kabocha squash, Cucurbita maxima, production in Kagoshima. Jpn. Appl. Entomol. Zool. 2022, 57, 119–129. [Google Scholar] [CrossRef]
- Guzman, A.; Chase, M.; Kremen, C. On-farm diversification in an agriculturally dominated landscape positively influences specialist pollinators. Front. Sustain. Food Syst. 2019, 3, 87. [Google Scholar] [CrossRef]
- Hoehn, P.; Tscharntke, T.; Tylianakis, J.M.; Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. B 2008, 275, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Mallinger, R.E.; Gratton, C. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J. Appl. Ecol. 2015, 52, 323–330. [Google Scholar] [CrossRef]
- Pereira, A.L.C.; Taques, T.C.; Valim, J.O.S.; Madureira, A.P.; Campos, W.G. The management of bee communities by intercropping with flowering basil (Ocimum basilicum) enhances pollination and yield of bell pepper (Capsicum annuum). J. Insect Conserv. 2015, 19, 479–486. [Google Scholar] [CrossRef]
- Norfolk, O.; Eichhorn, M.P.; Gilbert, F. Flowering ground vegetation benefits wild pollinators and fruit set of almond within arid smallholder orchards. Insect Conserv. Divers. 2016, 9, 236–243. [Google Scholar] [CrossRef]
- Brittain, C.; Williams, N.; Kremen, C.; Klein, A.M. Synergistic effects of non-Apis bees and honeybees for pollination services. Proc. Biol. Sci. 2013, 280, 20122767. [Google Scholar]
- Greenleaf, S.S.; Kremen, C. Wild bees enhance honeybees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 2006, 103, 13890–13895. [Google Scholar] [CrossRef] [PubMed]
- Chagnon, M.; Gingras, J.; De Oliveira, D. Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J. Econ. Entomol. 1993, 86, 416–420. [Google Scholar] [CrossRef]
- Fründ, J.; Dormann, C.F.; Holzschuh, A.; Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 2013, 94, 2042–2054. [Google Scholar] [CrossRef] [PubMed]
- Salama, H.S.A.; Nawar, A.I.; Khalil, H.E. Intercropping pattern and N fertilizer schedule affect the performance of additively intercropped maize and forage cowpea in the Mediterranean region. Agronomy 2022, 12, 107. [Google Scholar] [CrossRef]
- Hei, Z.; Xiang, H.; Zhang, J.; Liang, K.; Zhong, J.; Li, M.; Ren, X. Intercropping of rice and water mimosa (Neptunia oleracea Lour.): A novel model to control pests and diseases and improve yield and grain quality while reducing N fertilizer application. Agriculture 2022, 12, 13. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Marka, S.; Ntanasi, T.; Consentino, B.B.; Sabatino, L.; Iannetta, P.P.M.; Savvas, D. Fresh pod yield, physical and nutritional quality attributes of common bean as influenced by conventional or organic farming practices. Plants 2023, 12, 32. [Google Scholar] [CrossRef]
- Tachiki, Y.; Iwasa, Y.; Satake, A. Pollinator coupling can induce synchronized flowering in different plant species. J. Theor. Biol. 2010, 267, 153–163. [Google Scholar] [CrossRef]
Cropping Systems | Dominance (D) | Shannon (H’) | Evenness | Margalef | Berger–Parker |
---|---|---|---|---|---|
Cowpea Monocrop | 0.33 | 1.31 | 0.74 | 0.69 | 0.48 |
Hemp Monocrop | 0.35 | 1.17 | 0.65 | 0.82 | 0.43 |
Squash Monocrop | 0.29 | 1.31 | 0.74 | 0.78 | 0.36 |
Hemp+Cowpea | 0.25 | 1.47 | 0.87 | 0.62 | 0.37 |
Hemp+Squash | 0.32 | 1.29 | 0.73 | 0.62 | 0.42 |
Squash+Cowpea | 0.24 | 1.49 | 0.88 | 0.58 | 0.29 |
Crops | Cropping Systems | Yield |
---|---|---|
Squash (kg) | Squash Monocrop | 3.00 ± 0.46 a |
Hemp+Squash | 7.66 ± 0.71 b | |
Squash+Cowpea | 7.83 ± 0.44 b | |
H statistic | 20.03 *** | |
Hemp (g) | Hemp Monocrop | 2.99 ± 0.49 a |
Hemp+Cowpea | 4.91 ± 0.67 ab | |
Hemp+Squash | 7.94 ± 1.15 b | |
H statistic | 12.95 ** | |
Cowpea (g) | Cowpea Monocrop | 1.9 ± 0.00 |
Squash+Cowpea | 1.6 ± 0.01 | |
Hemp+Cowpea | 1.5 ± 0.01 | |
F statistic | 1.70 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dingha, B.N.; Mukoko, G.N.; Egbon, I.N.; Jackai, L.E. Intercropping Industrial Hemp and Cowpea Enhances the Yield of Squash—A Pollinator-Dependent Crop. Agriculture 2024, 14, 636. https://doi.org/10.3390/agriculture14040636
Dingha BN, Mukoko GN, Egbon IN, Jackai LE. Intercropping Industrial Hemp and Cowpea Enhances the Yield of Squash—A Pollinator-Dependent Crop. Agriculture. 2024; 14(4):636. https://doi.org/10.3390/agriculture14040636
Chicago/Turabian StyleDingha, Beatrice N., Gilbert N. Mukoko, Ikponmwosa N. Egbon, and Louis E. Jackai. 2024. "Intercropping Industrial Hemp and Cowpea Enhances the Yield of Squash—A Pollinator-Dependent Crop" Agriculture 14, no. 4: 636. https://doi.org/10.3390/agriculture14040636