Rational Nitrogen Reduction Helps Mitigate the Nitrogen Pollution Risk While Ensuring Rice Growth in a Tropical Rice–Crayfish Coculture System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection
2.3.1. Soil Sampling
2.3.2. Plant Sampling
2.3.3. Rainwater Sampling
2.3.4. Plant Nitrogen Accumulation
2.3.5. Nitrogen Balance
N Input | Calculation Method | References |
---|---|---|
Chemical nitrogen fertilizer | 120 N kg ha−1 (RM), 80 N kg ha−1 (RC) | |
Irrigation water nitrogen | The determination method was consistent with the method for determining total nitrogen in rainwater samples | |
Wet deposition nitrogen | Section 2.3.3 | |
Crayfish feed | Feed total nitrogen was determined by the same method as for the analysis of rice plant samples, with a feed nitrogen content of 46.6 g kg−1, calculated at 5.8% moisture content | |
Seed nitrogen | Seed nitrogen carryover was calculated as the multiplication of seed dosage and seed nitrogen content, and the nitrogen content of rice seeds was estimated at 1.3% of seed mass | [30] |
Juvenile crayfish | Juvenile crayfish were estimated at 6.0 N kg ha−1 | [31] |
Adult crayfish | Adult crayfish were calculated at 56.2 g kg−1 nitrogen content and 77.9% moisture content | [31] |
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Systemic Nitrogen Balance
3.2. Nitrogen Concentration and Its Accumulation in Rice
3.3. Dynamics of Soil Nutrition
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.L. Loss of Fertilizer N from Plants-soil System and the Strategies and Techniques for Its Reduction. Ecol. Environ. Sci. 2000, 9, 1–6, (In Chinese with English Abstract). [Google Scholar]
- FAOSTAT. FAO Statistical Databases. 2022. Available online: https://www.fao.org (accessed on 23 March 2024).
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Abebe, Z.; Feyisa, H. Effects of Nitrogen Rates and Time of Application on Yield of Maize: Rainfall Variability Influenced Time of N Application. Int. J. Agron. 2017, 2017, 1545280. [Google Scholar] [CrossRef]
- Yong, Z. Study on Theory and Model of Chinese Ecological Agriculture. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2006. [Google Scholar]
- Zheng, H.; Huang, H.; Chen, C.; Fu, Z.; Xu, H.; Tan, S.; She, W.; Liao, X.; Tang, J. Traditional symbiotic farming technology in China promotes the sustainability of a flooded rice production system. Sustain. Sci. 2017, 12, 155–161. [Google Scholar] [CrossRef]
- Huang, Y.; Weng, B.; Tang, J.; Liu, Z. Effect of rice-azolla-fish system on soil environment of rice field. Chin. J. Eco-Agric. 2001, 84–86, (In Chinese with English Abstract). [Google Scholar]
- Liu, D.; Tang, R.; Xie, J.; Tian, J.; Shi, R.; Zhang, K. Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China. Ecosyst. Serv. 2020, 41, 101054. [Google Scholar] [CrossRef]
- Li, Y.; Ku, X.; Wang, S.; Pan, G.; Xu, Q.; Liu, H.; Li, J. Evaluation of annual production and economic benefits of tropical rice-crayfish coculture system in China. Agric. Syst. 2024, 217, 103936. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, S.; Ji, C.; Zou, J.; Zhou, Q.; Liu, S. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China. Environ. Sci. Pollut. Res. 2016, 23, 1505–1515. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, L.; Ren, W.; Guo, L.; Tang, J.; Shu, M.; Chen, X. Rice-soft shell turtle coculture effects on yield and its environment. Agric. Ecosyst. Environ. 2016, 224, 116–122. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Qi, H.; Zhou, X.; Xu, C.; Wu, D.; Fang, F.; Feng, J.; Zhang, N. Effects of rice-fish co-culture on oxygen consumption in intensive aquaculture pond. Rice Sci. 2019, 26, 50–59. [Google Scholar] [CrossRef]
- Sheng, F.; Cao, C.-G.; Li, C.-F. Integrated rice-duck farming decreases global warming potential and increases net ecosystem economic budget in central China. Environ. Sci. Pollut. Res. 2018, 25, 22744–22753. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yu, D.; Zhou, J.; Zhai, S.; Bian, X.; Weih, M. Rice-duck co-culture for reducing negative impacts of biogas slurry application in rice production systems. J. Env. Manag. 2018, 213, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, X.; Xu, Q.; Cao, Y.; Zhang, D.; Zhu, J. Rice-crayfish systems are not a panacea for sustaining cleaner food production. Environ. Sci. Pollut. Res. 2021, 28, 22913–22926. [Google Scholar] [CrossRef] [PubMed]
- Teng, Q.; Hu, X.-F.; Cheng, C.; Luo, Z.; Luo, F.; Xue, Y.; Jiang, Y.; Mu, Z.; Liu, L.; Yang, M. Ecological effects of rice-duck integrated farming on soil fertility and weed and pest control. J. Soils Sediments 2016, 16, 2395–2407. [Google Scholar] [CrossRef]
- Kiley-Worthington, M. Ecological agriculture. What it is and how it works. Agric. Environ. 1981, 6, 349–381. [Google Scholar] [CrossRef]
- Li, Y.; Wu, T.; Ku, X.; Wang, S.; Pan, G.; Xu, Q.; Liu, H.; Li, J. Feasibility analysis of rice-crayfish farming in Hainan province based on its development trend in Hubei province over the past 10 years. Trop. Plants 2023, 2, 4. [Google Scholar] [CrossRef]
- Yu, X.; Hao, X.; Yang, L.; Dang, Z.; Wang, X.; Zhang, Y.; Zhang, X. China Crayfish Industry Development Report (2023). China Fish. 2023, 7, 26–31. [Google Scholar]
- Li, Y.; Wu, T.; Wang, S.; Ku, X.; Zhong, Z.; Liu, H.; Li, J. Developing integrated rice-animal farming based on climate and farmers choices. Agric. Syst. 2023, 204, 103554. [Google Scholar] [CrossRef]
- Wang, J. Dynamic and Transformation of Soil Nitrogenin Rice-Crawfish Ecosystem. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Liu, Q.J. Effects of Straw Return and Food Feeding on Water Quality in Rice Crawfish System. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2017. [Google Scholar]
- Liu, C.; Hu, N.; Song, W.; Chen, Q.; Zhu, L. Aquaculture feeds can be outlaws for eutrophication when hidden in rice fields? A case study in Qianjiang, China. Int. J. Environ. Res. Public Health 2019, 16, 4471. [Google Scholar] [CrossRef]
- Ling, T.; Liang, P.; Lili, D.; Zhen, Y.; Chen, S.; Yi, K.; Gu, L. Characteristics of non-point source pollution emission of rice-crayfish rotation system and its emergy analysis. J. Lake Sci. 2023, 35, 168–180, (In Chinese with English Abstract). [Google Scholar]
- Si, G.; Yuan, J.; Peng, C.; Zhao, S.; Jia, P.A.; He, J.; Xie, X.; Liu, R. Effect of crayfish aquaculture on water environment under integrated rice-crayfish system. Jiangsu Agric. Sci. 2019, 47, 299–303. [Google Scholar]
- Zhang, W. Evaluation and Optimization of Resource Utilization and Energy Input of Rice-Crayfish Co-Culture—Take Qianjiang City, Hubei Province As an Example. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2023. [Google Scholar]
- Bolan, N.S.; Baskaran, S.; Thiagarajan, S. An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Commun. Soil Sci. Plant Anal. 1996, 27, 2723–2737. [Google Scholar] [CrossRef]
- Van Eerdt, M.; Fong, P. The monitoring of nitrogen surpluses from agriculture. In Nitrogen, the Confer-Ns; Elsevier: Amsterdam, The Netherlands, 1998; pp. 227–233. [Google Scholar]
- Oenema, O.; Kros, H.; de Vries, W. Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Guo, C. Resource and Environmental Evaluation and green Development Strategies of Grain and Oilcrop Production System in Yangtze River Basin. Ph.D. Thesis, Southwest University, Chongqing, China, 2023. [Google Scholar]
- Si, G.; Yuan, J.; Peng, C.; Xia, X.; Cheng, J.; Xu, X.; Jia, P.; Xie, Y.; Zhou, J. Nitrogen and phosphorus cycling characteristics and balance of the integrated rice-crayfish system. Chin. J. Eco-Agric. 2019, 27, 1309–1318, (In Chinese with English Abstract). [Google Scholar]
- Hou, J.; Zhang, D.; Zhu, J. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice–crayfish rotation. Environ. Pollut. 2021, 271, 116367. [Google Scholar] [CrossRef]
- Liu, T.; Li, C.; Tan, W.; Wang, J.; Feng, J.; Hu, Q.; Cao, C. Rice-crayfish co-culture reduces ammonia volatilization and increases rice nitrogen uptake in central China. Agric. Ecosyst. Environ. 2022, 330, 107869. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Cui, J.; Gao, J.; Guo, L.; Zhang, Q. Nitrogen fertilization application strategies improve yield of the rice cultivars with different yield types by regulating phytohormones. Sci. Rep. 2023, 13, 21803. [Google Scholar] [CrossRef]
- Barry, D.A.J.; Goorahoo, D.; Goss, M.J. Estimation of Nitrate Concentrations in Groundwater Using a Whole Farm Nitrogen Budget. J. Environ. Qual. 1993, 22, 767–775. [Google Scholar] [CrossRef]
- Puckett, L.J.; Cowdery, T.K.; Lorenz, D.L.; Stoner, J.D. Estimation of Nitrate Contamination of an Agro-Ecosystem Outwash Aquifer Using a Nitrogen Mass-Balance Budget. J. Environ. Qual. 1999, 28, 2015–2025. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; Zhang, C.; Ju, X. Nitrogen and Phosphorus Surplus and Soil Nitrate Nitrogen Accumulation in Typical Rice-Vegetable Rotation and Banana Garden in Hainan. Sci. Agric. Sin. 2023, 56, 2954–2965, (In Chinese with English Abstract). [Google Scholar]
- Panel, E.N.E. Nitrogen Use Efficiency (NUE) an Indicator for the Utilization of Nitrogen in Food Systems; Wageningen University: Alterra, Wageningen, The Netherlands, 2015. [Google Scholar]
- Kuypers, M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- van Groenigen, J.W.; Huygens, D.; Boeckx, P.; Kuyper, T.W.; Lubbers, I.M.; Rütting, T.; Groffman, P.M. The soil N cycle: New insights and key challenges. Soil 2015, 1, 235–256. [Google Scholar] [CrossRef]
- Taylaran, R.D.; Adachi, S.; Ookawa, T.; Usuda, H.; Hirasawa, T. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan. J. Exp. Bot. 2011, 62, 4067–4077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Du, L.; Xiao, Z.; Li, C.; Wang, Z.; Zhou, P.; Sun, G.; Ye, Y.; Hu, T.; Wang, H. Rice-crayfish farming increases soil organic carbon. Agric. Ecosyst. Environ. 2022, 329, 107857. [Google Scholar] [CrossRef]
- Chen, L.; Liu, X.; Hua, Z.; Xue, H.; Mei, S.; Wang, P.; Wang, S. Comparison of Nitrogen Loss Weight in Ammonia Volatilization, Runoff, and Leaching between Common and Slow-Release Fertilizer in Paddy Field. Water Air Soil Pollut. 2021, 232, 132. [Google Scholar] [CrossRef]
- Hou, H.; Liu, X.; Zhou, W.; Ji, J.; Lan, X.; Lv, Z.; Liu, Y.; Zhang, J.; Christoph, M. N transformation mechanisms and N dynamics of organic fertilisers as partial substitutes for chemical fertilisers in paddy soils. J. Soils Sediments 2022, 22, 2516–2529. [Google Scholar] [CrossRef]
- Moreno-García, B.; Guillén, M.; Quílez, D. Response of paddy rice to fertilisation with pig slurry in northeast Spain: Strategies to optimise nitrogen use efficiency. Field Crops Res. 2017, 208, 44–54. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, C.; Qin, B.; Yang, J.; Yang, T.; Xu, R.; Han, G.; Wang, S.; Zhang, J.; Kou, X. Rice-crayfish integrated system enhances global warming potential via increasing methane emission mainly driven by continuous deep flooding. Appl. Soil Ecol. 2024, 202, 105561. [Google Scholar] [CrossRef]
- Wang, A.; Hao, X.; Chen, W.; Luo, X.; Huang, Q. Rice-crayfish co-culture increases microbial necromass’ contribution to the soil nitrogen pool. Environ. Res. 2023, 216, 114708. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, H.; Chen, G.; Cheng, W.; Shen, Y. Effects of Long-Term Rice–Crayfish Coculture Systems on Soil Nutrients, Carbon Pools, and Rice Yields in Northern Zhejiang Province, China. Agronomy 2024, 14, 1014. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Höegberg, P.; Fan, H.; Quist, M.; Binkley, D.; Tamm, C.O. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Glob. Change Biol. 2006, 12, 489–499. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Ameyu, T. A review on the potential effect of lime on soil properties and crop productivity improvements. J. Environ. Earth Sci. 2019, 9, 17–23. [Google Scholar]
- Jiang, Y.; Cao, C. Crayfish–rice integrated system of production: An agriculture success story in China. A review. Agron. Sustain. Dev. 2021, 41, 68. [Google Scholar] [CrossRef]
- Hong, S.; Zhihong, C.; Zhengyi, H. Characteristics and Ecological Effects of the Active Organic Carbon in Soil. Chin. J. Ecol. 1999, 3, 33–39, (In Chinese with English Abstract). [Google Scholar]
- Burford, J.; Bremner, J. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol. Biochem. 1975, 7, 389–394. [Google Scholar] [CrossRef]
- Lu, G.; Zhou, L.; Zhao, X.; Jia, Q.; Xie, Y.; Zhou, G. Vertical distribution of soil organic carbon and total nitrogen in reed wetland. Chin. J. Appl. Ecol. 2006, 17, 3384–3389, (In Chinese with English Abstract). [Google Scholar]
- Si, G. Study on Change Characteristics of Soil Fertility in Paddy Fields under Long-Term Integrated Rice-Crayfish Model. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2017. [Google Scholar]
- Li, J.; Wang, Z.; Li, S. Significance of organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity. Acta Pedol. Sin. 2003, 40, 232–238, (In Chinese with English Abstract). [Google Scholar]
- Stanford, G.; Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 1972, 3, 465–472. [Google Scholar] [CrossRef]
- Chen, X.-P.; Cui, Z.-L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.-S.; Meng, Q.-F.; Hou, P.; Yue, S.-C.; Römheld, V.; et al. Integrated soil–crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
Treatment | pH | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Total Phosphorus (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) |
---|---|---|---|---|---|---|
RM | 5.07 | 3.62 | 2.75 | 0.31 | 62.59 | 46.28 |
RC | 5.02 | 3.98 | 3.43 | 0.37 | 60.58 | 50.10 |
Treatment | Total Amount Applied | Period and Proportion of Application |
---|---|---|
RM | 120 kg N ha−1 | Base: Tillering: Panicle Initiation: Heading = 2: 2: 1: 1 |
RC | 80 kg N ha−1 | Base: Tillering = 1: 1 |
Cropping System | Rice Monoculture | Rice–Crayfish | ||
---|---|---|---|---|
YXYLS | SXHN | YXYLS | SXHN | |
Inputs (kg ha−1) | ||||
Chemical nitrogen fertilizer | 120.00 | 120.00 | 80.00 | 80.00 |
Irrigation water nitrogen | 31.31 | 31.31 | 34.72 | 34.72 |
Wet deposition nitrogen | 16.95 | 16.95 | 16.95 | 16.95 |
Crayfish feed | - | - | 69.22 | 69.22 |
Seed nitrogen | 0.47 | 0.62 | 0.47 | 0.62 |
Juvenile crayfish | - | - | 6.00 | 6.00 |
Total input | 168.73 | 168.88 | 207.36 | 207.51 |
Mean total input | 168.81 ± 0.11 B | 207.44 ± 0.11 A | ||
Outputs (kg ha−1) | ||||
Plant removal | 148.50 ± 15.86 a | 132.79 ± 4.68 a | 160.98 ± 23.97 a | 144.08 ± 22.17 a |
Crayfish removal | 18.63 | 18.63 | ||
Total output | 148.50 ± 15.86 bc | 132.79 ± 4.68 c | 179.61 ± 23.97 a | 162.71 ± 22.17 ab |
Mean total output | 140.65 ± 11.11 B | 171.16 ± 11.95 A | ||
Nitrogen balance | ||||
Nitrogen surplus (kg ha−1) | 20.23 ± 15.86 a | 36.09 ± 4.68 a | 27.75 ± 23.97 a | 44.80 ± 22.17 a |
Mean nitrogen surplus (kg ha−1) | 28.16 ± 11.22 A | 36.28 ± 12.06 A | ||
NUE (%) | 88.01 ± 9.40 a | 78.63 ± 2.77 a | 86.62 ± 11.56 a | 78.41 ± 10.68 a |
Mean NUE (%) | 83.32 ± 6.64 A | 82.52 ± 5.81 A |
Cropping System | Rice Monoculture | Rice–Crayfish | ||
---|---|---|---|---|
YXYLS | SXHN | YXYLS | SXHN | |
Inputs (kg ha−1) | ||||
Chemical nitrogen fertilizer | 120.00 | 120.00 | 80.00 | 80.00 |
Irrigation water nitrogen | 24.45 | 24.45 | 21.50 | 21.50 |
Wet deposition nitrogen | 17.54 | 17.54 | 17.54 | 17.54 |
Crayfish feed | - | - | 69.22 | 69.22 |
Seed nitrogen | 0.47 | 0.62 | 0.47 | 0.62 |
Juvenile crayfish | - | - | 6.00 | 6.00 |
Total input | 162.46 | 162.61 | 194.73 | 194.88 |
Mean total input | 162.54 ± 0.11 B | 194.81 ± 0.11 A | ||
Outputs (kg ha−1) | ||||
Plant removal | 133.59 ± 7.18 a | 114.10 ± 26.79 a | 133.49 ± 16.10 a | 108.87 ± 18.04 a |
Crayfish removal | 21.69 | 21.69 | ||
Total output | 133.59 ± 7.18 ab | 114.10 ± 26.79 b | 155.18 ± 16.10 a | 130.56 ± 18.04 ab |
Mean total output | 123.85 ± 13.78 A | 142.87 ± 17.41 A | ||
Nitrogen balance | ||||
Nitrogen surplus (kg ha−1) | 28.87 ± 7.18 b | 48.51 ± 26.79 ab | 39.55 ± 16.10 ab | 64.32 ± 18.04 a |
Mean nitrogen surplus (kg ha−1) | 38.69 ± 13.89 A | 51.94 ± 17.52 A | ||
NUE (%) | 82.23 ± 4.42 a | 70.17 ± 16.47 a | 79.69 ± 8.27 a | 67.00 ± 9.26 a |
Mean NUE (%) | 76.20 ± 8.53 A | 73.35 ± 8.98 A |
Item | Rice Monoculture | Rice–Crayfish | ||||
---|---|---|---|---|---|---|
2021 | 2022 | ANOVA | 2021 | 2022 | ANOVA | |
Inputs (kg ha−1) | ||||||
Mean total input | 168.81 ± 0.11 | 162.54 ± 0.11 | *** | 207.44 ± 0.11 | 194.81 ± 0.11 | *** |
Outputs (kg ha−1) | ||||||
Mean total output | 140.65 ± 11.11 | 123.85 ±13.78 | Ns | 171.16 ± 11.95 | 142.87 ± 17.41 | ns |
Nitrogen balance | ||||||
Mean nitrogen surplus | 28.16 ± 11.22 | 38.69 ± 13.89 | Ns | 36.28 ± 12.06 | 51.94 ± 17.52 | ns |
Mean NUE (%) | 83.32 ± 6.64 | 76.20 ± 8.53 | Ns | 82.52 ± 5.81 | 73.35 ± 8.98 | ns |
Year | Group | Rice Varieties | Nitrogen Accumulation Amount of Stem and Leaf at the HD Stage (kg ha−1) | Nitrogen Accumulation Amount of Stem and Leaf at the PM Stage (kg ha−1) | NCA (kg ha−1) |
---|---|---|---|---|---|
2021 | RM | YXYLS | 121.17 ± 20.76 a | 77.13 ± 9.40 a | 44.04 ± 18.00 ab |
RM | SXHN | 116.25 ± 9.43 a | 77.34 ± 5.79 a | 38.91 ± 9.65 ab | |
Mean | 118.71 ± 15.16 A | 77.23 ± 7.23 B | 41.48 ± 13.65 A | ||
RC | YXYLS | 135.99 ± 22.20 a | 88.23 ± 10.73 a | 47.76 ± 16.42 a | |
RC | SXHN | 111.33 ± 14.20 a | 86.03 ± 12.10 a | 25.30 ± 7.63 b | |
Mean | 123.66 ± 21.71 A | 87.13 ± 10.65 A | 36.53 ±16.87 A | ||
2022 | RM | YXYLS | 81.24 ± 8.38 a | 64.10 ± 3.30 a | 17.14 ± 8.59 a |
RM | SXHN | 74.48 ± 6.91 a | 59.30 ± 13.14 a | 15.18 ± 11.04 a | |
Mean | 77.86 ± 8.00 B | 61.70 ± 8.34 C | 16.16 ± 8.86 B | ||
RC | YXYLS | 81.47 ± 5.64 a | 61.75 ± 1.80 a | 19.72 ± 7.31 a | |
RC | SXHN | 82.59 ± 3.54 a | 63.98 ± 12.05 a | 18.61 ± 15.41 a | |
Mean | 82.03 ± 4.25 B | 62.86 ± 7.80 C | 19.17 ± 10.80 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wu, Y.; Wang, S.; Peng, H.; Zheng, F.; Pan, G.; Liu, Y.; Liu, H. Rational Nitrogen Reduction Helps Mitigate the Nitrogen Pollution Risk While Ensuring Rice Growth in a Tropical Rice–Crayfish Coculture System. Agriculture 2024, 14, 1816. https://doi.org/10.3390/agriculture14101816
Li Y, Wu Y, Wang S, Peng H, Zheng F, Pan G, Liu Y, Liu H. Rational Nitrogen Reduction Helps Mitigate the Nitrogen Pollution Risk While Ensuring Rice Growth in a Tropical Rice–Crayfish Coculture System. Agriculture. 2024; 14(10):1816. https://doi.org/10.3390/agriculture14101816
Chicago/Turabian StyleLi, Yifan, Yixian Wu, Shaodong Wang, Hui Peng, Fan Zheng, Guoping Pan, Yifei Liu, and Hongyan Liu. 2024. "Rational Nitrogen Reduction Helps Mitigate the Nitrogen Pollution Risk While Ensuring Rice Growth in a Tropical Rice–Crayfish Coculture System" Agriculture 14, no. 10: 1816. https://doi.org/10.3390/agriculture14101816
APA StyleLi, Y., Wu, Y., Wang, S., Peng, H., Zheng, F., Pan, G., Liu, Y., & Liu, H. (2024). Rational Nitrogen Reduction Helps Mitigate the Nitrogen Pollution Risk While Ensuring Rice Growth in a Tropical Rice–Crayfish Coculture System. Agriculture, 14(10), 1816. https://doi.org/10.3390/agriculture14101816