Potential of Selected Species of Spiraea L. for Phytoremediation of Heavy Metals from Soils of Urban Areas
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. Flora of China, Volume 9: Pittosporaceae Through Connaraceae; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003. [Google Scholar]
- Maas, S.; Scheifler, R.; Benslama, M.; Crini, N.; Lucot, E.; Brahmia, Z.; Benyacoub, S.; Giraudoux, P. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environ. Pollut. 2010, 158, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Wang, Y.; Luo, G.; Chen, X.; Yang, X.; Hall, M.H.P.; Guo, R.; Wang, H.; Cui, J.; et al. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 2013, 192, 50–58. [Google Scholar] [CrossRef]
- Luo, X.S.; Xue, Y.; Wang, Y.L.; Cang, L.; Xu, B.; Ding, J. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 2015, 127, 152–157. [Google Scholar] [CrossRef]
- Milenkovic, B.; Stajic, J.M.; Gulan, L.; Zeremski, T.; Nikezic, D. Radioactivity levels and heavy metals in the urban soil of Central Serbia. Environ. Sci. Pollut. Res. 2015, 22, 16732–16741. [Google Scholar] [CrossRef] [PubMed]
- Mehr, M.R.; Keshavarzi, B.; Moore, F.; Sharifi, R.; Lahijanzadeh, A.; Kermani, M. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J. Afr. Earth Sci. 2017, 132, 16–26. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Terelak, H.; Motowicka-Terelak, T. The heavy metals and sulphur status of agricultural soils in Poland. In Soil Quality, Sustainable Agriculture and Environmental Security in Central and Eastern Europe; Wilson, M.J., Maliszewska-Kordybach, B., Eds.; NATO Science Series 69; Springer: Dordrecht, The Nederlands, 2000. [Google Scholar] [CrossRef]
- Salminen, R. Foregs Geochemical Atlas of Europe. EuroGeoSurveys. 2005. Available online: http://weppi.gtk.fi/publ/foregsatlas/ (accessed on 17 July 2024).
- Manta, D.S.; Angelon, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils. Environmental Pollution; Alloway, B.J., Ed.; Springer: Dordrecht, The Nederlands, 2013; Volume 22. [Google Scholar] [CrossRef]
- Wie, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Steindor, K.A.; Franiel, I.J.; Bierza, W.M.; Pawlak, B.; Palowski, B.F. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland. J. Environ. Sci. Health 2016, 51, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy metals contamination of urban soils—A decade study in the city of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Bosiacki, M.; Kleiber, T.; Markiewicz, B. Continuous and Induced Phytoextraction-Plant-Based Methods of Remove Heavy Metals from Contaminated Soil. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; InTech: Rijeka, Croatia, 2014; Volume 20, pp. 575–612. ISBN 978-953-51-1235-8. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Zaid, A.; Ahmad, B.; Jaleel, H.; Wani, S.H.; Hasanuzzaman, M. A critical review on iron toxicity and tolerance in plants: Role of exogenous phytoprotectants. In Plant Micronutrients; Aftab, T., Hakeem, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Z.M. Mercury toxicity, molecular response and tolerance in higher plants. Biometals 2012, 25, 847–857. [Google Scholar] [CrossRef]
- Nazar, R.; Iqbal, N.; Masood, A.; Khan, M.; Syeed, S.; Khan, N. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am. J. Plant Sci. 2012, 3, 1476–1489. [Google Scholar] [CrossRef]
- Singh, H.P.; Mahajan, P.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 2013, 11, 229–254. [Google Scholar] [CrossRef]
- Bååth, E. Effects of heavy metals in soil on microbial processes and populations. Water Air Soil Pollut. 1989, 47, 335–379. [Google Scholar] [CrossRef]
- Kucharski, J.; Barabasz, W.; Bielińska, E.J.; Wyszkowska, J. Biological and Biochemical Properties of Soils; Mocek, G., Wydanie, I., Eds.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2016; ISBN 978-83-01-17944-6. [Google Scholar]
- Shelton, J.S.; Florkowski, W.J.; Pennisi, S.V. Establishing native wildflower habitats in urban settings on a low budget. Folia Hortic. 2024, 36, 3. [Google Scholar] [CrossRef]
- Bosiacki, M.; Bednorz, L.; Fedeńczak, K.; Górecki, T.; Mizgajski, A.; Poniży, L.; Spiżewski, T. Soil quality as a key factor in producing vegetables for home consumption—A case study of urban allotments in Gorzów Wielkopolski (Poland). Agronomy 2021, 11, 1836. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- EL-Bauome, H.; Doklega, S.; Saleh, S.; Mohamed, A.; Suliman, A.; Abd El-Hady, M. Effects of melatonin on lettuce plant growth, antioxidant enzymes and photosynthetic pigments under salinity stress conditions. Folia Hortic. 2024, 36, 1–17. [Google Scholar] [CrossRef]
- Boim, A.G.F.; Melo, L.C.A.; Moreno, F.N.; Alleoni, L.R.F. Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils. J. Environ. Manag. 2016, 170, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Lugwisha, E.H.; Othman, C.O. Heavy metal levels in soil, tomatoes and selected vegetables from Morogoro Region, Tanzania. Int. J. Environ. Monit. Anal. 2016, 4, 82–88. [Google Scholar] [CrossRef]
- Siyar, R.; Ardejani, F.D.; Norouzim, P.; Maghsoudy, S.; Yavarzadeh, M.; Taherdangkoo, R.; Butscher, C. Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water 2022, 14, 3597. [Google Scholar] [CrossRef]
- Garg, V.K.; Yadav, P.; Mor, S.; Singh, B.; Pulhani, V. Heavy metals bioconcentration from soil to vegetables and assessment of health risk caused by their ingestion. Biol. Trace Elem. Res. 2014, 157, 256–265. [Google Scholar] [CrossRef]
- Lee, C.S.; Nzioka, A.M.; Kim, Y.J.; Sakong, J. Evaluation of bioconcentration factors of metals and non-metals in crops and soil from abandoned mines in Korea. Contemp. Probl. Ecol. 2017, 10, 583–590. [Google Scholar] [CrossRef]
- Amin, H.; Arain, B.A.; Abbasi, M.S.; Amin, F.; Jahangir, T.M.; Soomro, N.U. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Int. J. Phytoremediat. 2019, 21, 352–363. [Google Scholar] [CrossRef]
- Usman, K.; Hareb, J.A.; Abu-Dieyeh, M.H.; Alsafran, M.H.S.A. Comparative assessment of toxic metals bioaccumulation and the mechanisms of chromium (Cr) tolerance and uptake in Calotropis procera. Front. Plant Sci. 2020, 11, 883. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Mazur, R. Impacts of Road Deicing Salt on Natural Environment. Inżynieria I Ochr. Sr. 2015, 15, 449–458. [Google Scholar]
- Czerniawska-Kusza, I.; Kusza, G.; Duzyński, M. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environ. Toxicol. 2004, 19, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Munck, I.A.; Bennett, C.M.; Camilli, K.S.; Nowak, R.S. Long-term impact of de-icing salts on tree health in the Lake Tahoe Basin: Environmental influences and interactions with insects and diseases. For. Ecol. Manag. 2010, 260, 1218–1229. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.; Sun, T.; Wang, J. Effect of deicing salts on urban soils and the health of roadside pines (Pinus tabulaeformis) in Northeast China. Appl. Mech. Mater. 2012, 178–181, 353–356. [Google Scholar] [CrossRef]
- Dmuchowski, W.; Baczewska-Dąbrowska, A.; Gozdowski, D.; Brągoszewska, P. Effect of salt stress on the chemical composition of leaves of different tree species in urban environment. Fresenius Environ. Bull. 2013, 22, 987–994. [Google Scholar]
- Łuczak, K.; Czerniawska-Kusza, I.; Rosik-Dulewska, C.; Kusza, G. Effect of NaCl road salt on the ionic composition of soils and Aesculus hippocastanum L. foliage and leaf damage intensity. Sci. Rep. 2021, 11, 5309. [Google Scholar] [CrossRef]
- Equiza, M.A.; Calvo-Polanco, M.; Cirelli, D.; Señorans, J.; Wartenbe, M.; Saunders, C.J.J.; Zwiazek, J.J. Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban For. Urban Green. 2017, 21, 16–28. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Podlaski, R.; Dołęgowska, S.; Michalik, A. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environ. Monit. Assess. 2011, 176, 451–464. [Google Scholar] [CrossRef]
- Komosa, A. Żywienie Roślin Ogrodniczych. Podstawy i Perspektywy [Horticultural Plant Nutrition. Fundamentals and Perspectives]; Powszechne Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2012; ISBN 978-83-09-01141-5. [Google Scholar]
- Marosz, A. Effect of soil salinity on nutrient uptake, growth, and decorative value of four ground cover shrubs. J. Plant Nutr. 2004, 27, 977–989. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Wang, Y.; Dai, X. Morphological and physiological responses of Spirea species to saline water irrigation. HortScience 2020, 55, 55–888. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Ciążela, J.; Siepak, M. Environmental factors affecting soil metals near outlet roads in Poznań, Poland: Impact of grain size, soil depth, and wind dispersal. Environ. Monit. Assess. 2016, 188, 323. [Google Scholar] [CrossRef]
- Program of Environmental Protection for the City of Poznań for 2017–2020, with an Outlook Until 2024. Resolution No. 4214/2017 of the Board of Directors of the Wielkopolska Region of September 6, 2017. Available online: https://bip.umww.pl/artykuly/2823361/pliki/20171010081435_4214.pdf (accessed on 21 July 2024).
- Bach, A.; Pawłowska, B.; Kraus, D.; Malinowska, Z.; Pniak, M.; Bartyńska, M. Urban ornamental trees reaction to the soil sodium chloride salinity and pH factor in Krakow. Zesz. Probl. Postępów Nauk Rol. 2006, 510, 39–48. [Google Scholar]
- Dusza-Dobek, A. Geochemikal studies of soils in some city parks of Warsaw. Biul. Państwowego Inst. Geol. 2012, 450, 35–46. [Google Scholar]
- Widłak, M.; Stoińska, R.; Kowalik, R. Assessment of physical and chemical pollution of urban agglomeration soils. Desalination Water Treat. 2020, 199, 137–143. [Google Scholar] [CrossRef]
- Czarnowska, K. Soils and plants in urban environment. Zesz. Probl. Postępów Nauk Rol. 1995, 418, 111–115. [Google Scholar]
- Breś, W. Anthropopressure factors causing trees to die off in urban landscape. Nauka Przyr. Technol. 2008, 2, 31. [Google Scholar]
- Mickelbart, M.V.; Gosney, M.J.; Camberato, J.; Stanton, K.M. Soil pH effects on growth and foliar nutrient concentrations of Spiraea alba Du Roi and Spiraea tomentosa L. HortScience 2012, 47, 902–906. [Google Scholar] [CrossRef]
- Filipek-Mazur, B.; Tabak, M.; Gorczyca, O.; Bobowiec, A. Influence of mineral fertilizers containing sulfur on soil chemical properties. Fragm. Agron. 2018, 35, 55–65. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Lu, L.; Crinan, A. Spiraea. In Flora of China 2003; Pittosporaceae Through Connaraceae; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003; Volume 9, pp. 47–73. [Google Scholar]
Cu | Fe | Mn | Ni | Zn | Cd | Cr | Pb | ||
---|---|---|---|---|---|---|---|---|---|
S. × cinerea ‘Grefsheim’ | soils (mg kg−1 d.m.) | ||||||||
Min. | 1.82 | 39.26 | 3.46 | 0.09 | 4.78 | 0.07 | 0.15 | 1.25 | |
Max. | 6.21 | 79.10 | 9.32 | 0.28 | 18.23 | 0.80 | 1.96 | 9.45 | |
Mean | 3.63 | 65.57 | 6.48 | 0.15 | 11.89 | 0.21 | 0.91 | 4.53 | |
SD * | 1.68 | 14.04 | 2.17 | 0.06 | 4.12 | 0.20 | 0.62 | 3.24 | |
CV ** | 46.28 | 21.41 | 33.49 | 40.00 | 34.65 | 95.24 | 68.13 | 71.52 | |
leaves (mg kg−1 d.m.) | |||||||||
Min. | 4.67 | 284.07 | 31.00 | 1.18 | 33.70 | 0.83 | 7.02 | 2.60 | |
Max. | 14.42 | 541.13 | 98.64 | 2.13 | 92.04 | 1.98 | 19.61 | 4.73 | |
Mean | 8.90 | 405.51 | 56.29 | 1.64 | 55.93 | 1.28 | 12.41 | 3.88 | |
SD | 3.54 | 90.55 | 21.95 | 0.33 | 19.52 | 0.37 | 4.38 | 0.83 | |
CV | 39.78 | 22.33 | 38.99 | 20.12 | 34.90 | 28.91 | 35.29 | 21.39 | |
S. nipponica ‘Snowmound’ | soils (mg kg−1 d.m.) | ||||||||
Min. | 0.56 | 43.40 | 3.83 | 0.00 | 3.56 | 0.16 | 0.00 | 1.03 | |
Max. | 4.43 | 70.11 | 7.85 | 0.21 | 13.65 | 0.32 | 2.67 | 3.90 | |
Mean | 2.39 | 53.89 | 6.66 | 0.12 | 9.24 | 0.23 | 1.26 | 2.23 | |
SD | 1.50 | 8.57 | 1.32 | 0.08 | 3.11 | 0.05 | 1.17 | 0.94 | |
CV | 62.76 | 15.90 | 19.82 | 66.67 | 33.66 | 21.74 | 92.86 | 42.15 | |
leaves (mg kg−1 d.m.) | |||||||||
Min. | 3.95 | 194.36 | 31.43 | 0.64 | 16.46 | 0.94 | 6.43 | 3.00 | |
Max. | 7.04 | 378.46 | 48.61 | 1.15 | 19.56 | 1.75 | 18.81 | 4.90 | |
Mean | 5.10 | 279.55 | 39.84 | 0.94 | 17.93 | 1.35 | 12.95 | 3.90 | |
SD | 1.10 | 60.42 | 5.59 | 0.18 | 0.96 | 0.32 | 4.54 | 0.60 | |
CV | 21.57 | 21.61 | 14.03 | 19.15 | 5.35 | 23.70 | 35.06 | 15.38 | |
S. splendens | soils (mg kg−1 d.m.) | ||||||||
Min. | 0.63 | 25.45 | 2.97 | 0.03 | 7.10 | 0.11 | 0.18 | 1.11 | |
Max. | 5.53 | 88.51 | 11.11 | 0.24 | 16.02 | 0.30 | 1.64 | 4.57 | |
Mean | 2.66 | 57.33 | 5.76 | 0.14 | 10.30 | 0.18 | 0.75 | 2.27 | |
SD | 1.52 | 23.68 | 2.83 | 0.07 | 3.16 | 0.07 | 0.49 | 1.19 | |
CV | 57.14 | 41.30 | 49.13 | 50.00 | 30.68 | 38.89 | 65.33 | 52.42 | |
leaves (mg kg−1 d.m.) | |||||||||
Min. | 3.04 | 218.27 | 35.90 | 0.74 | 19.63 | 0.83 | 5.80 | 2.71 | |
Max. | 11.45 | 507.75 | 109.32 | 1.92 | 30.11 | 1.82 | 16.70 | 4.86 | |
Mean | 7.04 | 354.32 | 61.39 | 1.32 | 25.67 | 1.35 | 10.76 | 3.97 | |
SD | 3.11 | 98.39 | 23.54 | 0.41 | 3.43 | 0.37 | 4.06 | 0.74 | |
CV | 44.18 | 27.77 | 38.35 | 31.06 | 13.36 | 27.41 | 37.73 | 18.64 | |
S. × vanhouttei | soils (mg kg−1 d.m.) | ||||||||
Min. | 2.54 | 38.70 | 2.78 | 0.07 | 8.13 | 0.10 | 0.28 | 0.67 | |
Max. | 6.08 | 90.10 | 12.43 | 0.33 | 23.45 | 0.34 | 0.97 | 12.85 | |
Mean | 4.28 | 59.67 | 7.50 | 0.19 | 15.09 | 0.22 | 0.63 | 6.94 | |
SD | 1.02 | 18.42 | 4.25 | 0.09 | 5.05 | 0.08 | 0.26 | 4.34 | |
CV | 23.83 | 30.87 | 56.67 | 47.37 | 33.47 | 36.36 | 41.27 | 62.54 | |
leaves (mg kg−1 d.m.) | |||||||||
Min. | 3.34 | 195.99 | 47.48 | 0.94 | 31.29 | 0.75 | 4.29 | 2.69 | |
Max. | 7.93 | 398.18 | 111.00 | 1.58 | 50.10 | 1.61 | 12.79 | 3.83 | |
Mean | 5.53 | 279.88 | 78.50 | 1.28 | 39.11 | 1.15 | 7.85 | 3.16 | |
SD | 1.63 | 63.73 | 21.47 | 0.21 | 6.39 | 0.28 | 2.88 | 0.36 | |
CV | 29.48 | 22.77 | 27.35 | 16.41 | 16.34 | 24.35 | 36.69 | 11.39 |
Metal | Date of Soil Sampling | S. × cinerea ‘Grefsheim’ | S. nipponica ‘Snowmound’ | S. splendens | S. × vanhouttei | Średnia |
---|---|---|---|---|---|---|
Cu | spring | 3.65 b* | 3.10 ab | 3.67 b | 4.67 b | 3.77 b |
autumn | 3.60 b | 1.69 a | 1.65 a | 3.88 b | 2.71 a | |
mean | 3.63 bc | 2.39 a | 2.66 ab | 4.28 c | ||
Fe | spring | 57.42 bc | 54.59 ab | 38.17 a | 53.29 ab | 50.87 a |
autumn | 73.72 cd | 53.18 ab | 76.50 d | 66.06 bcd | 67.36 b | |
mean | 65.57 a | 53.89 a | 57.33 a | 59.67 a | ||
Mn | spring | 7.26 a | 6.13 a | 5.14 a | 6.16 a | 6.17 a |
autumn | 5.71 a | 7.20 a | 6.38 a | 8.84 a | 7.03 a | |
mean | 6.48 a | 6.66 a | 5.76 a | 7.50 a | ||
Ni | spring | 0.19 bc | 0.18 bc | 0.20 c | 0.18 bc | 0.19 b |
autumn | 0.12 ab | 0.06 a | 0.08 a | 0.21 c | 0.12 a | |
mean | 0.15 ab | 0.12 a | 0.14 ab | 0.19 b | ||
Zn | spring | 11.77 abc | 9.43 ab | 11.07 abc | 15.65 c | 11.98 a |
autumn | 12.02 abc | 9.05 a | 9.53 ab | 14.53 bc | 11.28 a | |
mean | 11.89 ab | 9.24 a | 10.30 a | 15.09 b | ||
Cd | spring | 0.20 a | 0.24 a | 0.23 a | 0.24 a | 0.23 a |
autumn | 0.22 a | 0.21 a | 0.14 a | 0.21 a | 0.19 a | |
mean | 0.21 a | 0.23 a | 0.18 a | 0.22 a | ||
Cr | spring | 1.42 c | 2.37 d | 1.13 bc | 0.85 b | 1.44 b |
autumn | 0.40 a | 0.16 a | 0.37 a | 0.42 a | 0.34 a | |
mean | 0.91 b | 1.26 c | 0.75 ab | 0.63 a | ||
Pb | spring | 4.20 ab | 1.95 a | 2.18 a | 6.50 b | 3.71 a |
autumn | 4.86 ab | 2.52 a | 2.36 a | 7.38 b | 4.28 a | |
mean | 4.53 ab | 2.23 a | 2.27 a | 6.94 b |
Metal | Date of Leaf Sampling | S. × cinerea ‘Grefsheim’ | S. nipponica ‘Snowmound’ | S. splendens | S. × vanhouttei | Średnia |
---|---|---|---|---|---|---|
Cu | spring | 9.40 c* | 5.49 ab | 7.57 abc | 5.79 ab | 7.06 a |
autumn | 8.40 bc | 4.72 a | 6.52 abc | 5.27 ab | 6.23 a | |
mean | 8.90 b | 5.10 a | 7.04 ab | 5.53 a | ||
Fe | spring | 474.74 c | 326.96 b | 424.34 c | 323.56 b | 387.40 b |
autumn | 336.28 b | 232.15 a | 284.30 ab | 236.20 a | 272.23 a | |
mean | 405.51 c | 279.55 a | 354.32 b | 279.88 a | ||
Mn | spring | 69.77 c | 44.52 ab | 76.74 c | 95.15 d | 71.54 b |
autumn | 42.81 a | 35.17 a | 46.04 ab | 61.85 bc | 46.47 a | |
mean | 56.29 b | 39.84 a | 61.39 b | 78.50 c | ||
Ni | spring | 1.78 d | 1.00 ab | 1.44 cd | 1.35 bc | 1.39 b |
autumn | 1.50 cd | 0.88 a | 1.20 abc | 1.21 abc | 1.20 a | |
mean | 1.64 c | 0.94 a | 1.32 b | 1.28 b | ||
Zn | spring | 61.52 e | 18.64 a | 26.74 ab | 43.94 cd | 37.71 b |
autumn | 50.34 de | 17.21 a | 24.60 ab | 34.36 bc | 31.63 a | |
mean | 55.93 c | 17.93 a | 25.67 a | 39.15 b | ||
Cd | spring | 1.53 bc | 1.64 c | 1.63 c | 1.37 b | 1.54 b |
autumn | 1.04 a | 1.07 a | 1.06 a | 0.93 a | 1.02 a | |
mean | 1.28 ab | 1.35 b | 1.35 b | 1.15 a | ||
Cr | spring | 16.22 c | 15.79 c | 13.84 c | 10.26 b | 14.03 b |
autumn | 8.60 b | 10.11 b | 7.68 ab | 5.44 a | 7.96 a | |
mean | 12.41 b | 12.95 b | 10.76 b | 7.85 a | ||
Pb | spring | 4.09 bc | 4.17 c | 4.22 c | 3.32 ab | 3.95 b |
autumn | 3.68 abc | 3.63 abc | 3.72 abc | 2.99 a | 3.50 a | |
mean | 3.88 b | 3.90 b | 3.97 b | 3.16 a |
Taxon/Street, Location | Sample No. | Spring Term | Autumn Term | |||
---|---|---|---|---|---|---|
pH (H2O) | EC (mS cm−1) | pH (H2O) | EC (mS cm−1) | |||
S. × cinerea ‘Grefsheim’ | Karola Libelta 52.4124, 16.9189 | 2A-1 | 7.38 | 0.233 | 7.93 | 0.260 |
2A-2 | 7.40 | 0.245 | 7.89 | 0.256 | ||
Polska 52.4197, 16.8727 | 2B-1 | 7.32 | 0.167 | 7.85 | 0.169 | |
2B-2 | 7.35 | 0.178 | 7.85 | 0.163 | ||
Żeromskiego 52.4165, 16.8923 | 2C-1 | 7.88 | 0.378 | 7.77 | 0.249 | |
2C-2 | 7.77 | 0.401 | 7.80 | 0.241 | ||
S. splendens | Rondo Śródka 52.4102, 16.9561 | 3A-1 | 7.59 | 0.287 | 7.67 | 0.255 |
3A-2 | 7.61 | 0.293 | 7.63 | 0.254 | ||
Garbary 52.4101, 16.9381 | 3B-1 | 7.81 | 0.352 | 7.74 | 0.230 | |
3B-2 | 7.89 | 0.347 | 7.71 | 0.228 | ||
Strzeszyńska 52.4513, 16.8891 | 3C-1 | 8.11 | 0.269 | 7.50 | 0.250 | |
3C-2 | 8.06 | 0.297 | 7.49 | 0.251 | ||
S. nipponica ‘Snowmound’ | Winogrady 52.4249, 16.9271 | 4A-1 | 7.84 | 0.209 | 7.72 | 0.260 |
4A-2 | 7.91 | 0.197 | 7.70 | 0.263 | ||
Lechicka 52.4381, 16.9529 | 4B-1 | 7.76 | 0.263 | 7.95 | 0.235 | |
4B-2 | 7.89 | 0.267 | 7.89 | 0.230 | ||
Polska 52.4184, 16.8717 | 4C-1 | 7.79 | 0.282 | 7.70 | 0.222 | |
4C-2 | 7.84 | 0.291 | 7.72 | 0.227 | ||
S. × vanhouttei | Słowiańska 52.4302, 16.9287 | 1A-1 | 7.36 | 0.185 | 6.96 | 0.171 |
1A-2 | 7.28 | 0.210 | 6.98 | 0.168 | ||
Serbska 52.4332, 16.9430 | 1B-1 | 7.55 | 0.284 | 7.37 | 0.180 | |
1B-2 | 7.51 | 0.278 | 7.30 | 0.182 | ||
Lechicka 52.4396, 16.9506 | 1C-1 | 7.66 | 0.246 | 8.51 | 0.227 | |
1C-2 | 7.56 | 0.256 | 8.48 | 0.229 |
Taxon | Street, Location | pH (H2O) | EC (mS cm−1) |
---|---|---|---|
Lublin | |||
S. × cinerea ‘Grefsheim’ | Aleja Wincentego Witosa 51.2304, 22.6128 | 7.85 | 0.258 |
S. splendens | Nadbystrzycka 51.2358, 22.5467 | 7.90 | 0.220 |
S. × vanhouttei | Wyżynna 51.2239, 22.5256 | 7.69 | 0.216 |
S. × vanhouttei | Pogodna 51.2335, 22.5950 | 7.67 | 0.190 |
Gdańsk | |||
S. × cinerea ‘Grefsheim’ | Aleja Grunwaldzka 54.3779, 18.6083 | 7.89 | 0.258 |
S. splendens | Aleja Rzeczypospolitej 54.4029, 18.5917 | 8.15 | 0.148 |
S. × vanhouttei | Wały Jagiellońskie 54.3561, 18.6456 | 7.28 | 0.471 |
S. × vanhouttei | Aleja Rzeczypospolitej 54.4032, 18.5917 | 8.19 | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antkowiak, W.; Bosiacki, M.; Sowelo, M. Potential of Selected Species of Spiraea L. for Phytoremediation of Heavy Metals from Soils of Urban Areas. Agriculture 2024, 14, 1916. https://doi.org/10.3390/agriculture14111916
Antkowiak W, Bosiacki M, Sowelo M. Potential of Selected Species of Spiraea L. for Phytoremediation of Heavy Metals from Soils of Urban Areas. Agriculture. 2024; 14(11):1916. https://doi.org/10.3390/agriculture14111916
Chicago/Turabian StyleAntkowiak, Wojciech, Maciej Bosiacki, and Mateusz Sowelo. 2024. "Potential of Selected Species of Spiraea L. for Phytoremediation of Heavy Metals from Soils of Urban Areas" Agriculture 14, no. 11: 1916. https://doi.org/10.3390/agriculture14111916
APA StyleAntkowiak, W., Bosiacki, M., & Sowelo, M. (2024). Potential of Selected Species of Spiraea L. for Phytoremediation of Heavy Metals from Soils of Urban Areas. Agriculture, 14(11), 1916. https://doi.org/10.3390/agriculture14111916