Winter Survivability and Subsequent Performance of Fall-Planted Flax (Linum usitatissimum L.) in Mid-Central Virginia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Layout, and Planting Material
2.2. Data Analysis
3. Results
3.1. Soil Characteristics
3.2. Winter Seedling Survival
3.3. Seed Yield, Seed Weight, Seed Protein, and Fat Content
3.4. Seed Macronutrient Element Content
3.5. Seed Micronutrient Element Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrensing, D. Oil Crops; EM 8952; Oregon State University Extension: Central Point, OR, USA, 2008. [Google Scholar]
- Robinson, B.B. Agricultural Experiment Station, Oregon State Agricultural College. Stn. Circ. 1936, 118. [Google Scholar]
- Hill, D.D. Agricultural Experiment Station, Oregon State Agricultural College. Stn. Circ. 1938, 133. [Google Scholar]
- Lowry, G.A. The Melliand Textile Monthly. 1931, Volume 3, pp. 315–319. Available online: https://books.google.co.kr/books/about/Melliand_Textile_Monthly.html?id=nElQAAAAYAAJ&redir_esc=y (accessed on 1 June 2023).
- Charlton, B.A.; Ehrensing, D. Fiber and Oilseed Flax Performance. In Annual Report; Klamath Experiment Station, Oregon State University: Corvallis, OR, USA, 2001; pp. 36–40. [Google Scholar]
- Komlajeva, L.; Adamovics, A. Evaluation of flax (Linum usitatissimum L.) quality parameters for bioenergy production. In Engineering for Rural Development; Latvia University of Agriculture: Jelgava, Latvia, 2012; Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.tf.llu.lv/conference/proceedings2012/Papers/086_Komlajeva_L.pdf (accessed on 3 June 2023).
- Copur, O.; Gür, M.A.; Karakus, M.; Demirel, U. Determination of correlation and path analysis among yield components and seed yields in oil flax varieties (Linum usitatissimum L.). J. Biol. Sci. 2006, 6, 738–743. [Google Scholar]
- Enser, M.; Richardson, R.I.; Wood, J.D.; Gill, B.P.; Sheard, P.R. Feeding linseed to increase the n-3 PUFA of pork: Fatty acid composition of muscle, adipose tissue, liver and sausages. Meat Sci. 2000, 55, 201–212. [Google Scholar] [CrossRef]
- Kouba, M.; Enser, M.; Whittington, F.M.; Nute, G.R.; Wood, J.D. Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 2003, 81, 1967–1979. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, F.; Choi, H.S.; Park, M.K. Natural fiber composition selection in view of mechanical, lightweight, and economic properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
- USDA. Available online: https://apps.fas.usda.gov/gats/default.aspx (accessed on 2 June 2023).
- Neuringer, M.; Connor, W.E. n-3 fatty acids in the brain and retina: Evidence for their essentiality. Nutr. Rev. 1986, 44, 285–294. [Google Scholar] [CrossRef]
- Freitas, R.D.S.; Campos, M.M. Protective effects of Omega-3-fatty acids in cancer-related complications. Nutrients 2019, 11, 945. [Google Scholar] [CrossRef] [Green Version]
- Menoyo, D.; Lopez-Bote, C.J.; Obach, A.; Bautista, J.M. Effects of dietary fish oil substitution with linseed oil on the performance, tissue fatty acid profile, metabolism and oxi-dative stability of Atlantic Salmon. J. Anim. Sci. 2005, 83, 2853–2862. [Google Scholar] [CrossRef]
- Drobná, Z.; Zelenka, J.; Mrkvicová, E.; Kladroba, D. Influence of dietary linseed and sunflower oil on sensory characteristics of rainbow trout (Oncorhynchus mykiss). Czech J. Anim. Sci. 2006, 51, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Petit, H.V.; Twagiramungu, H. Conception rate and reproductive function of dairy cows fed different fat sources. Theriogenology 2006, 66, 1316–1324. [Google Scholar] [CrossRef]
- Aharoni, Y.; Orlov, A.; Brosh, A. Effects of high-forage content and oilseed supplementation of fattening diets on conjugated linoleic acid (CLA) and trans fatty acids profiles of beef lipid fractions. Anim. Feed Sci. Tech. 2004, 117, 43–60. [Google Scholar] [CrossRef]
- Mach, N.; Devant, M.; Díaz, I.; Font-Furnols, M.; Oliver, M.A.; García, J.A.; Bach, A. Increasing the amount of n-3 fatty acid in meat from young Holstein bulls through nutrition. J. Anim. Sci. 2006, 84, 3039–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Esquerra, R.; Leeson, S. Effect of Feeding Hens Regular or Deodorized Menhaden Oil on Production Parameters, Yolk 0Fatty Acid Profile, and Sensory Quality of Eggs. Poult. Sci. 2000, 79, 1597–1602. [Google Scholar] [CrossRef]
- Rymer, C.; Givens, D.I. Effect of species and genotype on the efficiency of enrichment of poultry meat with n-3 polyunsaturated fatty acids. Lipids 2006, 41, 445–451. [Google Scholar] [CrossRef]
- Romans, J.R.; Johnson, R.C.; Wulf, D.M.; Libal, G.W.; Costello, W.J. Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics and omega-3 fatty acid content of pork: I. Dietary level of flaxseed. J. Anim. Sci. 1995, 73, 1982–1986. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.V.; Overend, D.J.; Hansen, S.A. Sow productivity responses, from long-term continuous inclusion of flax meal, in a commercial environment. In Final Report Submitted to the Flax Council of Canada; The Flax Council of Canada: Winnipeg, MB, Canada, 2004. [Google Scholar]
- Foulk, J.A.; Akin, D.E.; Dodd, R.B. Fiber flax farming practices in the southeastern United States. Crop Manag. 2003, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G.; Isakeit, T.; Falconer, L. Keys to Profitable Flax Production in Texas; SCS-2009-14; AgriLife Extension, Texas A&M System: College Station, TX, USA, 2009. [Google Scholar]
- Foulk, J.A.; Akin, D.E.; Dodd, R.B.; Frederick, J.R. Optimizing flax production in the South Atlantic region of the USA. J. Sci. Agric. 2004, 84, 870–876. [Google Scholar] [CrossRef]
- Lafond, G.P.; Irvine, B.; Johnston, A.M.; May, W.E.; McAndrew, D.W.; Shirtliffe, S.J.; Stevenson, F.C. Impact of agronomic factors on seed yield formation and quality in flax. Can. J. Plant Sci. 2008, 88, 485–500. [Google Scholar] [CrossRef]
- Gallardo, M.A.; Milisich, H.J.; Drago, S.R.; Gonzalez, R.J. Effect of cultivars and planting date on yield, oil content, and fatty acid profile of flax varieties (Linum usitatissimum L.). Int. J. Agron. 2014, 2014, 150570. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Li, F.; Du, G.; Xiao, F. Balanced fertilization improves fiber yield and quality of winter flax (Linum usitatissimum L.). Am. J. Plant Sci. 2013, 4, 291–296. [Google Scholar] [CrossRef]
- Bakry, B.A.; Tawfik, M.M.; Mekki, B.B.; Zeidan, M.S. Yield and yield components of three flax cultivars (Linum usitatissimum L.) in response to foliar application with Zn, Mn and Fe under newly reclaimed sandy soil conditions. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 1075–1080. [Google Scholar] [CrossRef]
- Rossi, A.; Clemente, C.; Tavarini, S.; Angelini, L.G. Variety and sowing date affect seed yield and chemical composition of linseed grown under organic production system in a semiarid mediterranean environment. Agronomy 2023, 13, 45. [Google Scholar] [CrossRef]
- The Flax Council of Canada. Growing Flax. Production, Management and Diagnostic Guide. pp. 5–8. Available online: http://flaxcouncil.ca/growing-flax/chapters/crop-rotation/ (accessed on 21 March 2017).
- AOAC International. AOAC Official Method 990.03. Protein (Crude) in Animal Feed, Combustion Method. In Official Methods of Analysis of AOAC International, 18th ed.; Revision 1; AOAC International: Gaithersburg, MD, USA, 2006; Chapter 4; pp. 30–31. [Google Scholar]
- AOAC International. AOAC Official Method of Analysis, Method 920.39. In Fat (Crude) or Ether Extract in Animal Feed, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC International. AOAC Official Method 953.01, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1997; Chapter 3; p. 2. [Google Scholar]
- Dillman, A.C. Cold Tolerance in flax. Agron. J. 1941, 33, 789–799. [Google Scholar] [CrossRef]
- Gubbels, G.H.; Hoes, J.A.; Fr’riesen, G.; Kenaschuk, E.O.; Arthur, A.; England, D.; Panchuk, K.; Rowland, G.; Hanley, G.; Tomasiewicz, D. Growing Flax in Canada; The Flax Council of Canada: Winnipeg, MB, Canada, 1987; p. 22. [Google Scholar]
- Bonner, D.M.; Gubbels, G.H.; Kenaschuk, E.O. Frost tolerance of maturing flax. Can. J. Plant Sci. 1993, 73, 167–170. [Google Scholar] [CrossRef]
- Gusta, L.V.; Nesbitt, N.T.; Wu, G.; Luo, X.; Robertson, A.J.; Waterer, D.; Gusta, M.L. Genetic engineering of cultivated plants for enhanced abiotic stress tolerance. In Plant Cold Hardiness; Li, P.H., Palva, T., Eds.; Springer: Boston, MA, USA, 2002; pp. 237–248. [Google Scholar] [CrossRef]
- Steponkus, P.L. Cold hardiness and freezing injury of agronomic crops. Adv. Agron. 1978, 30, 51–98. [Google Scholar]
- Darapuneni, M.K.; Morgan, G.D.; Ibrahim, M.H.; Duncan, R.W. Evaluation of flax genotypes for cold tolerance and yield in South-East Texas. J. Agron. Crop Sci. 2014, 201, 128–137. [Google Scholar] [CrossRef]
- Mohammed, A.R.; Holgate, L.C.; Tarpley, L. Characterization of northern spring flax as a winter crop for Southeast Texas. J. Agri. Crop Sci. 2017, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Lenssen, A.W.; Allen, B.L.; Jabro, J.D.; Stevens, W.B. Stacked crop rotations and cultural practices for canola and flax yield and quality. Agron. J. 2020, 112, 2020–2032. [Google Scholar] [CrossRef] [Green Version]
- Jankauskien, Z.; Bačelis, K. The new Lithuanian fibre flax variety ‘Snaigiai’. Agron. VĒStis 2008, 11, 67–72. [Google Scholar]
- Rahman, M.; Miller, J.; Hammond, J. ‘ND Hammond’ brown-seeded flaxseed cultivar developed in North Dakota. J. Plant Regist. 2019, 13, 320–325. [Google Scholar] [CrossRef]
- Dillman, A.C. Effect of climate on the yield and oil content of flaxseed and on the iodine number of linseed oil. In Technical Bulletin 844; U.S. Department of Agriculture: Washington, DC, USA, 1943. [Google Scholar]
- Xie, Y.; Niu, X.; Niu, J. Effect of phosphorus fertilizer on growth, phosphorus uptake, seed yield, yield components, and phosphorus use efficiency of oilseed flax. Agron. J. 2016, 108, 1257–1266. [Google Scholar] [CrossRef]
- Jiotode, D.J.; Patel, D.; Patil, S.; Khawle, V.S. Effects of different dates of sowing and crop weather on linseed varieties. J. Soils Plants 2017, 27, 232–238. [Google Scholar]
- Hacisalihoglu, G.; Armstrong, P.R. Flax and sorghum: Multi-lent contents and nutritional values within 210 varieties and potential selection for future climates to sustain food security. Plants 2022, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Kluza-Wieloch, M.; Waśkiewicz, A.; Bednorz, L.; Nowińska, R. The content of selected elements in common flax seeds (Linum usitatissimum L.) depending on the cultivar and weather conditions. J. Elem. 2020, 25, 1029–1044. [Google Scholar] [CrossRef]
- Jiao, L.; Grant, C.A.; Bailey, L.D. Growth and nutrient response of flax and durum wheat to phosphorus and zinc fertilizers. Can. J. Plant Sci. 2007, 87, 461–470. [Google Scholar] [CrossRef]
Year | pH | P | K | Ca | Mg | Zn | Mn | Cu | Fe | B |
---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | ||||||||||
2021 | 6.2 | 34 | 82 | 337 | 53 | 0.8 | 9.8 | 0.9 | 18 | 0.2 |
2022 | 5.9 | 50 | 73 | 288 | 42 | 1.0 | 10.8 | 1.0 | 19.8 | 0.1 |
Flax Cultivar | Percentage of Emerged Seedlings That Survived the Winter Months | |||
---|---|---|---|---|
2021 | 2022 | |||
1 * | 2 | 3 | ||
Bison | 91.4 | 47.6 ab | 52.3 ab | 28.7 c |
Carter | 91.7 | 17.3 cd | 39.3 bc | 88.8 a |
Gold ND | 89.5 | 29.0 bcd | 58.3 ab | 34.7 bc |
ND Hammond | 90.0 | 66.0 a | 56.0 ab | 83.3 a |
Nakoma | 91.0 | 33.7 bcd | 75.0 a | 51.7 ab |
Omega | 96.1 | 12.3 d | 58.3 ab | 82.0 a |
Pembina | 94.5 | 37.0 bc | 51.0 ab | 71.3 ab |
York | 97.9 | 15.3 cd | 17.7 c | 38.0 bc |
Flax Cultivar | Seed Character | |||
---|---|---|---|---|
Yield (kg ha−1) | 1000 Seed Weight (mg) | CP (g kg−1) | CF (g kg−1) | |
Bison | 407 | 5923 c | 229.6 b | 220.4 |
Carter | 347 | 5862 c | 232.7 b | 222.7 |
Gold ND | 299 | 6340 a | 226.0 b | 223.3 |
ND Hammond | 298 | 5794 c | 242.0 a | 232.7 |
Nakoma | 408 | 5840 c | 228.4 b | 224.0 |
Omega | 374 | 5862 c | 232.9 b | 229.1 |
Pembina | 358 | 6075 b | 232.8 b | 234.7 |
York | 391 | 5938 c | 229.0 b | 222.7 |
Planting date | ||||
1 | 382 b | 6026 a | 223.2 b | 206.3 b |
2 | 523 a | 5912 b | 226.5 b | 254.8 a |
3 | 177 c | 5924 b | 245.3 a | 217.5 b |
Flax Cultivar | Seed Character | |||
---|---|---|---|---|
Yield (kg ha−1) | 1000 Seed Weight (mg) | CP (g kg−1) | CF (g kg−1) | |
Bison | 58 | 5372 | 262.8 ab | 228.3 |
Carter | 103 | 5528 | 265.3 ab | 195.7 |
Gold ND | 126 | 5264 | 257.3 b | 230.5 |
ND Hammond | 85 | 5596 | 270.0 a | 189.0 |
Nakoma | 87 | 5725 | 259.3 b | 229.6 |
Omega | 53 | 5584 | 265.0 ab | 218.0 |
Pembina | 137 | 5563 | 259.7 ab | 223.4 |
York | 60 | 5642 | 254.5 b | 189.9 |
Planting date | ||||
1 | 82 | 5653 | 264.4 | 20.63 |
2 | 110 | 5317 | 261.8 | 21.87 |
3 | 72 | 5637 | 259.3 | 21.10 |
Flax Cultivar | Macronutrient Element Content (g kg−1) | ||||
---|---|---|---|---|---|
P | K | Mg | Ca | S | |
Bison | 7.51 abc | 10.26 b | 3.72 bc | 2.63 c | 2.28 ab |
Carter | 7.37 bcd | 10.11 bc | 3.83 ab | 2.64 c | 2.27 ab |
Gold ND | 7.14 d | 9.30 d | 3.64 d | 2.57 c | 2.11 c |
ND Hammond | 7.77 a | 9.66 cd | 3.91 a | 2.79 b | 2.36 a |
Nakoma | 7.28 bcd | 9.72 cd | 3.68 c | 2.64 c | 2.23 b |
Omega | 7.52 abc | 9.31 d | 3.96 a | 3.03 a | 2.23 b |
Pembina | 7.63 ab | 10.21 b | 3.77 bc | 2.38 d | 2.24 b |
York | 7.59 abc | 10.80 a | 3.83 ab | 2.62 c | 2.90 ab |
Planting date | |||||
1 | 7.51 b | 9.57 c | 3.72 b | 2.85 a | 2.20 b |
2 | 7.13 c | 9.96 a | 3.67 b | 2.39 c | 2.16 b |
3 | 7.79 a | 10.16 a | 3.99 a | 2.75 b | 2.40 a |
Flax Cultivar | Macronutrient Element Content (g kg−1) | ||||
---|---|---|---|---|---|
P | K | Mg | Ca | S | |
Bison | 8.27 | 10.41 | 3.99 ab | 3.06 ab | 2.52 |
Carter | 8.09 | 10.40 | 4.09 a | 3.08 ab | 2.57 |
Gold ND | 8.05 | 9.67 | 4.07 a | 2.91 ab | 2.45 |
ND Hammond | 7.93 | 9.81 | 4.00 ab | 2.86 ab | 2.54 |
Nakoma | 7.76 | 9.59 | 3.93 ab | 3.01 ab | 2.44 |
Omega | 7.79 | 9.50 | 3.91 ab | 3.24 ab | 2.41 |
Pembina | 7.91 | 9.76 | 3.90 ab | 2.69 b | 2.40 |
York | 8.14 | 9.58 | 3.79 b | 3.54 a | 2.23 |
Planting date | |||||
1 | 8.06 ab | 10.35 a | 4.00 a | 2.91 b | 2.51 |
2 | 7.83 b | 9.44 b | 3.87 b | 2.83 b | 2.43 |
3 | 8.14 a | 9.81 ab | 4.04 a | 3.42 a | 2.41 |
Flax Cultivar | Micronutrient Element Content (mg kg−1) | ||||
---|---|---|---|---|---|
Fe | Zn | Mn | Cu | B | |
Bison | 66.8 ab | 57.6 ab | 20.0 a | 15.6 de | 10.1 ab |
Carter | 67.2 ab | 59.0 ab | 20.1 a | 17.1 b | 10.5 ab |
Gold ND | 64.3 ab | 55.4 b | 17.0 b | 15.3 de | 9.5 b |
ND Hammond | 73.4 a | 61.0 a | 20.1 a | 16.9 a | 10.6 a |
Nakoma | 64.0 b | 58.5 ab | 19.6 ab | 16.9 bc | 10.3 ab |
Omega | 69.0 ab | 59.7 ab | 19.1 ab | 15.2 e | 9.8 ab |
Pembina | 65.8 ab | 58.7 ab | 19.4 ab | 16.2 cd | 9.7 ab |
York | 63.9 b | 58.6 ab | 20.3 a | 15.8 de | 10.1 ab |
Planting date | |||||
1 | 74.8 a | 57.6 | 18.8 b | 16.1 b | 11.1 a |
2 | 54.6 b | 59.7 | 21.9 a | 15.9 b | 9.6 b |
3 | 71.0 a | 58.4 | 17.8 b | 17.1 a | 9.6 b |
Flax Cultivar | Micronutrient Element Content (mg kg−1) | ||||
---|---|---|---|---|---|
Fe | Zn | Mn | Cu | B | |
Bison | 117.4 b | 68.4 a | 23.7 ab | 21.6 ab | 12.3 |
Carter | 118.2 b | 66.8 ab | 20.5 b | 22.8 ab | 9.5 |
Gold ND | 123.7 b | 66.8 ab | 25.2 ab | 20.0 b | 10.2 |
ND Hammond | 124.5 b | 68.8 a | 26.1 a | 23.0 ab | 10.7 |
Nakoma | 119.5 b | 66.4 ab | 24.1 ab | 23.1 ab | 10.6 |
Omega | 116.8 b | 65.1 ab | 23.1 ab | 19.7 b | 9.4 |
Pembina | 166.4 a | 67.0 ab | 25.7 ab | 22.0 ab | 9.9 |
York | 98.4 b | 60.3 b | 20.9 ab | 26.8 a | 9.5 |
Planting date | |||||
1 | 127.8 a | 64.4 | 19.2 c | 22.7 | 9.5 b |
2 | 132.9 a | 68.7 | 28.4 a | 21.4 | 9.4 b |
3 | 107.5 b | 64.9 | 22.2 b | 23.6 | 12.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahemi, A.; Temu, V.W.; Kering, M.K. Winter Survivability and Subsequent Performance of Fall-Planted Flax (Linum usitatissimum L.) in Mid-Central Virginia. Agriculture 2023, 13, 1374. https://doi.org/10.3390/agriculture13071374
Rahemi A, Temu VW, Kering MK. Winter Survivability and Subsequent Performance of Fall-Planted Flax (Linum usitatissimum L.) in Mid-Central Virginia. Agriculture. 2023; 13(7):1374. https://doi.org/10.3390/agriculture13071374
Chicago/Turabian StyleRahemi, Alireza, Vitalis W. Temu, and Maru K. Kering. 2023. "Winter Survivability and Subsequent Performance of Fall-Planted Flax (Linum usitatissimum L.) in Mid-Central Virginia" Agriculture 13, no. 7: 1374. https://doi.org/10.3390/agriculture13071374
APA StyleRahemi, A., Temu, V. W., & Kering, M. K. (2023). Winter Survivability and Subsequent Performance of Fall-Planted Flax (Linum usitatissimum L.) in Mid-Central Virginia. Agriculture, 13(7), 1374. https://doi.org/10.3390/agriculture13071374