Preliminary Mapping of the Spatial Variability in the Microclimate in Tropical Greenhouses: A Pepper Crop Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Experimental Framework and Assessed Parameters
Climatic Parameters
2.3. Statistical Analysis
3. Results
3.1. Experimental Growth Conditions
3.2. Spatial Distribution of Climatic Parameters in the Greenhouse over the Different Crop Phenological Stages
3.3. Correlations Among Climatic Parameters and ETc Inside and Outside of the Greenhouse
4. Discussion
4.1. Experimental Growth Conditions
4.2. Spatial Distribution of Climatic Parameters and Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cuce, P.M.; Riffat, S. A state of the art review of evaporative cooling systems for building applications. Renew. Sustain. Energy Rev. 2016, 54, 1240–1249. [Google Scholar] [CrossRef]
- Anda López, M.R.; Aranda, M.; Plata, M.R.A.; Castillo, M.H.J.; Campuzano, M.F.B.; Camazama, E.J. Sistema inteligente de fertirrigación y control ambiental para invernaderos de zonas tropicales, un detonante económico para horticultores y floricultores de la zona sur del Estado de México CAMAZAMA, Intelligent system of irrigation and environmental control for greenhouses of tropical zones, an economic detonator for horticulturists and flower grower of the south zone of the State of Mexico. In Proceedings of the XXXII Congreso Internacional y II Congreso Iberoamericano en Administración de Empresas Agropecuarias (sesión carteles), Guanajuato, Mexico, 26–29 May 2019; p. 45. [Google Scholar]
- Salcedo, G.A.; Reca, J.; Pérez-Sáiz, M.; Lao, M.T. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate. Ciência Rural 2017, 47, 20151538. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Tong, Y.X.; Yang, Q.C.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Spatial distribution of air temperature and relative humidity in the greenhouse as affected by external shading in arid climates. J. Int. Agric. 2019, 18, 2869–2882. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Bojacá, C.R. Simulacion del microclima en un invernadero usado para la producción de rosas bajo condiciones de clima intertropical. Chil. J. Agric. Anim. Sci. 2019, 35, 137–150. [Google Scholar] [CrossRef]
- Van Mourik, S.; Van Beveren, P.J.; López-Cruz, I.L.; Van Henten, E.J. Improving climate monitoring in greenhouse cultivation via model-based filtering. Biosyst. Eng. 2019, 181, 40–51. [Google Scholar] [CrossRef]
- Qiu, R.; Kang, S.; Li, F.; Du, T.; Tong, L.; Wang, F.; Chen, R.; Liu, J.; Li, S. Energy partitioning and evapotranspiration of hot pepper grown in greenhouse with furrow and drip irrigation methods. Sci. Hortic. 2011, 129, 790–797. [Google Scholar] [CrossRef]
- Sharma, H.; Shukla, M.K.; Bosland, P.W.; Steiner, R. Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers. Agric. Water Manag. 2017, 179, 81–91. [Google Scholar] [CrossRef]
- Hadad, D.; Lukyanov, V.; Cohen, S.; Zipilevitz, E.; Gilad, Z.; Silverman, D.; Tanny, J. Measuring and modelling crop water use of sweet pepper crops grown in screenhouses and greenhouses in an arid region. Biosyst. Eng. 2020, 200, 246–258. [Google Scholar] [CrossRef]
- Teitel, M.; Atias, M.; Barak, M. Gradients of temperature, humidity, and CO2 along a fan-ventilated greenhouse. Biosyst. Eng. 2010, 106, 166–174. [Google Scholar] [CrossRef]
- Singh, M.C.; Singh, K.G.; Singh, J.P. Performance of soilless cucumbers under partially controlled greenhouse environment in relation to deficit fertigation. Indian J. Hortic. 2018, 75, 259–264. [Google Scholar] [CrossRef]
- Bakker, J.C. The effects of temperature on flowering, fruit set and fruit development of glasshouse sweet pepper (Capsicum annuum L.). J. Hortic. Sci. 1989, 64, 313–320. [Google Scholar] [CrossRef]
- Bakker, J.C. The effects of air humidity on flowering, fruit set, seed set and fruit growth of glasshouse sweet pepper (Capsicum annuum L.). Sci. Hortic. 1989, 40, 1–8. [Google Scholar] [CrossRef]
- Reche Mármol, J. Cultivo Del Pimiento Dulce en Invernadero; Agricultura. Estudios e Informes Técnicos-Junta de Andalucía (España): Seville, Spain, 2010; p. 294. [Google Scholar]
- Soussi, M.; Chaibi, M.T.; Buchholz, M.; Saghrouni, Z. Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy 2022, 12, 626. [Google Scholar] [CrossRef]
- Muharomah, R.; Setiawan, B.I.; Purwanto, M.Y.J.; Liyantono. Temporal crop coefficients and water productivity of lettuce (Lactuca sativa L.) hydroponics in planthouse. Agric. Eng. Int. CIGR J. 2020, 22, 22–29. [Google Scholar]
- Reyes-Rosas, A.; Rodríguez-García, R.; Zermeño-González, A.; Jasso-Cantú, D.; Cadena-Zapata, M.; Burgueño-Camacho, H. Evaluation of a model for estimating the temperature and relative humidity Inside greenhouses with natural ventilation. Rev. Chap. Ser. Hortic. 2012, 18, 125–140. [Google Scholar] [CrossRef]
- Singh, M.C.; Singh, J.P.; Singh, K.G. Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media. Comput. Electron. Agric. 2018, 154, 227–238. [Google Scholar] [CrossRef]
- Ting-ting, W.; Zai-qiang, Y.; Lin, W.; He-li, Z.; Jia-shuai, L. Simulation model of hourly air temperature inside glass greenhouse and plastic greenhouse. Chin. J. Agrometeorol. 2018, 39, 644. [Google Scholar]
- Dewi, V.A.K.; Setiawan, B.I.; Minasny, B.; Liyantono, L.; Waspodo, R.S.B. Modeling air temperature inside an organic vegetable greenhouse. AGRIVITA J. Agric. Sci. 2020, 42, 295–305. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. Nutrient solutions for hydroponic culture. Univ. Calif. Agric. Exp. Stn. Circ. 1938, 347. [Google Scholar]
- Idso, S.B.; Clawson, K.L.; Anderson, M.G. Foliage temperature: Effects of environmental factors with implications for plant water stress assesment and the CO2/climate connection. Water Resour. Res. 1986, 22, 1702–1716. [Google Scholar]
- Hargreaves, G.H.; Sumani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 8, 96–99. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and evaluation of Hargreaves equation. J. Irrig. Drain. Engi.-ASCE 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Fernández, M.D.; Orgaz, F.; Fereres, E.; López, J.C.; Céspedes, A.; Pérez, J.; Gallardo, M. Programación Del Riego de Cultivos Hortícolas Bajo Invernadero en El Sudeste Español; Caja Rural: Almería, Spain, 2001. [Google Scholar]
- Cressie, N.A.C. Statistics for Spatial Data; John Wiley & Sons: Hoboken, NJ, USA, 1993; p. 867. [Google Scholar]
- Arredondo Navarro, E.; Franco Rodríguez, J.; Lao Arenas, M.; Llanderal, A. Estudio de Las Condiciones Agroclimáticas en la Costa Del Ecuador, 1st ed.; Universidad Católica de Santiago de Guayaquil: Guayaquil, Ecuador, 2022; Volume 1, p. 144. ISBN 978-9942-825-56-8. [Google Scholar]
- Villagrán Munar, E.A.; Gómez Arias, L.Y.; Gómez Latorre, D.A.; Rodríguez Giraldo, Y.; Chacón Garzón, I.E.; Numa Vergel, S.J.; Bonilla Buitrago, R.R. Estrategias de Adaptación y Mitigación al Cambio Climático en Sistemas de Producción Agrícola: Un Enfoque Desde la Agricultura Protegida y Técnicas de Biotecnología Para el Manejo del Cultivo; AGROSAVIA: Cundinamarca, Colombia, 2023; p. 260. [Google Scholar]
- Huertas, L. El control ambiental en invernaderos: Humedad relativa. Hortícola 2008, 205, 52–54. [Google Scholar]
- Dimitrijević, A.; Bajkin, A.; Blažin, S.; Blažin, D. Uniformity of air temperature and relative humidity inside and outside the different types of greenhouses. J. Proc. Energy Agric. 2014, 18, 107–110. [Google Scholar]
- Piñero, M.C.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Medrano, E.; López-Marín, J.; Del Amor, F.M. Reducing extreme weather impacts in greenhouses: The effect of a new passive climate control system on nutritional quality of pepper fruits. J. Sci. Food Agric. 2022, 102, 2723–2730. [Google Scholar] [CrossRef]
- Erickson, A.N.; Markhart, A.H. Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. J. Am. Soc. Hortic. Sci. 2001, 126, 697–702. [Google Scholar] [CrossRef]
- Mayorga-Gómez, A.; Nambeesan, S.U.; Coolong, T.; Díaz-Pérez, J.C. Temporal relationship between calcium and fruit growth and development in bell pepper (Capsicum annuum L.). HortScience 2020, 55, 906–913. [Google Scholar] [CrossRef]
- Montero Torres, J. Relación de la radiación solar con la producción de plantas: Agroproductivas. Rev. Investig. Inn. Agrop. Rec. Nat. 2022, 9, 48–62. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Akrami, M.; Bojacá, C. Influence of the height in a colombian multi-tunnel greenhouse on natural ventilation and thermal behavior: Modeling approach. Sustainability 2021, 13, 13631. [Google Scholar] [CrossRef]
- Flores Ortega, A.; Gutiérrez Vaca, C.; Saldaña Robles, N.; Saldaña Robles, A.; Saldaña Robles, A. Estudio de las estrategias para la gestión del clima en invernaderos de baja tecnología en climas cálidos. Rev. Mex. Cienc. Agríc. 2018, 9, 4383–4394. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Jaramillo, J.E.; León-Pacheco, R.I. Ventilación natural en invernadero con mallas anti-insecto evaluadas con un modelo computacional de fluidos: Uso de pantallas anti-insectos en un invernadero colombiano. Agron. Mesoam. 2020, 709–728. [Google Scholar] [CrossRef]
- Ramón, E.; Da-Silva, R.; Allende, J.; Rada, F.; Figueiral, R. Variaciones microclimáticas en invernadero: Efecto sobre las relaciones hídricas e intercambio de gases en pimentón (Capsicum annuum). Agrociencia 2005, 39, 41–50. [Google Scholar]
- Leal, J. Efecto de la variación de la densidad del aire en la temperatura bajo condiciones de invernadero. Ciencia UANL 2006, 9, 290–297. [Google Scholar]
Parameter | Period | Outside | Inside | ||||
---|---|---|---|---|---|---|---|
Ave. | Max. | Min. | Ave. | Max. | Min. | ||
T (°C) | 09/06/23 to 13/07/23 (1) | 25.33 | 33.98 | 20.80 | 28.69 | 39.11 | 22.71 |
14/07/23 to 06/08/23 (2) | 24.19 | 32.90 | 20.00 | 28.52 | 38.02 | 21.83 | |
07/08/23 to 03/09/23 (3) | 24.47 | 34.40 | 18.30 | 27.79 | 44.95 | 19.97 | |
04/09/23 to 02/10/23 (4) | 24.96 | 35.90 | 19.00 | 28.29 | 40.21 | 20.74 | |
RH (%) | 09/06/23 to 13/07/23 (1) | 87.67 | 99.96 | 50.71 | 59.87 | 80.31 | 33.42 |
14/07/23 to 06/08/23 (2) | 87.34 | 99.46 | 54.83 | 60.51 | 83.91 | 35.59 | |
07/08/23 to 03/09/23 (3) | 85.61 | 99.35 | 48.41 | 63.12 | 92.02 | 23.45 | |
04/09/23 to 02/10/23 (4) | 82.06 | 98.55 | 48.31 | 61.59 | 88.61 | 31.36 | |
VPD (kPa) | 09/06/23 to 13/07/23 (1) | 0.47 | 2.52 | 0.02 | 1.68 | 4.68 | 0.54 |
14/07/23 to 06/08/23 (2) | 0.48 | 2.25 | 0.01 | 1.65 | 4.27 | 0.42 | |
07/08/23 to 03/09/23 (3) | 0.54 | 2.76 | 0.01 | 1.53 | 7.32 | 0.18 | |
04/09/23 to 02/10/23 (4) | 0.68 | 2.73 | 0.03 | 1.64 | 5.11 | 0.27 | |
GR (MJ m−2 day−1) | 09/06/23 to 13/07/23 (1) | 13.13 | 18.23 | 7.08 | 9.45 | 13.13 | 5.10 |
14/07/23 to 06/08/23 (2) | 13.58 | 17.85 | 9.08 | 9.85 | 14.95 | 6.53 | |
07/08/23 to 03/09/23 (3) | 14.63 | 24.71 | 7.83 | 10.56 | 17.79 | 5.64 | |
04/09/23 to 02/10/23 (4) | 15.97 | 24.08 | 6.13 | 11.50 | 17.34 | 4.41 |
Climatic Parameter | DAT | Climatic Parameters Outside the Greenhouse | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WS Ave. | WS Inst. | WD Ave. | WD Inst | Temp. | RH | VPD | GR | |||
Inside greenhouse | Temp | −0.14 * | 0.40 * | 0.54 * | −0.33 * | −0.17 * | 0.81 * | 0.92 * | 0.69 * | 0.92 * |
RH | 0.16 * | −0.42 * | −0.56 * | 0.29 * | 0.18 * | −0.86 * | −0.91 * | −0.76 * | −0.91 * | |
VPD | −0.01 | 0.36 * | 0.51 * | −0.28 * | −0.17 * | 0.89 * | 0.79 * | 0.72 * | 0.79 * | |
ETc | 0.52 * | 0.41 * | 0.51 * | 0.01 | 0.05 | 0.17 * | 0.74 * | 0.82 * | 0.74 * |
Regressions Coefficient | Statistics and Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | DAT | WS Ave. | WS Inst. | WD Ave. | WD Inst | Temp. | RH | GR | VPD | C | R2 (Adj R2) | F-Ratio | p-Value |
Temp | - | - | 0.020 (0.007) | - | - | 1.082 (±0.008) | 0.023 (±0.004) | - | 0.605 (±0.100) | −1.144 (±0.521) | 0.9431 (0.9430) | 50,067.71 | 0.05 |
RH | - | - | −0.073 (±0.023) | - | - | −3.804 (±0.026) | 0.211 (±0.014) | 0.140 (±0.053) | 7.477 (±0.324) | 134.186 (±1.682) | 0.9384 (0.9018) | 36,826.37 | 0.05 |
VPD | - | - | 0.007 (±0.001) | - | - | 0.194 (±0.001) | 0.040 (±0.001) | - | 1.121 (±0.024) | −7.333 (±0.125) | 0.9370 (0.9363) | 44,889.10 | 0.05 |
ETc | 0.006 (±0.0006) | −1.407 (±0.187) | 0.631 (±0.092) | - | - | −0.403 (±0.026) | 0.183 (±0.024) | 0.183 (±0.009) | 4.924 (±0.602) | −9.795 (±2.207) | 0.8847 (0.8837) | 494.21 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triana, A.; Llanderal, A.; García-Caparrós, P.; Donoso, M.; Jiménez-Lao, R.; Franco Rodríguez, J.E.; Lao, M.T. Preliminary Mapping of the Spatial Variability in the Microclimate in Tropical Greenhouses: A Pepper Crop Perspective. Agriculture 2024, 14, 1972. https://doi.org/10.3390/agriculture14111972
Triana A, Llanderal A, García-Caparrós P, Donoso M, Jiménez-Lao R, Franco Rodríguez JE, Lao MT. Preliminary Mapping of the Spatial Variability in the Microclimate in Tropical Greenhouses: A Pepper Crop Perspective. Agriculture. 2024; 14(11):1972. https://doi.org/10.3390/agriculture14111972
Chicago/Turabian StyleTriana, Angel, Alfonso Llanderal, Pedro García-Caparrós, Manuel Donoso, Rafael Jiménez-Lao, John Eloy Franco Rodríguez, and María Teresa Lao. 2024. "Preliminary Mapping of the Spatial Variability in the Microclimate in Tropical Greenhouses: A Pepper Crop Perspective" Agriculture 14, no. 11: 1972. https://doi.org/10.3390/agriculture14111972
APA StyleTriana, A., Llanderal, A., García-Caparrós, P., Donoso, M., Jiménez-Lao, R., Franco Rodríguez, J. E., & Lao, M. T. (2024). Preliminary Mapping of the Spatial Variability in the Microclimate in Tropical Greenhouses: A Pepper Crop Perspective. Agriculture, 14(11), 1972. https://doi.org/10.3390/agriculture14111972