A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information
Abstract
1. Introduction
2. Experimental Section
2.1. Chemical Reagents and Materials
2.2. Equipment
2.3. Preparation of Flexible Interdigitated Electrodes
2.4. Modification and Integration of Temperature and Humidity-Sensing Elements
2.5. Performance Testing of Temperature Sensing Elements
2.6. Performance Testing of Humidity-Sensing Elements
2.7. Detection of Plant VPD by Wearable Sensors
3. Results and Discussion
3.1. Characterization of Flexible Wearable Sensors
3.2. Performance Testing and Model Establishment of Temperature and Humidity-Sensing Elements
3.3. Monitoring of Plant Leaf Transpiration Using Flexible Wearable Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Goo, H.; Roh, Y.; Lee, J.; Park, K.S. Analysis of bell pepper (Capsicum annuum L.) leaf spectral properties and photosynthesis according to growth period. Horticulturae 2024, 10, 646. [Google Scholar] [CrossRef]
- Yousefi, M.; Dehghanpour, H. A model and measurement technique for liquid permeability oftight porous media based on the steady-state method. Energy Fuels 2022, 36, 6860–6867. [Google Scholar] [CrossRef]
- Dixon, L.; Bellinger, B.; Carter, A.H. A gravimetric method to monitor transpiration under water stress conditions in wheat. Plant Phenome J. 2023, 6, e20078. [Google Scholar] [CrossRef]
- Kulmatiski, A.; Forero, L.E. Bagging: A cheaper, faster, non-destructive transpiration water sampling method for tracer studies. Plant Soil 2021, 462, 603–611. [Google Scholar] [CrossRef]
- Yan, H.; Li, M.; Zhang, C.; Zhang, J.; Wang, G.; Yu, J.; Ma, J.; Zhao, S. Comparison of evapotranspiration upscaling methods from instantaneous to daytime scale for tea and wheat in southeast china. Agric. Water Manag. 2022, 264, 107464. [Google Scholar] [CrossRef]
- Nietupski, M.; Ludwiczak, E.; Olszewski, J.; Gabryś, B.; Kordan, B. Effect of aphid foraging on the intensity of photosynthesis and transpiration of selected crop plants in its early stages of growing. Agronomy 2022, 12, 2370. [Google Scholar] [CrossRef]
- Afzal, A.; Duiker, S.W.; Watson, J.E.; Luthe, D. Leaf thickness and electrical capacitance as measures of plant water status. Trans. ASABE 2017, 60, 1063–1074. [Google Scholar] [CrossRef]
- Xing, D.; Wang, W.; Wu, Y.; Qin, X.; Li, M.; Chen, X.; Yu, R. Translocation and utilization mechanisms of leaf intracellular water in karst plants Orychophragmus violaceus (L.) o. E. Schulz and Brassica napus L. Horticulturae 2022, 8, 1082. [Google Scholar] [CrossRef]
- Yu, R.; Wu, Y.; Xing, D. The differential response of intracellular water metabolism derived from intrinsic electrophysiological information in Morus alba L. and Broussonetia papyrifera (L.) vent. Subjected to water shortage. Horticulturae. 2022, 8, 182. [Google Scholar] [CrossRef]
- Song, P.; Tao, J.; He, X.; Sun, Y.; Shen, X.; Zhai, L.; Yuan, A.; Zhang, D.; Ji, Z.; Li, B. Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics. Chem. Eng. J. 2020, 386, 124024. [Google Scholar] [CrossRef]
- Ge, D.; Babangida, A.A.; Hu, Z.; Zhang, L.; Wang, M. Flexible pressure sensor based on a thermally induced wrinkled graphene sandwich structure. IEEE Sens. J. 2022, 22, 3040–3051. [Google Scholar] [CrossRef]
- Di Tocco, J.; Lo Presti, D.; Massaroni, C.; Cinti, S.; Cimini, S.; De Gara, L.; Schena, E. Plant-wear: A multi-sensor plant wearable platform for growth and microclimate monitoring. Sensors 2023, 23, 549. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, G.; Li, J.; Xu, S. Wearable crop sensor based on nano-graphene oxide for noninvasive real-time monitoring of plant water. Membranes 2022, 12, 358. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Yin, J.; Miao, F.; Zang, Y. High-performance humidity sensor based on Go/ZnO/plant cellulose film for respiratory monitoring. Ionics 2022, 28, 2413–2421. [Google Scholar] [CrossRef]
- Li, S.; Wan, T.; Wei, H.; Wang, S.; Wang, B.; Cheng, B. Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection. Sens. Actuators B Chem. 2022, 362, 131806. [Google Scholar] [CrossRef]
- Yin, S.; Ibrahim, H.; Schnable, P.S.; Castellano, M.J.; Dong, L. A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv. Mater. Technol. 2021, 6, 2001246. [Google Scholar] [CrossRef]
- Wright, A.J.; Francia, R.M. Plant traits, microclimate temperature and humidity: A research agenda for advancing nature-based solutions to a warming and drying climate. J. Ecol. 2024, 112, 2462–2470. [Google Scholar] [CrossRef]
- Li, R.; Zeng, F.; Zhao, Y.; Wu, Y.; Niu, J.; Wang, L.; Gao, N.; Zhou, H.; Shi, X.; Huang, Z. Analyzing the impact of various factors on leaf surface temperature based on a new tree-scale canopy energy balance model. Sustain. Cities Soc. 2023, 99, 104994. [Google Scholar] [CrossRef]
- Lo Presti, D.; Di Tocco, J.; Massaroni, C.; Cimini, S.; De Gara, L.; Singh, S.; Raucci, A.; Manganiello, G.; Woo, S.L.; Schena, E.; et al. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens Bioelectron 2023, 222, 115005. [Google Scholar] [CrossRef]
- Pamuta, H. Vapor Pressure of Water Calculator. Available online: https://www.omnicalculator.com/chemistry/vapour-pressure-of-water (accessed on 11 October 2024).
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Borah, B.; Rajitha, G.; Dash, R.K. Correlation between the thickness and properties of the ethanol treated GO–PDMS based composite materials. J. Mater. Sci. Mater. Electron. 2018, 29, 20216–20224. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Lin, G.; Ruoff, R.S.; Hu, N.; Schaefer, D.W.; Mark, J.E. What factors control the mechanical properties of poly (dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 2013, 54, 3605–3611. [Google Scholar] [CrossRef]
- Chen, K.; Shi, B.; Yue, Y.; Qi, J.; Guo, L. Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide/sodium alginate composite paper. ACS Nano 2015, 9, 8165–8175. [Google Scholar] [CrossRef]
- Song, S.; Zhai, Y.; Zhang, Y. Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant. ACS Appl. Mater. Interfaces 2016, 8, 31264–31272. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, J.; Xu, J.; Tian, M.; Li, L.; Tan, L.; Li, Z. Fast-acting and highly rechargeable antibacterial composite nanofibrous membrane for protective applications. Compos. Sci. Technol. 2021, 202, 108574. [Google Scholar] [CrossRef]
- Mosgaard, L.D.; Zecchi, K.A.; Heimburg, T. Mechano-capacitive properties of polarized membranes. Soft Matter 2015, 11, 7899–7910. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent advances in graphene-based humidity sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714. [Google Scholar]
- Wang, Z.; Shi, L.; Wu, F.; Yuan, S.; Zhao, Y.; Zhang, M. The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 2011, 22, 275502. [Google Scholar] [CrossRef] [PubMed]
- Fatima, Q.; Haidry, A.A.; Yao, Z.; He, Y.; Li, Z.; Sun, L.; Xie, L. The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 2019, 1, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Mao, H.; Li, L.; Wei, Y.; Yu, Y.; Zhao, M.; Liu, Z. A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information. Agriculture 2024, 14, 2174. https://doi.org/10.3390/agriculture14122174
Li Z, Mao H, Li L, Wei Y, Yu Y, Zhao M, Liu Z. A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information. Agriculture. 2024; 14(12):2174. https://doi.org/10.3390/agriculture14122174
Chicago/Turabian StyleLi, Zhikang, Hanping Mao, Lizhi Li, Yazhou Wei, Yongsheng Yu, Mingxue Zhao, and Ze Liu. 2024. "A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information" Agriculture 14, no. 12: 2174. https://doi.org/10.3390/agriculture14122174
APA StyleLi, Z., Mao, H., Li, L., Wei, Y., Yu, Y., Zhao, M., & Liu, Z. (2024). A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information. Agriculture, 14(12), 2174. https://doi.org/10.3390/agriculture14122174