In Situ Seedling Establishment and Performance of Cyperus esculentus Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.1.1. Experiment 1: In Situ Seedling Establishment
2.1.2. Experiments 2 and 3: Reproductive Performance of Seedlings
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Holm, L.R.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds: Distribution and Biology; Krieger Publishing Company: Malabar, FL, USA, 1991; ISBN 978-0-89464-415-3. [Google Scholar]
- Horak, M.J.; Holt, J.S. Isozyme Variability and Breeding Systems in Populations of Yellow Nutsedge (Cyperus esculentus). Weed Sci. 1986, 34, 538–543. [Google Scholar] [CrossRef]
- De Cauwer, B.; De Ryck, S.; Claerhout, S.; Biesemans, N.; Reheul, D. Differences in Growth and Herbicide Sensitivity among Cyperus esculentus Clones Found in Belgian Maize Fields. Weed Res. 2017, 57, 234–246. [Google Scholar] [CrossRef]
- De Ryck, S.; Reheul, D.; De Cauwer, B. Impacts of Herbicide Sequences and Vertical Tuber Distribution on the Chemical Control of Yellow Nutsedge (Cyperus esculentus L.). Weed Res. 2021, 61, 454–464. [Google Scholar] [CrossRef]
- Stoller, E.W.; Wax, L.M. Yellow Nutsedge Shoot Emergence and Tuber Longevity. Weed Sci. 1973, 21, 76–81. [Google Scholar] [CrossRef]
- Schippers, P.; Terborg, S.J.; Van Groenendael, J.M.; Habekotte, B. What Makes Cyperus esculentus (Yellow Nutsedge) an Invasive Species—A Spatial Model Approach. In Proceedings of the Brighton Crop Protection Conference: Weeds, Brighton, UK, 22–25 November 1993; pp. 495–504. [Google Scholar]
- Thullen, R.J.; Keeley, P.E. Seed Production and Germination in Cyperus esculentus and C. Rotundus. Weed Sci. 1979, 27, 502–505. [Google Scholar] [CrossRef]
- Stoller, E.W.; Sweet, R.D. Biology and Life Cycle of Purple and Yellow Nutsedges (Cyperus rotundus and C. esculentus). Weed Technol. 1987, 1, 66–73. [Google Scholar] [CrossRef]
- Dodet, M. Diversité Génétique et Phénologie de Cyperus esculentus L. (Cyperaceae) pour une Gestion Intégrée de l’Espèce dans les Cultures de Haute Lande. Ph.D. Thesis, Université de Bourgogne, Bourgogne, France, 2006. [Google Scholar]
- Ter Borg, S.J.; Schippers, P. Distribution of Varieties of Cyperus esculentus L. (Yellow Nutsedge) and Their Possible Migration in Europe. In Proceedings of the IXème colloque international sur la biologie des mauvaises herbes, Dijon, France, 16–18 September 1992. [Google Scholar]
- Leck, M.A.; Schütz, W. Regeneration of Cyperaceae, with Particular Reference to Seed Ecology and Seed Banks. Perspect. Plant Ecol. Evol. Syst. 2005, 7, 95–133. [Google Scholar] [CrossRef]
- Keller, M.; Krauss, J.; Total, R.; Neuweiler, R. Efficacy of Herbicides against Yellow Nutsedge (Cyperus esculentus) Plants Originating from Seeds. Agroscope 2020, 464, 116–120. [Google Scholar] [CrossRef]
- Li, B.; Shibuya, T.; Yogo, Y.; Hara, T.; Yokozawa, M. Interclonal Differences, Plasticity, and Trade-Offs of Life History Traits of Cyperus esculentus in Relation to Water Availability. Plant Species Biol. 2001, 16, 193–207. [Google Scholar] [CrossRef]
- Schmitt, R. Die Neuen Unkräuter Knöllchen-Zypergras Und Aleppo-Hirse. Agrar. Schweiz. 1995, 2, 276–278. [Google Scholar]
- Keller, M.; Eppler, L.; Collet, L.; Wirth, J.; Total, R. Beim Erdmandelgras auf Nummer sicher gehen: Auch Blütenbildung und Abblühen verhindern! Gemüsebau Info 2015, 22, 7–9. [Google Scholar]
- Mulligan, G.A.; Junkins, B.E. Biology of Canadian Weeds 17 Cyperus esculentus L. Can. J. Plant Sci. 1976, 56, 339–350. [Google Scholar] [CrossRef]
- Lapham, J.; Drennan, D.S.H. The Fate of Yellow Nutsedge (Cyperus esculentus) Seed and Seedlings in Soil. Weed Sci. 1990, 38, 125–128. [Google Scholar] [CrossRef]
- Hill, E.R.; Lachman, W.H.; Maynard, D.N. Reproductive Potential of Yellow Nutsedge by Seed. Weeds 1963, 11, 160. [Google Scholar] [CrossRef]
- Keller, M.; Total, C.; Morisoli, R.; Bohren, C.; Total, R. Should We Be Concerned about Cyperus esculentus Spread via Seeds in Switzerland? Institutional Repository Agroscope: Ljubljana, Slovenia, 2018. [Google Scholar]
- De Ryck, S.; Reheul, D.; De Riek, J.; De Keyser, E.; De Cauwer, B. Genetic and Morphological Variation of Belgian Cyperus esculentus L. Clonal Populations and Their Significance for Integrated Management. Agronomy 2023, 13, 572. [Google Scholar] [CrossRef]
- Leck, M.A. Seed-Bank and Vegetation Development in a Created Tidal Freshwater Wetland on the Delaware River, Trenton, New Jersey, USA. Wetlands 2003, 23, 310–343. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; ISBN 3-900051-07-0. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons Ltd.: Laguna, Philippines, 1984. [Google Scholar]
- Europe—Climate, Regions, Weather|Britannica. Available online: https://www.britannica.com/place/Europe/Climate (accessed on 27 September 2024).
- Jansen, L.L. Morphology and Photoperiodic Responses of Yellow Nutsedge. Weed Sci. 1971, 19, 210–219. [Google Scholar] [CrossRef]
- Williams, R.D. Growth and Reproduction of Cyperus esculentus L. and Cyperus rotundus L. Weed Res. 1982, 22, 149–154. [Google Scholar] [CrossRef]
- Fort, B. Knolcyperus (Cyperus esculentus L.) Zaden: Kiemingsbiologie En Fitness van Zaailingen. Master’s Thesis, Universiteit Gent, Gent, Belgium, 2022. [Google Scholar]
- Bradford, K.J. Water Stress and the Water Relations of Seed Development: A Critical Review. Crop Sci. 1994, 34, 1–11. [Google Scholar] [CrossRef]
- Bliss, D.; Smith, H. Penetration of Light into Soil and Its Role in the Control of Seed Germination. Plant Cell Environ. 2006, 8, 475–483. [Google Scholar] [CrossRef]
- Bell, R.S.; Lachman, W.H.; Rahn, E.M.; Sweet, R.D. Life History Studies as Related to Weed Control in the Northeast. 1: Nutgrass. Rhode Isl. Agric. Exp. Stn. Bull. 1962, 364, 33. [Google Scholar]
- Bohren, C.; Wirth, J. The spreading of yellow nutsedge grass (Cyperus esculentus L.) applies to all. Agrar. Schweiz. 2015, 6, 384–391. [Google Scholar]
- Eppler, L.; Total, R.; Collet, L.; Keller, M. Cyperus esculentus—Seeds an Underestimated Risk? SGP-Herbsttagung: Conthey, Switzerland, 2015. [Google Scholar]
- Andrews, F.W. A Study of Nut Grass (Cyperus rotundus L.) in the Cotton Soil of the Gezira: II. The Perpetuation of the Plant by Means of Seed. Ann. Bot. 1946, 10, 15–30. [Google Scholar] [CrossRef]
- Younginger, B.S.; Sirová, D.; Cruzan, M.B.; Ballhorn, D.J. Is Biomass a Reliable Estimate of Plant Fitness? Appl. Plant Sci. 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Henry, G.M.; Elmore, M.T.; Gannon, T.W. Cyperus esculentus and Cyperus rotundus. In Biology and Management of Problematic Crop Weed Species; Elsevier: Amsterdam, The Netherlands, 2021; pp. 151–172. ISBN 978-0-12-822917-0. [Google Scholar]
- Steylaerts, E. Knolcyperus (Cyperus esculentus L.) Zaailingen: Relevantie En Bestrijdbaarheid. Master’s Thesis, Universiteit Gent, Gent, België, 2021. [Google Scholar]
Irrigation | Soil Type | Mean ± SE | ||||||
---|---|---|---|---|---|---|---|---|
Irrigation × Soil type | No | Sand | 1.25 ± 0.333 | |||||
LSD1 Irrigation = 0.991 | Sandy loam | 0.81 ± 0.224 | ||||||
LSD2 Soil type = 0.866 | Clay | 0.19 ± 0.093 | ||||||
Yes | Sand | 5.13 ± 1.097 | ||||||
Sandy loam | 1.35 ± 0.227 | |||||||
Clay | 1.08 ± 0.220 | |||||||
Anova | Block | Irrigation | Soil type | Clonal population | Irrigation × Soil type | Irrigation × Clonal population | Soil type × Clonal population | Irrigation × Soil type × Clonal population |
NS | ** | *** | * | *** | NS | NS | NS |
Clonal Population | Plant Type | n | Number of Tubers | Sign. | Number of Shoots | Sign. | Dry Aboveground Biomass (g) | Sign. | Number of Inflorescences | Sign. | Number of Seeds | Sign. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blandain | MT | 4 | 220.8 ± 7.74 | b | 26.0 ± 4.24 | b | 18.4 ± 1.43 | NS | 6.0 ± 1.08 | a | 10,455.2 ± 1825.08 | a |
OP | 9 | 343.9 ± 25.71 | a | 47.3 ± 3.62 | a | 22.7 ± 1.47 | NS | 0.2 ± 0.15 | b | 0.0 ± 0.00 | b | |
SP | 9 | 160.4 ± 22.26 | b | 31.8 ± 4.41 | b | 17.7 ± 2.48 | NS | 0.2 ± 0.22 | b | 0.0 ± 0.00 | b | |
Poppel | MT | 4 | 954.2 ± 65.76 | a | 125.2 ± 5.12 | a | 19.5 ± 2.06 | NS | 1.8 ± 1.18 | a | 840.8 ± 493.54 | a |
OP | 9 | 614.1 ± 45.27 | b | 86.6 ± 7.58 | b | 24.0 ± 3.39 | NS | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
SP | 8 | 435.0 ± 60.37 | c | 102.2 ± 9.50 | ab | 18.2 ± 2.32 | NS | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
Ternat | MT | 4 | 965.5 ± 112.97 | a | 78.2 ± 7.66 | NS | 14.3 ± 1.96 | NS | 9.0 ± 1.15 | a | 4644.8 ± 1831.87 | a |
OP | 9 | 751.3 ± 50.36 | ab | 80.2 ± 7.68 | NS | 21.8 ± 2.24 | NS | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
SP | 9 | 586.9 ± 77.71 | b | 101.3 ± 16.25 | NS | 16.3 ± 2.99 | NS | 0.3 ± 0.17 | b | 0.0 ± 0.00 | b | |
Geel | MT | 4 | 563.8 ± 59.09 | NS | 47.8 ± 2.10 | b | 21.2 ± 0.29 | NS | 10.0 ± 1.78 | a | 8374.5 ± 2281.50 | a |
OP | 9 | 612.0 ± 42.83 | NS | 60.6 ± 4.04 | a | 24.4 ± 2.11 | NS | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
SP | 8 | 476.0 ± 39.52 | NS | 48.5 ± 3.48 | b | 24.7 ± 2.12 | NS | 0.2 ± 0.16 | b | 0.0 ± 0.00 | b | |
Wielsbeke | MT | 4 | 956.0 ± 97.05 | a | 72.0 ± 9.42 | a | 19.8 ± 1.79 | NS | 1.2 ± 0.48 | a | 1118.0 ± 663.36 | a |
OP | 9 | 570.8 ± 31.93 | b | 51.4 ± 3.93 | b | 20.3 ± 0.91 | NS | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
SP | 4 | 374.2 ± 121.37 | b | 48.5 ± 13.54 | b | 15.2 ± 4.62 | NS | 1.0 ± 1.00 | a | 0.0 ± 0.00 | b |
Clonal Population | Plant Type | Number of Tubers | Sign. | Number of Shoots | Sign. | Dry Aboveground Biomass (g) | Sign. | Number of Inflorescences | Sign. | Number of Seeds | Sign. |
---|---|---|---|---|---|---|---|---|---|---|---|
Blandain | MT | 222.6 ± 8.87 | b | 25.4 ± 2.02 | b | 26.7 ± 1.35 | a | 6.9 ± 1.66 | a | 7538.7 ± 1457.21 | a |
OP | 473.7 ± 52.72 | a | 54.4 ± 5.32 | a | 22.8 ± 1.81 | a | 0.1 ± 0.10 | b | 23.0 ± 23.00 | b | |
SP | 190.7 ± 63.75 | b | 27.3 ± 7.87 | b | 12.1 ± 2.60 | b | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
Poppel | MT | 879.3 ± 51.06 | a | 116.7 ± 10.69 | a | 36.1 ± 2.44 | a | 7.5 ± 1.41 | a | 5104.8 ± 498.15 | a |
OP | 605.9 ± 40.75 | b | 85.9 ± 6.26 | b | 23.7 ± 1.30 | b | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
SP | 516.7 ± 83.50 | b | 90.8 ± 7.92 | ab | 18.3 ± 2.36 | b | 0.1 ± 0.10 | b | 0.0 ± 0.00 | b | |
Ternat | MT | 836.5 ± 47.25 | a | 87.4 ± 5.01 | NS | 26.6 ± 1.78 | a | 11.4 ± 1.31 | a | 15,557.0 ± 1931.43 | a |
OP | 611.7 ± 60.97 | b | 71.5 ± 6.62 | NS | 20.6 ± 1.47 | b | 0.1 ± 0.10 | b | 23.2 ± 23.20 | b | |
SP | 567.1 ± 63.41 | b | 75.2 ± 7.04 | NS | 14.1 ± 1.53 | c | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
Ardooie | MT | 697.6 ± 24.10 | a | 80.1 ± 4.22 | a | 35.8 ± 1.81 | a | 19.6 ± 1.74 | a | 14,095.4 ± 1557.41 | a |
OP | 540.0 ± 33.51 | b | 63.5 ± 4.17 | b | 14.7 ± 1.10 | b | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
SP | 485.3 ± 62.44 | b | 54.2 ± 5.14 | b | 16.7 ± 0.89 | b | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b | |
Dessel | MT | 866.5 ± 35.22 | a | 97.3 ± 2.16 | a | 46.3 ± 1.48 | a | 12.8 ± 0.79 | a | 14,559.5 ± 1101.39 | a |
OP | 540.1 ± 43.41 | b | 56.8 ± 4.11 | b | 21.9 ± 1.70 | b | 0.1 ± 0.10 | b | 117.8 ± 117.80 | b | |
SP | 314.2 ± 82.81 | c | 48.0 ± 9.92 | b | 34.9 ± 5.67 | a | 0.2 ± 0.20 | b | 49.0 ± 49.00 | b | |
Snellegem | MT | 780.4 ± 25.86 | a | 98.8 ± 2.57 | a | 40.9 ± 1.23 | a | 14.9 ± 1.55 | a | 11,975.6 ± 1820.85 | a |
OP | 553.5 ± 53.14 | b | 63.5 ± 4.31 | b | 27.1 ± 1.91 | b | 0.1 ± 0.10 | b | 19.1 ± 19.10 | b | |
SP | 618.4 ± 49.03 | b | 72.6 ± 2.99 | b | 24.8 ± 1.08 | b | 0.0 ± 0.00 | b | 0.0 ± 0.00 | b |
Clonal Population | Plant Type | n | Dry Tuber Biomass (g) | Sign. | Dry ind. Tuber Weight (g) | Sign. |
---|---|---|---|---|---|---|
Blandain | MT | 4 | 56.4 ± 4.58 | a | 0.26 ± 0.023 | a |
OP | 9 | 45.6 ± 5.18 | a | 0.13 ± 0.010 | b | |
SP | 9 | 17.9 ± 4.84 | b | 0.10 ± 0.018 | c | |
Poppel | MT | 4 | 81.7 ± 5.58 | a | 0.09 ± 0.004 | NS |
OP | 9 | 47.5 ± 4.06 | b | 0.08 ± 0.004 | NS | |
SP | 8 | 30.6 ± 6.46 | c | 0.06 ± 0.007 | NS | |
Ternat | MT | 4 | 58.1 ± 7.09 | a | 0.06 ± 0.004 | b |
OP | 9 | 61.3 ± 3.38 | a | 0.08 ± 0.002 | a | |
SP | 9 | 28.6 ± 5.68 | b | 0.04 ± 0.007 | b | |
Geel | MT | 4 | 54.1 ± 2.25 | a | 0.10 ± 0.006 | NS |
OP | 9 | 54.9 ± 2.78 | a | 0.09 ± 0.004 | NS | |
SP | 8 | 36.2 ± 3.14 | b | 0.08 ± 0.007 | NS | |
Wielsbeke | MT | 4 | 79.2 ± 5.67 | a | 0.08 ± 0.003 | ab |
OP | 9 | 47.1 ± 1.87 | b | 0.08 ± 0.004 | a | |
SP | 4 | 24.0 ± 8.49 | c | 0.06 ± 0.015 | b |
Clonal Population | Plant Type | Dry Tuber Biomass (g) | Sign. | Dry ind. Tuber Weight (g) | Sign. | n | Germination (%) |
---|---|---|---|---|---|---|---|
Blandain | MT | 59.4 ± 1.92 | a | 0.27 ± 0.010 | a | 9 | 74.0 ± 2.77 |
OP | 69.8 ± 6.82 | a | 0.16 ± 0.020 | b | 1 | 38.0 ± 38.00 | |
SP | 19.6 ± 7.22 | b | 0.09 ± 0.015 | c | / | ||
Poppel | MT | 103.2 ± 5.97 | a | 0.12 ± 0.006 | a | 10 | 27.4 ± 2.72 |
OP | 62.5 ± 2.85 | b | 0.10 ± 0.003 | ab | / | ||
SP | 45.3 ± 7.98 | b | 0.08 ± 0.013 | b | / | ||
Ternat | MT | 69.6 ± 5.19 | a | 0.08 ± 0.004 | a | 10 | 23.2 ± 2.97 |
OP | 61.4 ± 5.92 | a | 0.10 ± 0.010 | a | 1 | 10.0 ± 10.00 | |
SP | 29.8 ± 4.33 | b | 0.05 ± 0.003 | b | / | ||
Ardooie | MT | 88.6 ± 3.10 | a | 0.13 ± 0.007 | a | 10 | 7.0 ± 1.09 |
OP | 58.3 ± 3.10 | b | 0.11 ± 0.008 | a | / | ||
SP | 40.1 ± 4.82 | c | 0.08 ± 0.006 | b | / | ||
Dessel | MT | 79.8 ± 2.62 | a | 0.09 ± 0.003 | NS | 10 | 26.6 ± 3.06 |
OP | 58.8 ± 5.26 | b | 0.12 ± 0.014 | NS | 1 | 28.0 ± 28.00 | |
SP | 28.8 ± 8.34 | c | 0.07 ± 0.011 | NS | 1 | 14.0 ± 14.00 | |
Snellegem | MT | 106.0 ± 4.17 | a | 0.14 ± 0.005 | NS | 10 | 22.6 ± 3.11 |
OP | 79.9 ± 3.76 | b | 0.16 ± 0.016 | NS | 1 | 0.0 ± 0.00 | |
SP | 70.4 ± 3.08 | b | 0.12 ± 0.008 | NS | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Ryck, S.; Steylaerts, E.; Fort, B.; Reheul, D.; De Cauwer, B. In Situ Seedling Establishment and Performance of Cyperus esculentus Seedlings. Agriculture 2024, 14, 1794. https://doi.org/10.3390/agriculture14101794
De Ryck S, Steylaerts E, Fort B, Reheul D, De Cauwer B. In Situ Seedling Establishment and Performance of Cyperus esculentus Seedlings. Agriculture. 2024; 14(10):1794. https://doi.org/10.3390/agriculture14101794
Chicago/Turabian StyleDe Ryck, Sander, Evelyne Steylaerts, Branko Fort, Dirk Reheul, and Benny De Cauwer. 2024. "In Situ Seedling Establishment and Performance of Cyperus esculentus Seedlings" Agriculture 14, no. 10: 1794. https://doi.org/10.3390/agriculture14101794
APA StyleDe Ryck, S., Steylaerts, E., Fort, B., Reheul, D., & De Cauwer, B. (2024). In Situ Seedling Establishment and Performance of Cyperus esculentus Seedlings. Agriculture, 14(10), 1794. https://doi.org/10.3390/agriculture14101794