Relationship of Physical Properties and Macronutrient Composition with Carotenoid Profile in Maize Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Hybrids
Hybrid | Abbreviation | Seed Company | Type 1 | FAO Maturity Group | Estimated Vitreousness [26] 2 |
---|---|---|---|---|---|
Hybrid 1 | H1 | Bc Institute d.d., Zagreb, Croatia | semiflint | 330 | 70.0 ± 0.28 |
Hybrid 2 | H2 | Agricultural Institute Osijek, Osijek, Croatia | dent | 350 | 60.5 ± 0.35 |
Hybrid 3 | H3 | Syngenta Agro d.o.o., Zagreb, Croatia | dent | 350 | 58.1 ± 0.40 |
Hybrid 4 | H4 | KWS Sjeme d.o.o., Osijek, Croatia | dent | 390 | 57.4 ± 0.28 |
Hybrid 5 | H5 | Corteva Agriscience Croatia d.o.o., Zagreb, Croatia | hard dent | 380 | 58.7 ± 0.42 |
Hybrid 6 | H6 | Corteva Agriscience Croatia d.o.o., Zagreb, Croatia | dent | 400 | 56.1 ± 0.62 |
Hybrid 7 | H7 | Agricultural Institute Osijek, Osijek, Zagreb | dent | 410 | 65.2 ± 0.55 |
Hybrid 8 | H8 | Bayer d.o.o., Zagreb, Croatia | dent | 450 | 60.3 ± 0.40 |
Hybrid 9 | H9 | Bc Institute d.d., Zagreb, Croatia | dent | 450 | 56.1 ± 0.31 |
Hybrid 10 | H10 | Bc Institute d.d., Zagreb, Croatia | hard dent | 460 | 61.6 ± 0.24 |
Hybrid 11 | H11 | Bc Institute d.d., Zagreb, Croatia | hard dent | 500 | 68.3 ± 0.43 |
Hybrid 12 | H12 | Bc Institute d.d., Zagreb, Croatia | hard dent | 510 | 63.6 ± 0.32 |
Hybrid 13 | H13 | Bc Institute d.d., Zagreb, Croatia | hard dent | 510 | 60.1 ± 0.22 |
Hybrid 14 | H14 | Corteva Agriscience Croatia d.o.o., Zagreb, Croatia | dent | 570 | 58.3 ± 0.75 |
Hybrid 15 | H15 | Syngenta Agro d.o.o., Zagreb, Croatia | dent | 580 | 53.9 ± 0.17 |
Hybrid | L* | a* | b* |
---|---|---|---|
H1 | 85.46 ± 0.36 | −0.28 ± 0.04 | 34.82 ± 0.23 |
H2 | 87.56 ± 0.18 | −0.38 ± 0.11 | 32.53 ± 0.37 |
H3 | 89.31 ± 0.22 | −0.24 ± 0.06 | 25.21 ± 0.28 |
H4 | 89.00 ± 0.40 | −1.24 ± 0.06 | 29.91 ± 0.37 |
H5 | 88.80 ± 0.28 | −0.67 ± 0.13 | 30.88 ± 0.54 |
H6 | 90.01 ± 0.45 | −1.24 ± 0.11 | 28.37 ± 0.43 |
H7 | 87.15 ± 0.49 | −0.23 ± 0.08 | 37.70 ± 0.38 |
H8 | 88.30 ± 0.31 | −0.62 ± 0.07 | 32.89 ± 0.23 |
H9 | 89.08 ± 0.34 | −1.44 ± 0.08 | 30.78 ± 0.28 |
H10 | 85.52 ± 0.28 | −0.20 ± 0.07 | 32.59 ± 0.21 |
H11 | 85.77 ± 0.41 | 1.11 ± 0.16 | 38.73 ± 0.30 |
H12 | 85.41 ± 0.55 | 0.97 ± 0.15 | 36.38 ± 0.37 |
H13 | 88.82 ± 0.30 | −1.57 ± 0.13 | 37.10 ± 0.50 |
H14 | 89.13 ± 0.47 | −1.16 ± 0.08 | 30.08 ± 0.71 |
H15 | 90.59 ± 0.40 | −2.10 ± 0.07 | 32.55 ± 0.19 |
2.2. Analyses of Physical Properties
2.3. Analyses of Chemical Properties
2.4. Analyses of Chemical Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Kernel Physical Properties
3.2. Kernel Chemical Composition
3.3. Carotenoid Fractions
3.4. Relationship between Physicochemical Properties and Carotenoid Profile of Maize Kernels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Kaul, J.; Jain, K.; Olakh, D. An overview on role of yellow maize in food, feed and nutrition. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3037–3048. [Google Scholar] [CrossRef]
- Sheng, S.; Li, T.; Liu, R. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gómez, J.; Moreno, J.A.; Angulo, E.; Sandmann, G.; Zhu, C.; Ramos, A.J.; Capell, T.; Christou, P.; Nogareda, C. High-carotenoid biofortified maize is an alternative to color additives in poultry feed. Anim. Feed Sci. Technol. 2017, 231, 38–46. [Google Scholar] [CrossRef]
- Kljak, K.; Duvnjak, M.; Bedeković, D.; Kiš, G.; Janječić, Z.; Grbeša, D. Commercial corn hybrids as a single source of dietary carotenoids: Effect on egg yolk carotenoid profile and pigmentation. Sustainability 2021, 13, 12287. [Google Scholar] [CrossRef]
- Zurak, D.; Grbeša, D.; Duvnjak, M.; Kiš, G.; Međimurec, T.; Kljak, K. Carotenoid content and bioaccessibility in commercial maize hybrids. Agriculture 2021, 11, 586. [Google Scholar] [CrossRef]
- Saenz, E.; Borrás, L.; Gerde, J.A. Carotenoid profiles in maize genotypes with contrasting kernel hardness. J. Cereal Sci. 2021, 99, 103206. [Google Scholar] [CrossRef]
- Blessin, C.W.; Brecher, J.D.; Dimler, R.J. Carotenoids of corn and sorghum. V. Distribution of xanthophylls and carotenes in hand-dissected and dry-milled fractions of yellow dent corn. Cereal Chem. 1963, 40, 582–586. [Google Scholar]
- Narváez-González, E.D.; de Dios Figueroa-Cárdenas, J.; Taba, S.; Tostado, E.C.; Peniche, R.A.M.; Sánchez, F.R. Relationships between the microstructure, physical features, and chemical composition of different maize accessions from Latin America. Cereal Chem. 2006, 83, 595–604. [Google Scholar] [CrossRef]
- Fox, G.; Manley, M. Hardness methods for testing maize kernels. J. Agric. Food Chem. 2009, 57, 5647–5657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, G. Physicochemical properties of vitreous and floury endosperm flours in maize. Food Sci. Nutr. 2019, 7, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Saenz, E.; Abdala, L.J.; Borras, L.; Gerde, J.A. Maize kernel color depends on the interaction between hardness and carotenoid concentration. J. Cereal Sci. 2020, 91, 102901. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Xiao, Q.; Huang, X.; Li, C.; Gao, X.; Wang, Q.; Xiang, X.; Zhu, Y.; Wang, J.; et al. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat. Commun. 2020, 11, 5346. [Google Scholar] [CrossRef]
- Harjes, C.E.; Rocheford, T.R.; Bai, L.; Brutnell, T.P.; Kandianis, C.B.; Sowinski, S.G.; Stapleton, A.E.; Vallabhaneni, R.; Williams, M.; Wurtzel, E.T.; et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 2008, 319, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.; Rocheford, T.; Ferruzzi, M.G. Influence of temperature and humidity on the stability of carotenoids in biofortified maize (Zea mays L.) genotypes during controlled postharvest storage. J. Agric. Food Chem. 2016, 64, 2727–2736. [Google Scholar] [CrossRef]
- Gayral, M.; Bakan, B.; Dalgalarrondo, M.; Elmorjani, K.; Delluc, C.; Brunet, S.; Linossier, L.; Morel, M.-H.; Marion, D. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness. J. Agric. Food Chem. 2015, 63, 3551–3558. [Google Scholar] [CrossRef]
- Xu, A.; Lin, L.; Guo, K.; Liu, T.; Yin, Z.; Wei, C. Physicochemical properties of starches from vitreous and floury endosperms from the same maize kernels. Food Chem. 2019, 291, 149–156. [Google Scholar] [CrossRef]
- Kljak, K.; Duvnjak, M.; Grbeša, D. Contribution of zein content and starch characteristics to vitreousness of commercial maize hybrids. J. Cereal Sci. 2018, 80, 57–62. [Google Scholar] [CrossRef]
- Larkins, B.A.; Wu, Y.; Song, R.; Messing, J. Maize seed storage proteins. In Maize Kernel Development; Larkins, B.A., Ed.; CABI: Boston, MA, USA, 2017; pp. 175–189. [Google Scholar]
- Momany, F.A.; Sessa, D.J.; Lawton, J.W.; Selling, G.W.; Hamaker, S.A.; Willett, J.L. Structural characterization of α-zein. J. Agric. Food Chem. 2006, 54, 543–547. [Google Scholar] [CrossRef]
- Zurak, D.; Gunjević, V.; Grbeša, D.; Svečnjak, Z.; Kralik, Z.; Košević, M.; Džidić, A.; Pirgozilev, V.; Kljak, K. Kernel properties related to carotenoid release during in vitro gastrointestinal digestion in commercial dent maize hybrids. Food Chem. 2024, 435, 137535. [Google Scholar] [CrossRef]
- CIE (Commission Internationale de l’Eclairage). Recommendations on Uniform Colour Spaces-colour Difference Equations, Psychometric Colour Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1) 1971/(TC-1.3); CIE: Paris, France, 1978. [Google Scholar]
- Gunjević, V.; Grbeša, D.; Zurak, D.; Kiš, G.; Janječić, Z.; Svečnjak, Z.; Bedeković, D.; Duvnjak, M.; Pirgozliev, V.; Kljak, K. Effect of maize hybrid in complete feed on the production performance and economic considerations in laying hens. Sustainability 2023, 15, 15748. [Google Scholar] [CrossRef]
- ISO 6496:1999; Animal Feeding Stuffs—Determination of Moisture and other Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland, 1999.
- Jareš, M.; Zurak, D.; Novaković, K.; Pamić, S.; Kljak, K.; Grbeša, D. Prediction of maize vitreousness from kernel physical traits. In Proceedings of the Book of Abstracts of 25th International Conference “Krmiva 2018”, Opatija, Croatia, 6–8 June 2018; Modrić, M., Matin, A., Eds.; Krmiva d.o.o. Zagreb: Zagreb, Croatia, 2018; pp. 52–53. [Google Scholar]
- Pomeranz, Y.; Czuchajowska, Z.; Martin, C.R.; Lai, F.S. Determination of corn hardness by the Stenvert hardness tester. Cereal Chem. 1985, 62, 108–112. [Google Scholar]
- Kim, T.H.; Opara, L.U.; Hampton, J.G.; Hardacre, A.K.; MacKay, B.R. PH-postharvest technology: The effects of grain temperature on breakage susceptibility in maize. Biosyst. Eng. 2002, 82, 415–421. [Google Scholar] [CrossRef]
- ISO 5984:2022; Animal Feeding Stuffs—Determination of Crude Ash. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 5983-2:2009; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 6492:1999; Animal Feeding Stuffs—Determination of Fat Content. International Organization for Standardization: Geneva, Switzerland,, 1999.
- Association of Official Analytical Chemists (AOAC). Starch (total) in Cereal Products, Amyloglucosidase-α-Amylase Method—AOAC Official Method 996.11. In Official Methods of Analysis of Official Analytical Chemists International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995; pp. 55–58. [Google Scholar]
- Knutson, C.A. A simplified colorimetric procedure for determination of amylose in maize starches. Cereal Chem. 1986, 63, 89–92. [Google Scholar]
- Wallace, J.C.; Lopes, M.A.; Paiva, E.; Larkins, B.A. New methods for extraction and quantitation of zeins reveal a high content of gamma-zein in modified opaque-2 maize. Plant Physiol. 1990, 92, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Kurilich, A.C.; Juvik, J.A. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agric. Food Chem. 1999, 47, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Zurak, D.; Gunjević, V.; Svečnjak, Z.; Kiš, G.; Grbeša, D.; Kljak, K. Carotenoid stability in grains of maize hybrids compared to complete feeds for laying hens following preparation and storage. Anim. Feed Sci. Technol. 2023. submitted. [Google Scholar]
- Rodehutscord, M.; Rückert, C.; Maurer, H.P.; Schenkel, H.; Schipprack, W.; Bach Knudsen, K.E.; Schollenberger, M.; Laux, M.; Eklund, M.; Siegert, W.; et al. Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Arch. Anim. Nutr. 2016, 70, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Mansilla, P.S.; Nazar, M.C.; Pérez, G.T. Flour functional properties of purple maize (Zea mays L.) from Argentina. Influence of environmental growing conditions. Int. J. Biol. Macromol. 2020, 146, 311–319. [Google Scholar] [CrossRef]
- Barnwal, P.; Kadam, D.M.; Singh, K.K. Influence of moisture content on physical properties of maize. Int. Agrophys. 2012, 26, 331–334. [Google Scholar] [CrossRef]
- Blandino, M.; Mancini, M.C.; Peila, A.; Rolle, L.; Vanaraa, F.; Reyneria, A. Determination of maize kernel hardness: Comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric. 2010, 90, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- Kljak, K.; Novaković, K.; Zurak, D.; Jareš, M.; Pamić, S.; Duvnjak, M.; Grbeša, D. Physical properties of kernels from modern maize hybrids used in Croatia. J. Cent. Eur. Agric. 2020, 21, 543–553. [Google Scholar] [CrossRef]
- Lee, K.M.; Herrman, T.J.; Lingenfelser, J.; Jackson, D.S. Classification and prediction of maize hardness-associated properties using multivariate statistical analyses. J. Cereal Sci. 2005, 41, 85–93. [Google Scholar] [CrossRef]
- Kim, T.H. Physical Changes in Maize (Zea mays L.) Grains during Postharvest Drying. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2000. [Google Scholar]
- Dona, A.C.; Pages, G.; Gilbert, R.G.; Kuchel, P. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydr. Polym. 2010, 80, 599–617. [Google Scholar] [CrossRef]
- Gayral, M.; Gaillard, C.; Bakan, B.; Dalgalarrondo, M.; Elmorjani, K.; Delluc, C.; Brunet, S.; Linossier, L.; Morel, M.-H.; Marion, D. Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. J. Cereal Sci. 2016, 68, 148–154. [Google Scholar] [CrossRef]
- Watson, S.A. Description, development, structure and composition of the corn kernel. In Corn: Chemistry and Technology; White, P.J., Johnson, L.A., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2003; pp. 69–106. [Google Scholar]
- Xu, A.; Qiu, J.; Yin, Z.; Wei, C. Morphological characteristics of endosperm in different regions of maize kernels with different vitreousness. J. Cereal Sci. 2019, 87, 273–279. [Google Scholar] [CrossRef]
- Paiva, E.; Kriz, A.L.; Peixoto, M.J.V.V.D.; Wallace, J.C.; Larkins, B.A. Quantitation and distribution of γ-zein in the endosperm of maize kernels. Cereal Chem. 1991, 68, 276–279. [Google Scholar]
- Zurak, D.; Kljak, K.; Grbeša, D. The composition of floury and vitreous endosperm affects starch digestibility kinetics of the whole maize kernel. J. Cereal Sci. 2020, 95, 103079. [Google Scholar] [CrossRef]
- Egesel, C.O.; Wong, J.C.; Lambert, R.J.; Rocheford, T.R. Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci. 2003, 43, 818–823. [Google Scholar] [CrossRef]
- Wurtzel, E.T.; Cuttriss, A.; Vallabhaneni, R. Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Front. Plant Sci. 2012, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Kirleis, A.W.; Stroshine, R.L. Effects of hardness and drying air temperature on breakage susceptibility and dry-milling characteristics of yellow dent corn. Cereal Chem. 1990, 67, 523–528. [Google Scholar]
- Landry, J.; Delhaye, S.; Damerval, C. Protein distribution pattern in floury and vitreous endosperm of maize grain. Cereal Chem. 2004, 81, 153–158. [Google Scholar] [CrossRef]
- Moreau, R.A.; Singh, V.; Powell, M.J.; Hicks, K.B. Corn kernel oil and corn fiber oil. In Gourmet and health-promoting specialty oils. In Gourmet and Health-Promoting Specialty Oils; Moreau, R.A., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 409–431. [Google Scholar]
Kernel | 1000 Kernel | Bulk Density | |||||
---|---|---|---|---|---|---|---|
Hybrid | Height | Length | Thickness | Sphericity | Weight | Volume | |
mm | g | mL | kg/hL | ||||
H1 | 11.43 i | 7.87 e | 5.03 ced | 0.672 b | 296 h | 392 j | 75.61 a |
H2 | 11.54 i | 7.45 f | 4.74 f | 0.643 def | 275 i | 408 i | 67.45 fgh |
H3 | 12.40 gh | 8.05 de | 5.05 ced | 0.642 def | 323 g | 494 f | 65.35 i |
H4 | 13.13 bc | 8.48 bc | 5.09 ce | 0.630 fgh | 364 c | 516 d | 70.47 de |
H5 | 12.85 cde | 8.63 ab | 4.96 ed | 0.637 defg | 357 cd | 520 d | 68.65 efg |
H6 | 13.40 b | 8.84 a | 5.19 bc | 0.635 efg | 386 b | 568 a | 68.05 fgh |
H7 | 11.70 i | 8.75 a | 4.90 ef | 0.679 b | 329 g | 468 gh | 70.28 de |
H8 | 12.80 def | 8.61 ab | 5.28 ab | 0.652 cd | 391 ab | 536 c | 72.86 bc |
H9 | 13.09 cd | 7.99 e | 5.16 bc | 0.622 gh | 321 g | 480 g | 66.80 ghi |
H10 | 12.39 gh | 8.29 cd | 5.05 ced | 0.648 de | 352 de | 500 ef | 70.42 de |
H11 | 11.65 i | 8.67 ab | 5.40 a | 0.701 a | 346 ef | 460 h | 75.22 a |
H12 | 12.24 h | 8.75 a | 5.09 ce | 0.667 bc | 356 cde | 480 g | 74.21 ab |
H13 | 12.55 fg | 8.84 a | 5.27 ab | 0.666 bc | 395 ab | 552 b | 71.52 cd |
H14 | 12.66 efg | 8.33 c | 4.94 ed | 0.636 defg | 341 f | 512 de | 66.59 hi |
H15 | 13.96 a | 8.79 a | 5.16 bc | 0.615 h | 400 a | 580 a | 68.89 ef |
SEM | 0.11 | 0.09 | 0.06 | 0.006 | 3.79 | 4.41 | 0.71 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Stenvert | Breakage Susceptibility | Kernel Density | Flotation Index | |||
---|---|---|---|---|---|---|
Hybrid | Time | Height | C/F | |||
s | mm | % | g/mL | % | ||
H1 | 3.45 a | 91.4 j | 0.703 a | 54.49 de | 1.265 a | 7.4 i |
H2 | 2.20 ef | 111.8 bc | 0.502 d | 50.09 f | 1.155 g | 99.6 a |
H3 | 2.00 hi | 112.4 abc | 0.329 h | 35.85 g | 1.172 fg | 99.6 a |
H4 | 2.18 efg | 111.2 cd | 0.400 g | 56.81 d | 1.176 efg | 87.0 bc |
H5 | 2.09 fghi | 109.2 de | 0.460 f | 56.68 d | 1.187 ef | 75.8 ef |
H6 | 1.98 hi | 112.4 abc | 0.288 i | 65.95 bc | 1.154 g | 99.4 a |
H7 | 2.58 c | 100.2 h | 0.620 b | 64.65 c | 1.241 ab | 71.0 f |
H8 | 2.35 d | 106.6 fg | 0.475 ef | 65.20 bc | 1.216 cd | 63.0 g |
H9 | 2.06 ghi | 113.8 ab | 0.262 j | 61.74 c | 1.183 ef | 78.2 de |
H10 | 2.53 c | 105.0 g | 0.605 b | 79.43 a | 1.213 cd | 63.6 g |
H11 | 2.86 b | 94.2 i | 0.718 a | 65.36 bc | 1.263 a | 9.6 i |
H12 | 2.54 c | 102.0 h | 0.573 c | 69.18 b | 1.228 bc | 39.2 h |
H13 | 2.24 de | 108.2 ef | 0.495 de | 75.32 a | 1.197 de | 60.8 g |
H14 | 2.11 fgh | 110.8 cd | 0.349 h | 50.41 ef | 1.184 ef | 91.2 b |
H15 | 1.82 j | 114.8 a | 0.266 ij | 77.67 a | 1.178 efg | 83.6 cd |
SEM | 0.04 | 0.86 | 0.009 | 1.49 | 0.009 | 2.49 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hybrid | Ash | Crude Protein | Crude Fat | Starch | Amylose | Amylopectin | Zein | Zein |
---|---|---|---|---|---|---|---|---|
g/kg DM | % Crude Protein | |||||||
H1 | 12.43 a | 81.26 d | 42.34 ab | 662.85 h | 21.63 cdef | 44.66 efg | 54.37 a | 66.91 a |
H2 | 11.03 cdef | 83.45 bcd | 37.09 efg | 678.34 fgh | 21.50 def | 46.34 def | 42.56 cdef | 51.16 cde |
H3 | 10.92 cdefg | 81.85 cd | 31.29 j | 675.94 fgh | 21.98 bcdef | 45.61 ef | 36.28 h | 44.27 f |
H4 | 11.74 ab | 81.77 cd | 35.21 gh | 693.63 def | 20.26 g | 49.11 bcd | 38.39 fgh | 46.98 ef |
H5 | 10.61 efg | 81.41 d | 32.46 ij | 706.66 cde | 22.45 abcde | 48.21 bcde | 37.12 gh | 45.61 ef |
H6 | 11.50 bc | 81.80 cd | 37.92 def | 714.81 bcd | 22.11 bcdef | 49.36 abc | 41.65 defg | 50.92 cde |
H7 | 10.97 cdefg | 85.21 ab | 44.05 a | 747.60 a | 22.70 abcd | 52.06 a | 46.40 bc | 54.49 bcd |
H8 | 10.67 defg | 82.42 cd | 34.42 hi | 656.38 h | 23.54 a | 42.10 g | 39.13 efgh | 47.55 ef |
H9 | 10.32 g | 82.15 cd | 40.02 cd | 665.77 gh | 21.11 fg | 45.47 ef | 40.20 efgh | 48.94 def |
H10 | 11.31 bcd | 86.69 a | 38.16 cdef | 689.82 efg | 22.02 bcdef | 46.96 cdef | 46.49 bc | 53.63 bcd |
H11 | 11.00 cdefg | 86.68 a | 40.37 bc | 666.98 gh | 21.23 fg | 45.47 ef | 49.68 b | 57.36 b |
H12 | 11.09 bcdef | 83.25 bcd | 38.84 cde | 725.39 abc | 22.75 abc | 49.79 ab | 45.68 bcd | 54.88 bc |
H13 | 10.90 cdefg | 84.11 bc | 37.76 def | 735.30 ab | 22.67 abcd | 50.86 ab | 46.28 bc | 55.03 bc |
H14 | 10.54 fg | 81.38 d | 37.18 efg | 737.86 ab | 22.85 ab | 50.94 ab | 43.67 cde | 53.68 bcd |
H15 | 11.30 bcde | 82.62 cd | 36.15 fgh | 719.55 bc | 21.45 efg | 50.50 ab | 45.27 bcd | 54.78 bc |
SEM | 0.25 | 0.91 | 0.81 | 8.71 | 0.43 | 1.00 | 1.64 | 2.01 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Hybrid | Xanthophylls | Carotenes | α-Branch Carotenoids | β-Branch Carotenoids |
---|---|---|---|---|
µg/g DM | ||||
H1 | 25.65 f | 1.13 e | 9.02 h | 17.75 d |
H2 | 31.23 c | 1.70 bc | 12.68 e | 20.25 c |
H3 | 18.08 i | 0.38 j | 10.07 g | 8.39 i |
H4 | 16.85 j | 0.95 f | 7.52 j | 10.28 h |
H5 | 19.40 h | 1.77 ab | 7.00 j | 14.17 f |
H6 | 19.43 h | 0.83 g | 8.19 i | 12.08 g |
H7 | 29.01 d | 1.11 e | 12.64 e | 17.48 d |
H8 | 25.86 ef | 0.99 f | 8.75 h | 18.11 d |
H9 | 24.55 g | 1.07 e | 11.82 f | 13.81 f |
H10 | 26.76 e | 0.80 g | 13.92 d | 13.65 f |
H11 | 35.06 b | 1.66 c | 7.15 j | 29.56 a |
H12 | 36.90 a | 1.78 a | 14.57 c | 24.11 b |
H13 | 31.15 c | 1.33 d | 17.47 a | 15.02 e |
H14 | 17.36 ij | 0.51 i | 8.09 i | 9.78 h |
H15 | 29.91 d | 1.12 e | 15.83 b | 15.20 e |
SEM | 0.36 | 0.03 | 0.19 | 0.26 |
p | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kljak, K.; Zurak, D.; Svečnjak, Z.; Grbeša, D. Relationship of Physical Properties and Macronutrient Composition with Carotenoid Profile in Maize Hybrids. Agriculture 2024, 14, 384. https://doi.org/10.3390/agriculture14030384
Kljak K, Zurak D, Svečnjak Z, Grbeša D. Relationship of Physical Properties and Macronutrient Composition with Carotenoid Profile in Maize Hybrids. Agriculture. 2024; 14(3):384. https://doi.org/10.3390/agriculture14030384
Chicago/Turabian StyleKljak, Kristina, Dora Zurak, Zlatko Svečnjak, and Darko Grbeša. 2024. "Relationship of Physical Properties and Macronutrient Composition with Carotenoid Profile in Maize Hybrids" Agriculture 14, no. 3: 384. https://doi.org/10.3390/agriculture14030384
APA StyleKljak, K., Zurak, D., Svečnjak, Z., & Grbeša, D. (2024). Relationship of Physical Properties and Macronutrient Composition with Carotenoid Profile in Maize Hybrids. Agriculture, 14(3), 384. https://doi.org/10.3390/agriculture14030384