Modeling and Optimization of Maize Yield and Water Use Efficiency under Biochar, Inorganic Fertilizer and Irrigation Using Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Test Materials and Maize Cultivation Approach
2.3. Experimental Design of the Study and Drip Irrigation
2.4. Estimation of Crop Evapotranspiration Using the Soil–Water Balance Method
2.5. Measurement of the Maize Growth Parameters
2.6. Measurement of Maize Grain Yield, WP, and WUE
2.7. Statistical Analysis
Optimization Technique Based on the Use of the Principal Component Analysis (PCA)
3. Results and Discussion
3.1. Crop Growth and Yield as Affected by the Maize Cob’s Residue Biochar, Inorganic Fertilizer, and Irrigation
3.2. Crop and Field Water Use Efficiency as Affected by the Maize Cob’s Residue Biochar and Inorganic Fertilizer
3.3. Relationship between the Growth, Yield, and Efficiency Terms of Maize
3.3.1. Principal Component Analysis (PCA) for Analyzing the Growth Parameters
3.3.2. Principal Component Analysis Regression (PCR) for the Maize Yield, WUE, and WP Predictions
3.4. Response of Biochar and Inorganic Fertilizer Applications
3.5. Optimization of the Biochar, Inorganic Fertilizer, and Irrigation Optimization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernacchi, C.J.; VanLoocke, A. Terrestrial ecosystems in a changing environment: A dominant role for water. Annu. Rev. Plant Biol. 2015, 66, 599–622. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Wang, D.; Guo, X.; Yang, T.; Oenema, O. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: Results from a long-term experiment and crop modelling. Sci. Rep. 2015, 5, 17514. [Google Scholar] [CrossRef]
- He, Y.; Hou, L.; Wang, H.; Hu, K.; McConkey, B.A. Modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition. Sci. Rep. 2014, 4, 5736. [Google Scholar] [CrossRef]
- Afidchao, M.M.; Musters, C.J.M.; Wossink, A.; Balderama, O.F.; De Snoo, G.R. Analysing the farm level economic impact of GM corn in the Philippines. NJAS-Wagening. J. Life Sci. 2014, 70, 113–121. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar]
- Erenstein, O. The evolving maize sector in Asia: Challenges and opportunities. J. New Seeds 2010, 11, 1–15. [Google Scholar] [CrossRef]
- Carsky, R.J.; Iwuafor, E.N.O. Contribution of soil fertility research and maintenance to improved maize production in sub-saharan. In Proceedings of the Regional Maize Workshop, Ibadan, Nigeria, 29 May–2 June 1995; International Institute of Tropical Agriculture (IITA): Cotonou, Benin, 1995. [Google Scholar]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 50. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.; Singh, H.; Raghubanshi, A.S. Impact of sole and combined application of biochar, organic fertiliser and chemical fertiliser on wheat crop yield and water 631 productivity in a dry tropical agro-ecosystem. Biochar 2019, 2, 229–235. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, C.A. Quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Novak, J.; MBusscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Chen, Z.; Kamchoom, V.; Leung, A.K.; Xue, J.; Chen, R. Influence of biochar on the water permeability of compacted clay subjected to freezing–thawing cycles. Acta Geophys. 2023, 72, 2071–2081. [Google Scholar] [CrossRef]
- Chen, Z.; Kamchoom, V.; Chen, R.; Prasittisopin, L. Investigating the Impacts of Biochar Amendment and Soil Compaction on Unsaturated Hydraulic Properties of Silty Sand. Agronomy 2023, 13, 1845. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties highly weathered coils in the tropics with Charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Chen, Z.; Kamchoom, V.; Apriyono, A.; Chen, R.; Chen, C. Laboratory study of water infiltration and evaporation in biochar-amended landfill covers under extreme climate. Waste Manag. 2022, 153, 323–334. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Van, Z.L.; Kimber, S.; Morris, K.Y.; Chan, A.; Downie, J.; Rust, S.; Joseph, A.C. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, W.; Dong, J.; Yang, T.; Shangguan, Z.; Qu, J. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. J. Hazard. Mater. 2022, 438, 129557. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Wang, L.; Leghari, S.J.; Wu, J.; Wang, N.; Pang, M.; Jin, L. Interactive effects of biochar and chemical fertilizer on water and nitrogen dynamics, soil properties and maize yield under different irrigation methods. Front. Plant Sci. 2023, 14, 1230023. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar-compost as a new option for soil improvement: Application in various problem soils. Sci. Total Environ. 2023, 870, 162024. [Google Scholar] [CrossRef] [PubMed]
- Juhos, K.; Szabó, S.; Ladányi, M. Influence of soil properties on crop yield: A multivariate statistical approach. Int. Agrophys. 2015, 29, 433–440. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Oyarzabal, E.S.; Hinz, P.N. Interpreting within-field relationships between crop yields and soil and plant variables using factor analysis. Precis. Agric. 1999, 1, 15. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Principal component analysis for predicting corn biomass and grain yields. Soil Sci. 2004, 169, 215–224. [Google Scholar] [CrossRef]
- Swapnil, J.R.; Digvijay, S.; Mandal, S.S. Principal component analysis in maize (Zea mays L.) under normal sown condition of Bihar. Pharma Innov. J. 2021, 10, 641–644. [Google Scholar]
- Fasinmirin, J.T.; Olorunfemi, I.E.; Olakuleyin, F. Strength and hydraulics characteristics variations within a tropical Alfisol in Southwestern Nigeria under different land use management. Soil Tillage Res. 2018, 182, 45–56. [Google Scholar] [CrossRef]
- International Institute of Tropical Agriculture (IITA). Maize Seed Production Manual. 2014. Available online: www.iita.org (accessed on 6 October 2015).
- International Biochar Initiative (1BI). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. 2011. Available online: http://www.biochar-international.org/characterizationstandard (accessed on 15 November 2015).
- Ndor, E.; Dauda, S.N.; Azagakui, E.D. Response of maize varieties (Zea mays) to biochar amended soil in Lafia, Nigeria. Am. J. Exp. Agric. 2015, 5, 525–531. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartage, K.H. Bulk density. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph: Madison, WI, USA, 1986; Number 9; pp. 363–375. [Google Scholar]
- Marcos, B.C.; Sidney, R.V.; Adre, L.O.V.; Lenilson, D.S.M.; Lucia, H.C.D.A.; Daniel, F.D.C. Topography and spatial variability of soil physical properties. Sci. Agric. 2009, 66, 338–352. [Google Scholar]
- E.P. 458; Field Evaluation of Micro Irrigation Systems. American Society of Agricultural Engineers (ASAE): St. Joseph, MI, USA, 1996.
- Gheysari, M.; Loescher, H.W.; Sadeghi, S.H.; Mirlatifi, S.M.; Zareian, M.J.; Hoogenboom, G. Water-yield relations and Water use efficiency of maize under nitrogen fertigation for semiarid environments: Experiment and synthesis. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 175–229. [Google Scholar]
- Kuscu, H.; Karasu, A.; Oz, M.; Demir, A.O.; Turgut, I. Effect of irrigation amounts applied with drip irrigation on maize evapotranspiration, yield, water use efficiency, and net return in a sub–humid climate. Turk. J. Field Crops 2013, 18, 13–19. [Google Scholar]
- Stewart, D.W.; Dwyer, L.M. Mathematical characterization of leaf shape and area of maize hybrids. Crop Sci. 1999, 39, 422–427. [Google Scholar] [CrossRef]
- Wang, F.; Kang, S.; Du, T.; Li, F.; Qiu, R. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric. Water Manag. 2011, 98, 1228–1238. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Aldosari, A.A.; Lasaponara, R.; Alnaimy, M.A. Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- Amanullah, M.J.; Nawab, K.; Ali, A. Response of Specific Leaf Area (SLA), Leaf Area Index (LAI) and Leaf Area Ratio (LAR) of maize (Zea mays L.) to Plant Density, Rate and Timing of Nitrogen Application. World Appl. Sci. J. 2007, 2, 235–243. [Google Scholar]
- Christopher, D.; Catherine, E.B.; Robert, C.B.; Mackay, A.E.; Okure, A.A. Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenergy 2012, 37, 161–168. [Google Scholar]
- Mete, F.Z.; Mia, S.; Dijkstra, F.A. Synergistic effects of biochar and NPK fertiliser on soybean yield in an alkaline soil. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Gundale, M.J.; DeLuca, T.H. Temperature and source material influence ecological attributes of Ponderosa pine and Douglas Fir charcoal. For. Ecol. Manag. 2006, 231, 86–93. [Google Scholar] [CrossRef]
- Liang, F.; Li, G.T.; Lin, Q.M.; Zhao, X.R. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil. J. Integr. Agric. 2014, 13, 525–532. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Q.; Du, X.; Zhang, Y.; Wang, H.; Shi, G.; Wei, M. Analysis of Corn Yield Prediction Potential at Various Growth Phases Using a Process-Based Model and Deep Learning. Plants 2023, 12, 446. [Google Scholar] [CrossRef]
- Elemile, O.O.; Ibitogbe, E.M.; Folorunso, O.P.; Ejiboye, P.O.; Adewumi, J.R. Principal component analysis of groundwater sources pollution in Omu-Aran community, Nigeria. Environ. Sci. 2021, 80, 690. [Google Scholar] [CrossRef]
- Gómez-del-Campo, M.; Lisserague, J.R. Effect of water stress on leaf area development, photosynthesis and productivity. Am. J. Enol. Vitic. 2002, 53, 138–143. [Google Scholar] [CrossRef]
- Vos, J.; van der Putten, P.E.L.; Birch, C.J. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field Crop. Res. 2005, 93, 64–73. [Google Scholar] [CrossRef]
- Cechin, I.; de Fatima, F.T. Effect of nitrogen supply on growth and photosynthesis of sunflower plant grown in the green house. J. Plant Sci. 2004, 166, 1379–1385. [Google Scholar] [CrossRef]
- Lebon, E.; Pellegrino, A.; Louarn, G.; Lecoeur, J. Branch development controls leaf area dynamics in grapevine (Vitis vinifera) growing in drying soil. Ann. Bot. 2006, 98, 175–185. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Gutierrez-Boem, F.T.; Thomas, G.W. Leaf area development in soybean affected by phosphorus nutrition and water deficit. J. Plant Nutr. 2001, 24, 1711–1729. [Google Scholar] [CrossRef]
- Magdi, T.; Abdehamid Takatsugu, H. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 2004, 93, 183–189. [Google Scholar]
- Patanè, C.; Saita, A. Biomass, fruit yield, water productivity and quality response of processing tomato to plant density and deficit irrigation under a semi-arid Mediterranean climate. Crop Pasture Sci. 2015, 66, 224–234. [Google Scholar] [CrossRef]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef]
Properties | Soil 1 | Soil 2 | Biochar Used in This Study |
---|---|---|---|
Mg (g kg−1) | 0.33 | 0.29 | 0.30 |
Ca(g kg−1) | 0.83 | 0.73 | 0.56 |
Na(g kg−1) | 0.16 | 0.18 | 0.40 |
K(g kg−1) | 0.21 | 0.22 | 3.92 |
P(mg kg−1) | 7.21 | 5.34 | 8.24 |
Total Nitrogen (g kg−1) | 46.0 | 18.0 | 100.9 |
CEC (cmol kg−1) | 8.26 | 7.26 | 16.26 |
pH(H20) 1:10 | 5.12 | 4.99 | 9.42 |
Total Organic carbon (%) | 0.94 | 1.18 | 69 |
Bulk density (g cm−3) | 1.35 ± 0.04 | 1.35 ± 0.04 | 0.4 ± 0.01 |
Soil Property | Method |
---|---|
pH | pH electrometer in the soil–water mixture |
CEC | Ammonium acetate method |
Total Nitrogen | Kjeldahl method |
Available K | Flame atomic absorption spectrometry after the concentration of the leachates have been obtained from ammonium acetate extraction [31] |
Available P | Olsen method by extracting from the solution of sodium bicarbonate |
Organic carbon | Walkley–Black chromic acid titration method |
Bulk density | Ratio of soil mass to the core volume in g cm−3 [32] |
S/N | Amendment Treatments | Description of Treatments |
---|---|---|
1 | F0B0FIA100 | Without fertilizer and without biochar at 100% full irrigation amount |
2 | F0B20FIA100 | Without fertilizer and with biochar at 100% full irrigation amount |
3 | F300B0FIA100 | With fertilizer and without biochar at 100% full irrigation amount |
4 | F300B20FIA100 | With fertilizer and biochar at 100% full irrigation amount |
5 | F0B0FIA80 | Without fertilizer and without biochar at 80% full irrigation amount |
6 | F0B20FIA80 | Without fertilizer and with biochar at 80% full irrigation amount |
7 | F300B0FIA80 | With fertilizer and without biochar at 80% full irrigation amount |
8 | F300B20FIA80 | With fertilizer and biochar at 80% full irrigation amount |
9 | F0B0FIA60 | Without fertilizer and without biochar at 60% full irrigation amount |
10 | F0B20FIA60 | Without fertilizer and with biochar at 60% full irrigation amount |
11 | F300B0FIA60 | With fertilizer and without biochar at 60% full irrigation amount |
12 | F300B20FIA60 | With fertilizer and biochar at 60% full irrigation amount |
Irrigation Treatment | Amendments | NL | LA (cm2) | LAI | PH (cm) |
---|---|---|---|---|---|
F300B20 | 21 ± 2.83 a | 592.80 ± 24.03 a | 2.73 ± 0.55 a | 154.40 ± 8.61 a | |
100% FIA | F300B0 | 20 ± 3.54 a | 564.60 ± 24.16 a | 2.51 ± 0.53 ab | 151.53 ± 8.63 ab |
F0B20 | 19 ± 3.54 a | 509.10 ± 24.22 a | 2.19 ± 0.52 b | 145.06 ± 6.0 ab | |
F0B0 | 18 ± 4.24 a | 487.00 ± 23.63 a | 2.03 ± 0.50 b | 139.91 ± 5.9 b | |
80% FIA | F300B20 | 20 ± 3.33 a | 569.50 ± 23.02 a | 2.58 ± 0.54 a | 153.02 ± 8.1 a |
F300B0 | 20 ± 3.54 a | 547.60 ± 23.79 a | 2.44 ± 0.49 a | 147.90 ± 8.3 a | |
F0B20 | 19 ± 3.14 b | 495.90 ± 23.52 a | 2.09 ± 0.50 a | 143.63 ± 8.5 a | |
F0B0 | 19 ± 4.12 b | 483.80 ± 24.13 a | 2.01 ± 0.51 a | 137.45 ± 8.7 a | |
60% FIA | F300B20 | 20 ± 4.22 a | 529.40 ± 23.41 a | 2.30 ± 0.74 a | 145.62 ± 8.61 a |
F300B0 | 19 ± 3.17 a | 502.30 ± 23.34 ab | 2.14 ± 0.51 a | 144.25 ± 8.02 a | |
F0B20 | 18 ± 4.14 ab | 473.70 ± 27.88 ab | 1.90 ± 0.57 ab | 128.88 ± 8.60 a | |
F0B0 | 16 ± 3.13 b | 394.30 ± 26.9 b | 1.42 ± 0.28 b | 104.21 ± 8.61 b | |
ANOVA | |||||
I | **** | *** | **** | **** | |
B | * | * | * | *** | |
F | **** | **** | **** | **** | |
B × F | ns | ns | ns | ns | |
B × I | ns | ns | ns | ns | |
F × I | ns | ns | ns | *** | |
F × I × B | ns | ns | ns | ns |
Irrigation Treatments | Amendments | WUE (kg ha−1.mm−1) | WP (kg ha−1.mm−1) |
---|---|---|---|
F300B20 | 14.64 ± 0.071 a | 14.38 ± 0.81 a | |
100% FIA | F300B0 | 12.98 ± 0.13 ab | 13.05 ± 0.30 ab |
F0B20 | 10.63 ± 0.29 bc | 11.98 ± 0.01 bc | |
F0B0 | 11.13 ± 1.04 c | 9.93 ± 0.74 c | |
80% FIA | F300B20 | 15.89 ± 1.31 a | 15.99 ± 0.77 a |
F300B0 | 14.41 ± 1.20 ab | 14.50 ± 0.69 ab | |
F0B20 | 12.30 ± 1.61 b | 12.38 ± 1.09 b | |
F0B0 | 11.00 ± 2.42 b | 11.07 ± 1.87 b | |
60% FIA | F300B20 | 16.91 ± 1.95 a | 17.07 ± 1.94 a |
F300B0 | 14.97 ± 1.92 b | 15.11 ± 1.28 b | |
F0B20 | 11.17 ± 1.51 c | 11.27 ± 1.06 c | |
F0B0 | 9.15 ± 1.22 c | 9.23 ± 1.95 c | |
ANOVA | |||
I | **** | **** | |
B | **** | **** | |
F | **** | **** | |
B*F | ns | ns | |
B*I | ns | ns | |
F*I | ns | **** | |
F*I*B | ns | ns |
Yield | WUE | WP | NL | LA | LAI | |
---|---|---|---|---|---|---|
WUE | 0.977 | |||||
0.0001 | ||||||
WP | 0.741 | 0.844 | ||||
0.006 | 0.001 | |||||
NL | 0.874 | 0.854 | 0.778 | |||
0.0001 | 0.0001 | 0.003 | ||||
LAI | 0.933 | 0.887 | 0.732 | 0.964 | ||
0.0001 | 0.0001 | 0.007 | 0.0001 | |||
PH | 0.875 | 0.835 | 0.694 | 0.935 | 0.939 | |
0.0001 | 0.001 | 0.012 | 0.0001 | 0.0001 |
Variable | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Communality |
---|---|---|---|---|---|
NL | 0.982 | −0.038 | −0.185 | −0.000 | 1.000 |
LA | 0.991 | −0.108 | 0.077 | −0.023 | 1.000 |
LAI | 0.992 | −0.097 | 0.074 | 0.024 | 1.000 |
PH | 0.968 | 0.248 | 0.034 | −0.001 | 1.000 |
Variable | Factor 1 | Factor 2 | Factor 3 | Communality |
---|---|---|---|---|
Yield | 0.408 | −0.913 | −0.01 | 1 |
WUE | 0.885 | −0.445 | −0.133 | 1 |
WP | 0.919 | −0.386 | 0.084 | 1 |
Variance | 1.794 | 1.1811 | 0.0249 | 3 |
% Var | 0.598 | 0.394 | 0.008 | 1 |
Treatments | CQI1 | CQI2 | CQI |
---|---|---|---|
B20F300IA100 | 1.059071 | −0.74553 | 0.313538 |
B0F300IA100 | 0.215687 | −0.2872 | −0.07151 |
B20F0IA100 | −0.79794 | 0.318962 | −0.47898 |
B0F0IA100 | −1.08111 | 0.309515 | −0.77159 |
B20F300IA80 | 1.606139 | −0.80545 | 0.800689 |
B0F300IA80 | 0.809073 | −0.41167 | 0.3974 |
B20F0IA80 | −0.32807 | 0.155346 | −0.17272 |
B0F0IA80 | −1.03677 | 0.513523 | −0.52325 |
B20F300IA60 | 1.909407 | −0.70451 | 1.204896 |
B0F300IA60 | 0.903079 | −0.24353 | 0.659549 |
B20F0IA60 | −1.0927 | 0.691569 | −0.40113 |
B0F0IA60 | −2.16587 | 1.208978 | −0.9569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faloye, O.T.; Ajayi, A.E.; Oguntunde, P.G.; Kamchoom, V.; Fasina, A. Modeling and Optimization of Maize Yield and Water Use Efficiency under Biochar, Inorganic Fertilizer and Irrigation Using Principal Component Analysis. Agriculture 2024, 14, 1813. https://doi.org/10.3390/agriculture14101813
Faloye OT, Ajayi AE, Oguntunde PG, Kamchoom V, Fasina A. Modeling and Optimization of Maize Yield and Water Use Efficiency under Biochar, Inorganic Fertilizer and Irrigation Using Principal Component Analysis. Agriculture. 2024; 14(10):1813. https://doi.org/10.3390/agriculture14101813
Chicago/Turabian StyleFaloye, Oluwaseun Temitope, Ayodele Ebenezer Ajayi, Philip Gbenro Oguntunde, Viroon Kamchoom, and Abayomi Fasina. 2024. "Modeling and Optimization of Maize Yield and Water Use Efficiency under Biochar, Inorganic Fertilizer and Irrigation Using Principal Component Analysis" Agriculture 14, no. 10: 1813. https://doi.org/10.3390/agriculture14101813
APA StyleFaloye, O. T., Ajayi, A. E., Oguntunde, P. G., Kamchoom, V., & Fasina, A. (2024). Modeling and Optimization of Maize Yield and Water Use Efficiency under Biochar, Inorganic Fertilizer and Irrigation Using Principal Component Analysis. Agriculture, 14(10), 1813. https://doi.org/10.3390/agriculture14101813