Meta-Analysis on Farmers’ Adoption of Agricultural Technologies in East Africa: Evidence from Chinese Agricultural Technology Demonstration Centers
Abstract
:1. Introduction
2. Methodology
2.1. Data Source
2.2. Data Coding
2.3. Data Analysis
Random-Effect Model
3. Results and Discussion
Estimated Overall Effect Size Results
Categories of Technologies | Determinants Factors | ES | 95% CI | Z |
---|---|---|---|---|
Improved varieties | Access to credit | 2.260 *** | [0.687, 3.834] | 2.82 |
Age | 1.023 *** | [1.000, 1.046] | 86.33 | |
Distance to market | 0.346 | [−0.276, 0.968] | 1.09 | |
Education level | 2.645 | [1.075, 4.215] | 3.30 | |
Extension services | 4.351 | [−0.618, 9.320] | 1.72 | |
Farming experience | 0.961 *** | [0.846, 1.075] | 16.42 | |
Farmer group membership | 2.273 *** | [1.569, 2.976] | 6.33 | |
Farm size | 18.692 | [−11.821, 49.205] | 1.20 | |
Household size | 1.116 *** | [0.834, 1.399] | 7.75 | |
Off-farm income | 1.817 *** | [0.558, 3.075] | 2.83 | |
Sex | 4.196 | [−0.131, 8.524] | 1.90 | |
Agricultural training | 0.952 | [−0.787, 2.690] | 1.07 | |
Agric mechanization | Age | 0.980 *** | [0.952, 1.009] | 67.15 |
Farm size | 0.697 *** | [0.429, 0.965] | 5.10 | |
Education level | 0.974 *** | [0.841, 1.107] | 14.35 | |
Extension services | 1.474 | [−0.844, 3.792] | 1.25 | |
Sex | 4.916 | [−2.325, 12.157] | 1.33 | |
Soil conservation | Access to credit | 0.466 | [−3.597, 4.528] | 0.22 |
Age | 1.037 *** | [0.992, 1.082] | 45.00 | |
Education level | 6.409 | [−4.884, 17.702] | 1.11 | |
Farm size | 2.690 | [−0.880, 6.260] | 1.48 | |
Extension srvices | 6.409 | [−4.884, 17.702] | 0.98 | |
Household size | 1.103 *** | [1.064, 1.143] | 54.86 | |
Sex | 1.101 ** | [0.185, 2.016] | 2.35 | |
Animal breeding | Access to credit | 1.354 | [−0.094, 2.801] | 1.83 |
Age | 1.048 *** | [1.015, 1.081] | 62.25 | |
Education level | 1.046 *** | [0.603, 1.488] | 4.63 | |
Extnsion services | 1.042 *** | [1.007, 1.077] | 58.24 | |
Farming experience | 0.940 *** | [0.883, 0.997] | 32.43 | |
Off-farm income | 0.534 | [−0.248, 1.316] | 1.34 |
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
NO. | Author(s) | Country | Study Year | Model Used | Sample Size | Categories of Technologies |
---|---|---|---|---|---|---|
1 | Lugamara et al. [40] | Tanzania | 2021 | Logit | 400 | Improved variety |
2 | Kabanyoro et al. [36] | Uganda | 2013 | Logit | 171 | Improved variety |
3 | Gecho, Y. & Punjabi, N. K. [37] | Ethiopia | 2011 | Logit | 150 | Improved variety |
4 | Salum, A. K. [57] | Tanzania | 2016 | Logit | 120 | Improved variety |
5 | Hassen, N. A. [33] | Ethiopia | 2019 | Logit | 180 | Improved variety |
6 | Hagos et al. [32] | Ethiopia | 2018 | Logit | 150 | Improved variety |
7 | Milkias, D. K. [58] | Ethiopia | 2020 | Logit | 154 | Improved variety |
8 | Teshome et al. [38] | Ethiopia | 2019 | Logit | 120 | Improved variety |
9 | Negese, T. [59] | Ethiopia | 2020 | Logit | 355 | Improved variety |
10 | Mentire, W. & Gecho, Y. [42] | Ethiopia | 2016 | Logit | 124 | Improved variety |
11 | Ketema et al. [60] | Ethiopia | 2021 | Logit | 129 | Improved variety |
12 | Mmbando, F. E. & Baiyegunhi, L. J. S. [34] | Tanzania | 2016 | Logit | 160 | Improved variety |
13 | Mwatawala et al. [31] | Tanzania | 2022 | Logit | 166 | Improved variety |
14 | Mwanja et al. [28] | Uganda | 2016 | Logit | 140 | Improved variety |
15 | Rwebangira et al. [47] | Tanzania | 2022 | Logit | 180 | Agricultural mechanization |
16 | Mhango, S. S. [52] | Tanzania | 2023 | Logit | 299 | Agricultural mechanization |
17 | Dawud, T. & Jianjun, L. [61] | Ethiopia | 2021 | Logit | 137 | Agricultural mechanization |
18 | Mengie, B. [35] | Ethiopia | 2023 | Logit | 330 | Soil conservation |
19 | Nahayo et al. [39] | Rwanda | 2016 | Logit | 712 | Soil conservation |
20 | Hawas, L. D. & Degaga, D. T. [41] | Ethiopia | 2023 | Logit | 400 | Soil conservation |
21 | Ingabire, et al. [29] | Rwanda | 2018 | Logit | 120 | Animal breeding |
22 | Jebessa et al. [48] | Ethiopia | 2023 | Logit | 266 | Animal breeding |
References
- Hazell, P.B.R. The Asian Green Revolution. 2009. Available online: https://core.ac.uk/download/pdf/6257689.pdf (accessed on 21 January 2024).
- Otsuka, K. Agricultural Development in Asia and Africa. In Emerging-Economy State and International Policy Studies; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Lakitan, B. Research and technology development in Southeast Asian economies are drifting away from agriculture and farmers’ needs. J. Sci. Technol. Policy Manag. 2018, 10, 251–272. [Google Scholar] [CrossRef]
- Jia, X. Synergistic Green and White Revolution: Evidence from Kenya and Uganda. 2009. Available online: https://ideas.repec.org/p/ags/iaae09/51367.html (accessed on 21 January 2024).
- Asfaw, S.; Bekele, S. Agricultural Technology Adoption and Rural Poverty: Application of an Endogenous Switching Regression for Selected East African Countries. Available online: https://ideas.repec.org/p/ags/aaae10/97049.html (accessed on 21 January 2024).
- Zhang, Y. Technology and Knowledge Transfer: A Case Study of China’s Agricultural Technology Demonstration Center in the United Republic of Tanzania; Palgrave Macmillan: Singapore, 2019. [Google Scholar]
- Konings, P. China and Africa. J. Dev. Soc. 2007, 23, 341–367. [Google Scholar] [CrossRef]
- Pepa, M. Rethinking the political economy of Chinese-African agricultural cooperation: The Chinese agricultural technology demonstration centers. Afr. Focus 2020, 33, 63–77. [Google Scholar] [CrossRef]
- Huang, J.; Wei, W.; Cui, Q.; Xie, W. The prospects for China’s food security and imports: Will China starve the world via imports? J. Integr. Agric. 2017, 12, 2933–2944. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, P. Outward foreign direct investment in agriculture by Chinese companies: Land grabbing or win–win? Econ. Political Stud. 2017, 5, 404–420. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Qi, G.; Tang, L.; Mukwereza, L. Science, Technology, and the Politics of Knowledge: The Case of China’s Agricultural Technology Demonstration Centers in Africa. World Dev. 2016, 81, 82–91. [Google Scholar] [CrossRef]
- Bräutigam, D.; Tang, X. An Overview of Chinese Agricultural and Rural Engagement in Tanzania; International Food Policy Research Institute: Washington, DC, USA, 2012. [Google Scholar]
- Lin, S.; Cui, J. South-South cooperation and food security: Evidence from Chinese agricultural technology demonstration Center in Africa. China Econ. Q. Int. 2024, 4, 1–12. [Google Scholar] [CrossRef]
- Jiang, L.; Harding, A.; Anseeuw, W.; Alden, C. Chinese Agriculture Technology Demonstration Centers in Southern Africa. 2016. Available online: https://agritrop.cirad.fr/582983/1/ATDC%20Paper.pdf (accessed on 21 January 2024).
- Etuk, E.A.; Ayuk, J.O. Agricultural commercialization, poverty reduction and pro-poor growth: Evidence from commercial agricultural development project in Nigeria. Heliyon 2021, 7, e06818. [Google Scholar] [CrossRef]
- Salami, A.; Kamara, A.B.; Brixiova, B. Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities. 2010. Available online: https://www.afdb.org/sites/default/files/documents/publications/working_105_pdf_d.pdf (accessed on 21 January 2024).
- Odame, H.; Alemu, D.; Oduori, L.H. Why the Low Adoption of Agricultural Technologies in Eastern in Central Africa? Association for Strengthening Agricultural Research in Eastern and Central Africa. Available online: https://www.researchgate.net/publication/314285316_Why_the_low_adoption_of_agricultural_technologies_in_Eastern_and_Central_Africa (accessed on 21 January 2024).
- Yamano, T.; Kijima, Y. Market Access, Soil Fertility, and Income in East Africa. In Applied Research in Quality of Life; Springer: Dordrecht, The Netherlands, 2011; pp. 187–202. [Google Scholar] [CrossRef]
- Ogada, M.; Radeny, M.; Recha, J.; Kimeli, P.; Rao, J.; Solomon, D. Uptake and Impact of Climate-Smart Agriculture Technologies and Innovations in East Africa. In Proceedings of the 30th International Conference of Agricultural Economists, Vancouver, BC, Canada, 28 July–2 August 2018; International Association of Agricultural Economists: Toronto, ON, Canada, 2018; p. 277499. [Google Scholar]
- Abebe, Y.; Bekele, A. Analysis of adoption spell of improved common bean varieties in the central rift valley of Ethiopia. J. Agric. Econ. Dev. 2015, 4, 037–043. [Google Scholar]
- Hansen, C.; Steinmetz, H.; Block, J. How to conduct a meta-analysis in eight steps: A practical guide. Manag. Rev. Q. 2022, 72, 1–19. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics, 4th ed.; McGraw-Hill Companies: New York, NY, USA, 2004. [Google Scholar]
- Borenstein, M.; Hedgesb, L.V.; Higginsc, J.P.T.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Jain, K. Meta-Analysis of Fixed, Random and Mixed Effects Models. Int. J. Math. Eng. Manag. Sci. 2018, 4, 199–218. [Google Scholar] [CrossRef]
- Guo, Q.; Ola, O.; Benjamin, E.O. Determinants of the Adoption of Sustainable Intensification in Southern African Farming Systems. Sustainability 2020, 12, 3276. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y. Influencing factors of farmers’ adoption of pro-environmental agricultural technologies in China. Land Use Policy 2021, 109, 105622. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mwanja, W.; Alinda, F.; Kiwanuka, M. Factors affecting farmers’ adoption of improved Irish Potato seed production technologies in South Western Uganda. Int. J. Agric. 2016, 6, 503–512. [Google Scholar]
- Ingabire, M.C.; Liu, Y.; Pesha, J.C.; Hardi, A. Factors Affecting Adoption of Artificial Insemination Technology by Small Dairy Farmers in Rwanda: A Case of Rwamagana District. J. Econ. Sustain. Dev. 2018, 9, 46–53. [Google Scholar]
- Mwalongo, S.; Akpo, E.; Lukurugu, G.A.; Muricho, G.R.; Vernooy, R.; Minja, A.; Ojiewo, C.; Esther Njuguna, E.; Otieno, G.; Varshney, R. Factors Influencing Preferences and Adoption of Improved Groundnut Varieties among Farmers in Tanzania. Agronomy 2020, 10, 1271. [Google Scholar] [CrossRef]
- Mwatawala, H.W.; Maguta, M.M.; Kazanye, A.E. Factors Influencing the adoption of improved Oil Palm Variety in Kigoma Rural District of Tanzania. Rural Plan. J. 2022, 24, 18–37. [Google Scholar]
- Hagos, H.; Ndemo, E.; Yosuf, J. Factors affecting adoption of upland rice in Tselemti district, northern Ethiopia. Agric. Food Secur. 2018, 7, 59. [Google Scholar] [CrossRef]
- Hassen, N.A. Determinants of adoption of improved sorghum package in agro-pastoral households of Somali Region of Ethiopia: A gender perspective. J. Agric. Ex-Tens. Rural Dev. 2019, 11, 192–199. [Google Scholar]
- Mmbando, F.E.; Baiyegunhi, L.J.S. Socio-economic and Institutional Factors Influencing Adoption of Improved Maize Varieties in Hai District, Tanzania. J. Hum. Ecol. 2016, 53, 49–56. [Google Scholar] [CrossRef]
- Mengie, B. Factors affecting the adoption and effectiveness of soil and water conservation measures among small-holder rural farmers: The case of Gumara watershed. Resour. Conserv. Recycl. Adv. 2023, 18, 200159. [Google Scholar]
- Kabanyoro, R.; Kabiri, S.; Mugisa, I.; Nakyagaba, W.; Nasirumbi, L.; Kituuka, G.; Kyampeire, B.; Nampera, M.; Namirimu, T.; Fungo, B. Willingness of farmers to adopt rice intercrops in the Lake Victoria Crescent Agro-ecological Zone of Uganda. J. Biol. Agric. Healthc. 2013, 3, 121–130. [Google Scholar]
- Gecho, Y.; Punjabi, N.K. Determinants of Adoption of Improved Maize Technology in Damot Gale, Wolaita, Ethiopia. Rajasthan J. Ext. Educ. 2011, 19, 1–9. [Google Scholar]
- Teshome, B.; Negash, R.; Shewa, A. Determinants of adoption of improved Jalenea potato variety in Chencha Woreda, Southern Ethiopia. J. Dev. Agric. Econ. 2019, 11, 170–185. [Google Scholar]
- Nahayo, A.; Pan, G.; Joseph, S. Factors influencing the adoption of soil conservation techniques in Northern Rwanda. J. Plant Nutr. Soil Sci. 2016, 179, 367–375. [Google Scholar] [CrossRef]
- Lugamara, C.B.; Urassa, J.K.; Dontsop, N.P.M.; Masso, C. Determinants of Smallholder Farmers’ Adoption and Willingness to Pay for Improved Legume Technologies in Tanzania. Tanzan. J. Agric. Sci. 2021, 20, 245–260. [Google Scholar]
- Hawas, L.D.; Degaga, D.T. Factors affecting improved agricultural technologies adoption logistic model in study areas in East Shewa Zone, Ethiopia. J. Sustain. Dev. Afr. 2023, 25, 37–63. [Google Scholar]
- Mentire, W.; Gecho, Y. Factors Affecting Adoption of Wheat Row Planting Technology: The Case of Sodo Zuriya Woreda, Wolaita Zone, Southern Ethiopia. December, 2016. Innov. Syst. Des. Eng. 2016, 8, 1–8. [Google Scholar]
- Quaye, W.; Justina, A.O.; Mavis, B.; Abubakari, M. Gender dimension of technology adoption: The case of technologies transferred in Ghana. Dev. Pract. 2021, 32, 432–447. [Google Scholar] [CrossRef]
- Fadeyi, O.A.; Anoma, A.; Ammar, A.A. Factors influencing technology adoption among smallholder farmers: A systematic review in Africa. J. Agric. Rural Dev. Trop. Subtrop. 2022, 123, 13–30. [Google Scholar]
- Addison, M.; Anyomi, B.K.; Acheampong, P.P.; Wongnaa, C.A.; Amaning, T.K. Key drivers of adoption intensity of selected improved rice technologies in rural Ghana. Sci. Afr. 2023, 19, e01544. [Google Scholar] [CrossRef]
- Nguyen-Van, P.; To-The, N. Technical efficiency and agricultural policy: Evidence from the tea production in Vietnam. Rev. Agric. Food Environ. Stud. 2016, 97, 173–184. [Google Scholar] [CrossRef]
- Rwebangira, E.V.; Silayo, V.C.; Mrema, G.C. Factors that influence smallholder farmers’ decisions to employ hermetic bag technology for maize grain storage in Kilosa District, Tanzania. Int. J. Sci. Res. Updates 2022, 4, 346–355. [Google Scholar] [CrossRef]
- Jebessa, G.M.; Fikadu, B.; Chalchisa, T.; Tadese, A.; Berhanu, A.; Hailu, D.; Seid, A. Impacts of crossbreed dairy cow adoption on women dietary diversity in southwestern Ethiopia. J. Agric. Food Res. 2023, 12, 100544. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Ruzzante, S.; Labarta, R.; Bilton, A. Adoption of agricultural technology in the developing world: A meta-analysis of the empirical literature. World Dev. 2021, 146, 105599. [Google Scholar] [CrossRef]
- Idrisa, Y.L.; Ogunbameru, B.O.; Madukwe, M.C. Logit and Tobit analyses of the determinants of likelihood of adoption and extent of adoption of improved soybean seed in Borno State, Nigeria. Greener J. Agric. Sci. 2012, 2, 037–045. [Google Scholar] [CrossRef]
- Mhango, S.S. Factors Influencing Adoption of Selected Paddy Innovations Among Smallholder Farmers in Mvomero District, Tanzania. Int. J. Agric. Environ. Biores. 2020, 8, 103–108. [Google Scholar] [CrossRef]
- Akudugu, M.A.; Guo, E.; Dadzie, S.K. Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions? Int. Inst. Sci. Technol. Educ. 2012, 2, 1–13. [Google Scholar]
- Elemineh, D.A.; Merie, H.E.; Kassa, M. Prevalence and Associated Factors of Agricultural Technology Adoption and Teff Productivity in Basso Liben District, East Gojjame Zone, North west Ethiopia. bioRxiv 2020. [Google Scholar]
- Beshir, H.; Emana, B.; Kassa, B.; Haji, J. Determinants of chemical fertilizer technology adoption in North eastern highlands of Ethiopia. J. Res. Econ. Int. Financ. 2012, 12, 39–49. [Google Scholar]
- Gebrea, G.G.; Isodab, H.; Rahutc, D.B.; Amekawad, Y.; Nomurab, H. Gender differences in the adoption of agricultural technology: The case of improved maize varieties in southern Ethiopia. Women’s Stud. Int. Forum 2019, 76, 10226. [Google Scholar] [CrossRef]
- Salum, A.K. Factors Influencing Adoption of Improved Cassava Varieties in Increasing Farm Yield. A Case of Magharibi District, Zanzibar, Tanzania. Master’s Thesis, Sokoine University of Agriculture, Morogoro, Tanzania, 2016. [Google Scholar]
- Milkias, D.K. Analysis on Determinants of Adoption of Improved Wheat Technology in Liben Jewi District, Oromia Region, Ethiopia. Int. J. Appl. Agric. Sci. 2020, 6, 36–43. [Google Scholar] [CrossRef]
- Negese, T. Determinants of smallholder teff farmer’s row planting technology adoption in southern Ethiopia, in case of Duna District in Hadiya zone. J. Smart Econ. Growth 2020, 5, 37–55. [Google Scholar]
- Ketema, M.; Kibret, K.; Hundessa, F.; Bezu, T. Adoption of improved maize varieties as a sustainable agricultural intensification in Eastern Ethiopia: Implication of food and nutritional security. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 998–1007. [Google Scholar] [CrossRef]
- Dawud, T.; Jianjun, L. Factors Affecting Adoption of Small Scale Irrigation Technology: Insights from Sire Woreda, Oromiya Region, Ethiopia. Am. J. Appl. Sci. Res. 2021, 7, 84–101. [Google Scholar] [CrossRef]
Variables | Descriptions | References |
---|---|---|
Acces to credit | 1 if farmers accessed agricultural credit; 0 if otherwise | Mwanja et al. [28]; Ingabire et al. [29] |
Age | Age of household head (years) | Mwalongo et al. [30]; Mwatawala et al. [31] |
Distance to market | Distance to the market (continuous) | Hagos et al. [32]; Hassen [33] |
Education level | Years spent in school | Mbando & Baiyegunhi [34]; Mengie [35] |
Extension services | 1 if farmer accessed extension services; 0 if otherwise | Mwanja et al. [28]; Kabanyoro et al. [36] |
Farming experience | Number of years engaged in farming | Gecho & Punjabi [37]; Teshome et al. [38] |
Farmer group membership | 1 if farmer is a member of farmer group; 0 if otherwise | Mwalongo et al. [30]; Nahayo et al. [39] |
Farm size | Total area planted (continuous) | Mbando & Baiyegunhi [34]; Mengie [35] |
Household size | Number of individuals in a household | Lugamara et al. [40]; Hawas & Degaga [41] |
Off-farm income | 1 if farmer engaged in off-farm activities; 0 if otherwise | Hagos et al. [32]; Hassen [33] |
Sex | 1 if famer is Male; 0 if otherwise | Mwanja et al. [28]; Mwalongo et al. [30] |
Agricultural training | 1 if the farmer participated in agricultural technology training; 0 if otherwise | Hagos et al. [32]; Mentire & Gecho [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mponji, R.F.; Cao, X.; Wang, J.; Jia, X. Meta-Analysis on Farmers’ Adoption of Agricultural Technologies in East Africa: Evidence from Chinese Agricultural Technology Demonstration Centers. Agriculture 2024, 14, 2003. https://doi.org/10.3390/agriculture14112003
Mponji RF, Cao X, Wang J, Jia X. Meta-Analysis on Farmers’ Adoption of Agricultural Technologies in East Africa: Evidence from Chinese Agricultural Technology Demonstration Centers. Agriculture. 2024; 14(11):2003. https://doi.org/10.3390/agriculture14112003
Chicago/Turabian StyleMponji, Rowland Fulgence, Xi Cao, Jingyi Wang, and Xiangping Jia. 2024. "Meta-Analysis on Farmers’ Adoption of Agricultural Technologies in East Africa: Evidence from Chinese Agricultural Technology Demonstration Centers" Agriculture 14, no. 11: 2003. https://doi.org/10.3390/agriculture14112003
APA StyleMponji, R. F., Cao, X., Wang, J., & Jia, X. (2024). Meta-Analysis on Farmers’ Adoption of Agricultural Technologies in East Africa: Evidence from Chinese Agricultural Technology Demonstration Centers. Agriculture, 14(11), 2003. https://doi.org/10.3390/agriculture14112003