Linking Entrepreneurship to Productivity: Using a Composite Indicator for Farm-Level Innovation in UK Agriculture with Secondary Data
Abstract
:1. Introduction
1.1. Defining Indicators for Innovation
1.2. The Purpose and Contributions of the Current Study
2. Material and Methods
2.1. Aims and Overview of Methodology
2.2. Data Sources
2.3. Construction of Variables for the TFP Analysis
2.4. The Malmquist Index of Total Factor Productivity
- if technical change of farm is greater than 1; and
- the distance function estimates, under CRS, for the farm in the period relative to estimated technology in period are also greater than 1; and
- efficiency estimates, under CRS, at time relative to technology at time equals 1;
- then that farm has contributed to a shift in the frontier between the two periods. Formally, this is expressed as follows:
2.5. Panel Data Econometric Models
3. Results
3.1. The MI of TFP and Its Components
3.2. Test for Innovators in the Sample
3.3. Decomposition of the Efficiency Change Index into Pure Efficiency Change and Scale Efficiency Change
3.4. The Determinants of Innovation in Management and Innovation through Human Capital
4. Discussion
4.1. What Has Been Driving Productivity Change?
4.2. Managerial and Entrepreneurial Efficiency
4.3. A Word on Economies of Scale
4.4. Management and Technology as Drivers of Innovation
4.5. A Word on Entrepreneurial Competencies in Agriculture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soteriades, A.D.; Stott, A.W.; Moreau, S.; Charroin, T.; Blanchard, M.; Liu, J.; Faverdin, P. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling. PLoS ONE 2016, 11, e0166445. [Google Scholar] [CrossRef] [PubMed]
- van der Gaast, K.; van Leeuwen, E.; Wertheim-Heck, S. Food systems in transition: Conceptualizing sustainable food entrepreneurship. Int. J. Agric. Sustain. 2022, 20, 705–721. [Google Scholar] [CrossRef]
- Foresight, R. The Future of Food and Farming. In Final Project Report; The Government Office for Science: London, UK, 2011. [Google Scholar]
- Poudel, D.; Pandit, N.P. Profitability and Resource Use Efficiency of Polycarp Production in Morang, Nepal. J. Inst. Agric. Anim. Sci. 2020, 36, 63–74. [Google Scholar] [CrossRef]
- Warr, P.; Suphannachart, W. Agricultural Productivity Growth and Poverty Reduction: Evidence from Thailand. J. Agric. Econ. 2021, 72, 525–546. [Google Scholar] [CrossRef]
- O’Donnell, C.J. Using information about technologies, markets and firm behaviour to decompose a proper productivity index. J. Econom. 2016, 190, 328–340. [Google Scholar] [CrossRef]
- Pretty, J.; Attwood, S.; Bawden, R.; Berg, H.; van den Bharucha, Z.P.; Dixon, J.; Flora, C.B.; Gallagher, K.; Genskow, K.; Hartley, S.E.; et al. Assessment of the growth in social groups for sustainable agriculture and land management. Glob. Sustain. 2020, 3, e23. [Google Scholar] [CrossRef]
- Scognamillo, A.; Mastrorillo, M.; Ignaciuk, A. Reducing Vulnerability to Weather Shocks through Social Protection—Evidence from the Implementation of Productive Safety Net Programme (PSNP) in Ethiopia; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Ghazy, N.; Ghoneim, H.; Lang, G. Entrepreneurship, productivity and digitalization: Evidence from the EU. Technol. Soc. 2022, 70, 102052. [Google Scholar] [CrossRef]
- Ang, J.B.; Banerjee, R.; Madsen, J.B. Innovation and Productivity Advances in British Agriculture: 1620–1850. South. Econ. J. 2013, 80, 162–186. [Google Scholar] [CrossRef]
- Bjorklund, J.C. Barriers to Sustainable Business Model Innovation in Swedish Agriculture. J. Entrep. Manag. Innov. 2018, 14, 65–90. [Google Scholar] [CrossRef]
- Savastano, M.; Samo, A.H.; Channa, N.A.; Amendola, C. Toward a Conceptual Framework to Foster Green Entrepreneurship Growth in the Agriculture Industry. Sustainability 2022, 14, 7. [Google Scholar] [CrossRef]
- Thephavanh, M.; Philp, J.N.M.; Nuberg, I.; Denton, M.; Larson, S. Perceptions of the Institutional and Support Environment amongst Young Agricultural Entrepreneurs in Laos. Sustainability 2023, 15, 5. [Google Scholar] [CrossRef]
- Yoon, B.K.; Tae, H.; Jackman, J.A.; Guha, S.; Kagan, C.R.; Margenot, A.J.; Rowland, D.L.; Weiss, P.S.; Cho, N.-J. Entrepreneurial Talent Building for 21st Century Agricultural Innovation. ACS Nano 2021, 15, 10748–10758. [Google Scholar] [CrossRef] [PubMed]
- Deininger, K.; Jin, S.; Ma, M. Structural Transformation of the Agricultural Sector in Low- and Middle-Income Economies. Annu. Rev. Resour. Econ. 2022, 14, 221–241. [Google Scholar] [CrossRef]
- Rahman, S.; Anik, A.R.; Sarker, J.R. Climate, Environment and Socio-Economic Drivers of Global Agricultural Productivity Growth. Land 2022, 11, 4. [Google Scholar] [CrossRef]
- Bizikova, L.; Nkonya, E.; Minah, M.; Hanisch, M.; Turaga, R.M.R.; Speranza, C.I.; Karthikeyan, M.; Tang, L.; Ghezzi-Kopel, K.; Kelly, J.; et al. A scoping review of the contributions of farmers’ organizations to smallholder agriculture. Nat. Food 2020, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Zezza, A.; Henke, R.; Lai, M.; Petriccione, G.; Solazzo, R.; Sturla, A.; Vagnozzi, A.; Vanino, S.; Viganò, L.; Smit, B.; et al. Research for AGRI Committee—Policy Support for Productivity vs Sustainability in EU Agriculture: Towards Viable Farming and Green Growth; Policy Department: Washington, DC, USA, 2017. Available online: http://www.europarl.europa.eu/supporting-analyses (accessed on 12 December 2023).
- Buckwell, A.; Uhre, A.; Williams, A.; Polakova, J. The Sustainable Intensification of European Agriculture; RISE: Memphis, TN, USA, 2014. [Google Scholar]
- OECD. Agricultural Innovation Systems; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef]
- Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data; OECD Publishing: Paris, France, 2005. [CrossRef]
- Martinho, V.J.P.D. Agricultural entrepreneurship in the european union: Contributions for a sustainable development. Appl. Sci. 2020, 10, 2080. [Google Scholar] [CrossRef]
- Lediana, E.; Perdana, T.; Deliana, Y.; Sendjaja, T.P. Sustainable Entrepreneurial Intention of Youth for Agriculture Start-Up: An Integrated Model. Sustainability 2023, 15, 2326. [Google Scholar] [CrossRef]
- Bergevoet, R.; Giesen, G.W.J.; Saatkamp, H.W.; van Woerkum, C.M.J.; Huirne, R.B.M. Improving enterpreneurship in farming: The impact of a training programme in Dutch dairy farming. Int. Farm Manag. Assoc. Congr. 2005, 15, 70–80. [Google Scholar]
- Byma, J.P.; Tauer, L.W. Exploring the Role of Managerial Ability in Influencing Dairy Farm Efficiency. Agric. Resour. Econ. Rev. 2010, 39, 505–516. [Google Scholar] [CrossRef]
- Hansson, H. How can farmer managerial capacity contribute to improved farm performance? A study of dairy farms in Sweden. Acta Agric. Scand. Sect. C Food Econ. 2008, 5, 44–61. [Google Scholar] [CrossRef]
- Kilpatrick, S. Education and training: Impacts on farm management practice. J. Agric. Educ. Ext. 2000, 7, 105–116. [Google Scholar] [CrossRef]
- Läpple, D.; Hennessy, T. Assessing the Impact of Financial Incentives in Extension Programmes: Evidence From Ireland. J. Agric. Econ. 2015, 66, 781–795. [Google Scholar] [CrossRef]
- Manevska-Tasevska, G.; Hansson, H. Does Managerial Behavior Determine Farm Technical Efficiency? A Case of Grape Production in an Economy in Transition. Manag. Decis. Econ. 2011, 32, 399–412. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Two-stage DEA: Caveat emptor. J. Product. Anal. 2011, 36, 205–218. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Stefanides, Z.; Tauer, L.W. The Empirical Impact of Bovine Somatotropin on a Group of New York Dairy Farms. Am. J. Agric. Econ. 1999, 81, 95–102. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.A.K. Production Frontiers; Camridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Langton, S. Dairy Farms: Economic Performance and Links with Environmental Perfromance. A Report Based on the Farm Business Survey. Research R. 2013. Available online: https://www.gov.uk/government/statistics/dairy-farms-economic-performance-and-links-with-environmental-performance (accessed on 15 December 2023).
- Mäkinen, H. Farmers’ managerial thinking and management process effectiveness as factors of financial success on Finnish dairy farms. Agric. Food Sci. 2013, 4, 452–465. [Google Scholar] [CrossRef]
- Vanhuyse, F.; Bailey, A.; Tranter, R. Management practices and the financial performance of farms. Agric. Financ. Rev. 2021, 81, 415–429. [Google Scholar] [CrossRef]
- Dupré, M.; Michels, T.; Le Gal, P.-Y. Diverse dynamics in agroecological transitions on fruit tree farms. Eur. J. Agron. 2017, 90, 23–33. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Management information system adoption at the farm level: Evidence from the literature. Br. Food J. 2020, 123, 884–909. [Google Scholar] [CrossRef]
- Mishra, A.K.; Morehart, M.J. Factors affecting returns to labor and management on U.S. dairy farms. Agric. Financ. Rev. 2001, 61, 123–140. [Google Scholar] [CrossRef]
- Solano, C.; León, H.; Pérez, E.; Tole, L.; Fawcett, R.H.; Herrero, M. Using farmer decision-making profiles and managerial capacity as predictors of farm management and performance in Costa Rican dairy farms. Agric. Syst. 2006, 88, 395–428. [Google Scholar] [CrossRef]
- Artz, G.; Colson, G.; Ginder, R. A return of the threshing ring? A case study of machinery and labor-sharing in Midwestern farms. J. Agric. Appl. Econ. 2010, 42, 805. [Google Scholar] [CrossRef]
- Hall, B.F.; LeVeen, E.P. Farm Size and Economic Efficiency: The Case of California. Am. J. Agric. Econ. 1978, 60, 589–600. [Google Scholar] [CrossRef]
- Larsén, K. Effects of machinery-sharing arrangements on farm efficiency: Evidence from Sweden. Agric. Econ. 2010, 41, 497–506. [Google Scholar] [CrossRef]
- Rakhra, M.; Sanober, S.; Quadri, N.N.; Verma, N.; Ray, S.; Asenso, E. Implementing Machine Learning for Smart Farming to Forecast Farmers’ Interest in Hiring Equipment. J. Food Qual. 2022, 2022, e4721547. [Google Scholar] [CrossRef]
- Dhungana, B.R.; Nuthall, P.L.; Nartea, G.V. Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis. Aust. J. Agric. Resour. Econ. 2004, 48, 347–369. [Google Scholar] [CrossRef]
- Pound, B.; Conroy, C. Chapter 11—The Innovation Systems Approach to Agricultural Research and Development. In Agricultural Systems, 2nd ed.; Snapp, S., Pound, B., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 371–405. [Google Scholar] [CrossRef]
- Vasileiadis, V.P.; Sattin, M.; Otto, S.; Veres, A.; Pálinkás, Z.; Ban, R.; Pons, X.; Kudsk, P.; van der Weide, R.; Czembor, E.; et al. Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management. Agric. Syst. 2011, 104, 533–540. [Google Scholar] [CrossRef]
- Adnan, K.M.M.; Ying, L.; Sarker, S.A.; Yu, M.M.; Tama, R.A.Z. Simultaneous adoption of diversification and agricultural credit to manage catastrophic risk for maize production in Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 58258–58270. [Google Scholar] [CrossRef] [PubMed]
- Nuthall, P.L. Should Farmers’ Locus of Control be used in Extension? J. Agric. Educ. Ext. 2010, 16, 281–296. [Google Scholar] [CrossRef]
- RBR. Farm Business Management Practives in England—Results from the 2007/08 Farm Business Survey; RBR: Toshima, Tokyo, 2010. [Google Scholar]
- Trip, G.; Thijssen, G.J.; Renkema, J.A.; Huirne, R.B.M. Measuring managerial efficiency: The case of commercial greenhouse growers. Agric. Econ. 2002, 27, 175–181. [Google Scholar] [CrossRef]
- Aguinis, H.; Kraiger, K. Benefits of Training and Development for Individuals and Teams, Organizations, and Society. Annu. Rev. Psychol. 2009, 60, 451–474. [Google Scholar] [CrossRef]
- Guerrero, S.; Barraud-Didier, V. High-involvement practices and performance of French firms. Int. J. Hum. Resour. Manag. 2004, 15, 1408–1423. [Google Scholar] [CrossRef]
- Stup, R.E.; Hyde, J.; Holden, L.A. Relationships Between Selected Human Resource Management Practices and Dairy Farm Performance. J. Dairy Sci. 2006, 89, 1116–1120. [Google Scholar] [CrossRef]
- Fujisawa, M.; Kobayashi, K.; Johnston, P.; New, M. What Drives Farmers to Make Top-Down or Bottom-Up Adaptation to Climate Change and Fluctuations? A Comparative Study on 3 Cases of Apple Farming in Japan and South Africa. PLoS ONE 2015, 10, e0120563. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry—A systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 2021, 281, 116102. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Bacco, M.; Bartolini, F.; Bulten, E.; Debruyne, L.; Dessein, J.; Scotti, I.; Brunori, G. Digital transformation of agriculture and rural areas: A socio-cyber-physical system framework to support responsibilisation. J. Rural. Stud. 2021, 85, 79–90. [Google Scholar] [CrossRef]
- Wolfert, S.; Verdouw, C.; van Wassenaer, L.; Dolfsma, W.; Klerkx, L. Digital innovation ecosystems in agri-food: Design principles and organizational framework. Agric. Syst. 2023, 204, 103558. [Google Scholar] [CrossRef]
- Maudos, J.; Pastor, J.M.; Serrano, L. Total factor productivity measurement and human capital in OECD countries. Econ. Lett. 1999, 63, 39–44. [Google Scholar] [CrossRef]
- O’Donnell, C.J. An aggregate quantity framework for measuring and decomposing productivity change. J. Product. Anal. 2012, 38, 255–272. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Productivity Growth in Industrialized Countries; Université Catholique de Louvain, Center for Operations Research and Econometrics (CORE): Ottignies-Louvain-la-Neuve, Belgium, 1998; Available online: http://ideas.repec.org/p/cor/louvco/1998036.html (accessed on 11 August 2023).
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Of Course We Can Bootstrap DEA Scores! But Does It Mean Anything? Logic Trumps Wishful Thinking. J. Product. Anal. 1999, 11, 93–97. [Google Scholar] [CrossRef]
- Wheelock, D.C.; Wilson, P.W. Technical Progress, Inefficiency, and Productivity Change in U.S. Banking, 1984–1993. J. Money Credit. Bank. 1999, 31, 212–234. [Google Scholar] [CrossRef]
- Balcombe, K.; Davidova, S.; Latruffe, L. The use of bootstrapped Malmquist indices to reassess productivity change findings: An application to a sample of Polish farms. Appl. Econ. 2008, 40, 2055–2061. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity Changes in Swedish Pharamacies 1980–1989: A Non-Parametric Malmquist Approach; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Simar, L.; Wilson, P.W. Statistical interference in nonparametric frontier models: The state of the art. J. Produc. Anal 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Grifell-Tatjé, E.; Lovell, C.A.K. A note on the Malmquist productivity index. Econ. Lett. 1995, 47, 169–175. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Kneip, A.; Park, B.U.; Simar, L. A note on the convergence of nonparametric DEA estimators for production efficiency scores. Econom. Theory 1998, 14, 783–793. [Google Scholar] [CrossRef]
- Darku, A.B.; Malla, S.; Tran, K.C. Historical Review of Agricultural Efficiency Studies; CAIRN Research Network: Faversham, UK, 2013. [Google Scholar]
- Song, W.; Han, Z.; Deng, X. Changes in productivity, efficiency and technology of China’s crop production under rural restructuring. J. Rural. Stud. 2016, 47, 563–576. [Google Scholar] [CrossRef]
- Glendining, M.J.; Dailey, A.G.; Williams, A.G.; Evert, F.K.; van Goulding, K.W.T.; Whitmore, A.P. Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs? Agric. Syst. 2009, 99, 117–125. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Fallah-Fini, S.; Triantis, K.; O’Donnell, C.J.; Fallah-Fini, S.; Triantis, K. Measuring and analysing productivity change in a metafrontier framework. J. Product. Anal. 2017, 47, 117–128. [Google Scholar] [CrossRef]
- Thirtle, C.; Lin Lin, L.; Holding, J.; Jenkins, L.; Piesse, J. Explaining the Decline in UK Agricultural Productivity Growth. J. Agric. Econ. 2004, 55, 343–366. [Google Scholar] [CrossRef]
- Thirtle, C.; Piesse, J.; Schimmelpfennig, D. Modeling the length and shape of the R&D lag: An application to UK agricultural productivity. Agric. Econ. 2008, 39, 73–85. [Google Scholar] [CrossRef]
- Fuglie, K.O. Is a slowdown in agricultural productivity growth contributing to the rise in commodity prices? Agric. Econ. 2008, 39, 431–441. [Google Scholar] [CrossRef]
- Grant, W. The Challenges Facing UK Farmers from Brexit Les défis posés par le Brexit aux agriculteurs Die Herausforderungen eines Brexit für die britischen Landwirte. EuroChoices 2016, 15, 11–16. [Google Scholar] [CrossRef]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J. Evaluating the Sustainable Intensification of arable farms. J. Environ. Manag. 2015, 150, 288–298. [Google Scholar] [CrossRef]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J.F.J. Improving productivity and water use efficiency: A case study of farms in England. Agric. Water Manag. 2015, 160, 22–32. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef]
- Läpple, D.; Renwick, A.; Thorne, F. Measuring and understanding the drivers of agricultural innovation: Evidence from Ireland. Food Policy 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Tauer, L.W.; Lordkipanidze, N. Farmer efficiency and technology use with age. Agric. Resour. Econ. Rev. 2000, 29, 24–31. [Google Scholar]
- Nowak, A.; Kijek, T.; Domanska, K. Technical efficiency and its determinants in the European Union agriculture. Agric. Econ.-Czech 2015, 61, 275–283. [Google Scholar] [CrossRef]
- Pérez Urdiales, M.; Lansink, A.O.; Wall, A. Eco-efficiency Among Dairy Farmers: The Importance of Socio-economic Characteristics and Farmer Attitudes. Environ. Resour. Econ. 2016, 64, 559–574. [Google Scholar] [CrossRef]
- Pollak, R.A. A Transaction Cost Approach to Families and Households. J. Econ. Lit. 1985, 23, 581–608. [Google Scholar]
- Gallacher, M.; Goetz, S.J.; Debertin, D.L. Managerial form, ownership and efficiency: A case-study of Argentine agriculture. Agric. Econ. 1994, 11, 289–299. [Google Scholar] [CrossRef]
- Gittins, P.; McElwee, G.; Tipi, N. Discrete event simulation in livestock management. J. Rural. Stud. 2020, 78, 387–398. [Google Scholar] [CrossRef]
- Ojo, O.M.; Hubbard, C.; Wallace, M.; Moxey, A.; Patton, M.; Harvey, D.; Shrestha, S.; Feng, S.; Scott, C.; Philippidis, G.; et al. Brexit: Potential impacts on the economic welfare of UK farm households. Reg. Stud. 2021, 55, 1583–1595. [Google Scholar] [CrossRef]
Description of Indicator | Literature Source |
---|---|
Management Practices | |
Business planning/benchmarking | [31,36,37,38] |
Knowledge acquisition use of information sources | [16,27,29,39,40] |
Use of business management advice | [31,41,42] |
Machinery sharing | [43,44,45,46] |
Setting goals/targets for business | [47,48] |
Use of integrated pest management (IPM) | [20,49] |
Risk management | [41,50,51,52] |
Monitoring and evaluation | [27,30,40,53] |
Record keeping | [40,48,53] |
Training for IT skills | [16,36] |
Investment in training programmes (non-IT) | [14,25,28,54,55,56] |
Changes to standard operating procedures | [15,47,56,57] |
New technology innovations | [58,59,60,61] |
Dependent Variables | Mean | SD | |
---|---|---|---|
Efficiency Change (ΔEff) | 1.04 | 0.25 | |
Pure Efficiency Change (ΔPureEff) | 1.01 | 0.14 | |
Scale-mix Efficiency Change (ΔScaleEff) | 1.03 | 0.18 | |
List of Independent Variables % of N = 660 | |||
Sole trader | 47% | Paid Managerial Input | 5% |
Company | 8% | No managerial input | 95% |
Partnership | 45% | Large size farms 1 | 45% |
Holder Manager | 87% | Medium size farms | 44% |
Holder not Manager | 5% | Small size farms | 11% |
Limited Company | 8% | Tenanted farms (majority of tenanted land) | 35% |
Basic Education only | 17% | Owned farms | 65% |
A-Level or Equivalent | 19% | Crop output less than 50% of total | 4% |
Higher education | 64% | Crop output more than 50% and less than 70% | 7% |
Crop output more than 70% | 89% | ||
Farmers Age | Mean | SD | |
2003/2004 | 53 | 9.6 | |
2013/2014 | 62 | 9.4 |
Farm Size | 2003/2004 | 2004/2005 | 2005/2006 | 2006/2007 | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Large | 1.11 | 0.2 | 0.84 | 0.15 | 0.87 | 0.13 | 0.83 | 0.13 |
Medium | 1.11 | 0.25 | 0.9 | 0.23 | 0.94 | 0.25 | 0.82 | 0.21 |
Small | 1.12 | 0.16 | 0.86 | 0.14 | 0.91 | 0.21 | 0.88 | 0.29 |
Farm Size | 2007/2008 | 2008/2009 | 2009/2010 | 2010/2011 | ||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Large | 0.9 | 0.18 | 1.43 | 0.3 | 0.84 | 0.45 | 0.95 | 0.23 |
Medium | 0.95 | 0.24 | 1.29 | 0.34 | 0.82 | 0.19 | 0.91 | 0.22 |
Small | 1.03 | 0.35 | 1.25 | 0.39 | 0.81 | 0.2 | 0.94 | 0.26 |
Farm Size | 2011/2012 | 2012/2013 | 2013/2014 | |||||
Mean | SD | Mean | SD | Mean | SD | |||
Large | 1.27 | 0.37 | 1.06 | 0.3 | 1.13 | 0.22 | ||
Medium | 1.4 | 0.41 | 1.05 | 0.25 | 1.11 | 0.25 | ||
Small | 1.25 | 0.29 | 1.05 | 0.26 | 1.1 | 0.32 |
2003/2004 | 2004/2005 | 2005/2006 | 2006/2007 | 2007/2008 | 2008/2009 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Distribution | Pure | Scale | Pure | Scale | Pure | Scale | Pure | Scale | Pure | Scale | Pure | Scale |
No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | |
<0.6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.6 ≤ Eff < 0.8 | 7 | 2 | 0 | 3 | 2 | 2 | 3 | 1 | 7 | 8 | 2 | 4 |
0.8 ≤ Eff < 1 | 13 | 18 | 13 | 27 | 14 | 23 | 17 | 22 | 16 | 19 | 14 | 13 |
Eff = 1 | 25 | 5 | 24 | 3 | 24 | 4 | 25 | 4 | 22 | 6 | 24 | 8 |
1 < Eff < 1.2 | 12 | 27 | 18 | 24 | 15 | 26 | 11 | 26 | 11 | 19 | 11 | 29 |
1.2 ≤ Eff < 1.4 | 2 | 6 | 3 | 2 | 4 | 3 | 4 | 3 | 3 | 7 | 7 | 5 |
Eff > 1.4 | 1 | 2 | 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 1 |
Improvement | 25% | 58% | 38% | 43% | 33% | 50% | 25% | 52% | 25% | 43% | 32% | 58% |
Deterioration | 33% | 33% | 22% | 52% | 27% | 42% | 33% | 38% | 38% | 45% | 27% | 28% |
Geometric Mean | 0.95 | 1.02 | 1.03 | 0.98 | 1.02 | 1.03 | 0.99 | 1.03 | 0.97 | 0.97 | 1.04 | 1.02 |
2009/2010 | 2010/2011 | 2011/2012 | 2012/2013 | 2013/2014 | ||||||||
Distribution | Pure | Scale | Pure | Scale | Pure | Scale | Pure | Scale | Pure | Scale | ||
No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | No. of Farms | |||
<0.6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | ||
0.6 ≤ Eff < 0.8 | 3 | 5 | 6 | 5 | 2 | 9 | 3 | 3 | 5 | 1 | ||
0.8 ≤ Eff < 1 | 14 | 29 | 18 | 14 | 14 | 13 | 14 | 24 | 8 | 7 | ||
Eff = 1 | 22 | 7 | 24 | 8 | 24 | 6 | 23 | 4 | 23 | 4 | ||
1 < Eff < 1.2 | 16 | 15 | 10 | 25 | 14 | 26 | 15 | 22 | 15 | 25 | ||
1.2 ≤ Eff < 1.4 | 2 | 3 | 1 | 5 | 5 | 5 | 4 | 4 | 8 | 15 | ||
Eff > 1.4 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 2 | 1 | 5 | ||
Improvement | 30% | 30% | 20% | 53% | 33% | 52% | 32% | 47% | 40% | 75% | ||
Deterioration | 30% | 57% | 40% | 32% | 27% | 37% | 28% | 47% | 22% | 13% | ||
Geometric Mean | 1.00 | 0.96 | 0.96 | 1.02 | 1.02 | 0.99 | 1.01 | 0.99 | 1.02 | 1.14 |
Independent Variables | Dependent Variable | Dependent Variable | Dependent Variable | |||
---|---|---|---|---|---|---|
Efficiency Change Component | Pure Efficiency Change | Scale Efficiency Change | ||||
Estimated Coefficient | Standard Error | Estimated Coefficient | Standard Error | Estimated Coefficient | Standard Error | |
Intercept | 0.920 *** | 0.039 | 0.972 *** | 0.023 | 0.948 *** | 0.031 |
Sole Trader | −0.011 | 0.009 | −0.001 | 0.005 | −0.008 | 0.007 |
Company | 0.059 ** | 0.023 | 0.029 ** | 0.014 | 0.026 | 0.019 |
Farmer’s Age | 0.001 ** | 0.000 | 0.000 | 0.000 | 0.001 * | 0.000 |
Holder Manager | 0.070 *** | 0.019 | 0.030 *** | 0.011 | 0.038 ** | 0.015 |
Basic Education | 0.030 *** | 0.011 | 0.011 * | 0.006 | 0.013 | 0.009 |
A-Level or Equivalent | −0.035 ** | 0.015 | −0.012 | 0.009 | −0.024 ** | 0.012 |
Paid Managerial Input | 0.132 *** | 0.023 | 0.028 ** | 0.014 | 0.093 *** | 0.018 |
Medium Size farm | −0.026 ** | 0.011 | −0.020 *** | 0.006 | −0.007 | 0.009 |
Small Size farm | −0.010 | 0.018 | −0.016 | 0.011 | 0.004 | 0.014 |
Tenanted farm | 0.026 ** | 0.010 | 0.014 ** | 0.006 | 0.013 * | 0.008 |
Crop output less than 50% | 0.090 ** | 0.033 | 0.000 | 0.020 | 0.088 *** | 0.026 |
Crop output more than 50% and less than 70% | −0.045 * | 0.025 | −0.016 | 0.015 | −0.030 | 0.020 |
Balanced data: n = 60, T = 11, N = 660, R2 = 0.09, F-statistic = 5.348 p-value < 0.001 | Balanced data: n = 60, T = 11, N = 660, R2 = 0.05, F-statistic = 2.898 p-value < 0.001 | Balanced data: n = 60, T = 11, N = 660, R2 = 0.06, F-statistic = 3.661 p-value < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadanakis, Y.; Campos-González, J.; Jones, P. Linking Entrepreneurship to Productivity: Using a Composite Indicator for Farm-Level Innovation in UK Agriculture with Secondary Data. Agriculture 2024, 14, 409. https://doi.org/10.3390/agriculture14030409
Gadanakis Y, Campos-González J, Jones P. Linking Entrepreneurship to Productivity: Using a Composite Indicator for Farm-Level Innovation in UK Agriculture with Secondary Data. Agriculture. 2024; 14(3):409. https://doi.org/10.3390/agriculture14030409
Chicago/Turabian StyleGadanakis, Yiorgos, Jorge Campos-González, and Philip Jones. 2024. "Linking Entrepreneurship to Productivity: Using a Composite Indicator for Farm-Level Innovation in UK Agriculture with Secondary Data" Agriculture 14, no. 3: 409. https://doi.org/10.3390/agriculture14030409
APA StyleGadanakis, Y., Campos-González, J., & Jones, P. (2024). Linking Entrepreneurship to Productivity: Using a Composite Indicator for Farm-Level Innovation in UK Agriculture with Secondary Data. Agriculture, 14(3), 409. https://doi.org/10.3390/agriculture14030409