The Role of Recent Climate Change in Explaining the Statistical Yield Increase of Maize in Northern Bavaria—A Model Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. The Hydro-Agroecological Model PROMET
2.2.1. Determination of Irrigation Requirement
2.2.2. The PROMET Concepts of Phenology Cultivar Factor and Nutrient Factor
2.3. Conceptual Framework of the Study
3. Results
3.1. Reconstruction of Yield Statistics
3.2. Recent Yield Increase Potentials in Northern Bavaria
4. Discussion
4.1. Recent Climate Change Factors and their Contribution to Explaining Observed Yield Trends
4.2. Adaptation Measures in Northern Bavarian Agriculture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918–2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef] [Green Version]
- Tenaillon, M.I.; Charcosset, A. A European perspective on maize history. Comptes Rendus Biol. 2011, 334, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 February 2023).
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, H.; Roser, M.; Rosao, P. Crop Yields. Available online: https://ourworldindata.org/crop-yields (accessed on 15 March 2023).
- Umweltbundesamt (UBA). Yield Fluctuations. Available online: https://www.umweltbundesamt.de/en/topics/climate-energy/climate-impacts-adaptation/impacts-of-climate-change/monitoring-report-2019/indicators-of-climate-change-impacts-adaptation/cluster-agriculture/lw-i-2-yield-fluctuations#lw-i-2-yield-fluctuations (accessed on 15 March 2023).
- Bednar-Friedl, B.; Biesbroek, R.; Schmidt, D.N.; Alexander, P.; Børsheim, K.Y.; Carnicer, J.; Georgopoulou, E.; Haasnoot, M.; Le Cozannet, G.; Lionello, P.; et al. Europe. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1817–1927. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Ruane, A.C.; Vautard, R.; Arnell, N.; Coppola, E.; Cruz, F.A.; Dessai, S.; Islam, A.S.; Rahimi, M.; Ruiz Carrascal, D.; et al. Climate Change Information for Regional Impact and for Risk Assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1767–1926. [Google Scholar] [CrossRef]
- Reiter, A.; Weidinger, R.; Mauser, W. Recent Climate Change at the Upper Danube—A temporal and spatial analysis of temperature and precipitation time series. Clim. Chang. 2011, 111, 665–696. [Google Scholar] [CrossRef]
- Imbery, F.; Friedrich, K.; Fleckenstein, R.; Becker, A.; Bissolli, P.; Haeseler, S.; Ziese, M.; Daßler, J.; Kreis, A.; Janssen, W.; et al. Klimatologischer Rückblick Sommer 2022; Abteilungen für Klimaüberwachung, Hydrometeorologie und Agrarmeteorologie, Deutscher Wetterdienst (DWD): Hamburg, Germany, 2022. [Google Scholar]
- Bayerisches Landesamt für Umwelt (LfU). Niedrigwasser in Bayern. Grundlagen, Veränderungen und Auswirkungen; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2017. [Google Scholar]
- Macholdt, J.; Honermeier, B. Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views. Agronomy 2017, 7, 45–62. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Dold, C. Climate Change Impacts on Corn Phenology and Productivity. In Corn—Production and Human Health in Changing Climate, 1st ed.; Amanullah, K., Fahad, S., Eds.; IntechOpen: London, UK, 2018; pp. 97–114. [Google Scholar] [CrossRef] [Green Version]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sánchez, D.; García, E.; Rodríguez, A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Yamori, W.; Hikosaka, K.; Way, D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 2014, 119, 101–117. [Google Scholar] [CrossRef]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef] [Green Version]
- Umweltbundesamt (UBA). Agrophenological Phase Shifts. Available online: https://www.umweltbundesamt.de/en/topics/climate-energy/climate-impacts-adaptation/impacts-of-climate-change/monitoring-report-2019/indicators-of-climate-change-impacts-adaptation/cluster-agriculture/lw-i-1-agrophenological-phase-shifts#lw-i-1-agrophenological-phase-shifts (accessed on 15 March 2023).
- Parent, B.; Leclere, M.; Lacube, S.; Semenov, M.A.; Welcker, C.; Martre, P.; Tardieu, F. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl. Acad. Sci. USA 2018, 115, 10642–10647. [Google Scholar] [CrossRef] [Green Version]
- Bai, E.; Li, S.; Xu, W.; Li, W.; Dai, W.; Jiang, P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 2013, 199, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.S.; Geisseler, D. Temperature sensitivity of nitrogen mineralization in agricultural soils. Biol. Fertil. Soils 2018, 54, 853–860. [Google Scholar] [CrossRef]
- Schauberger, B.; Ben-Ari, T.; Makowski, D.; Kato, T.; Kato, H.; Ciais, P. Yield trends, variability and stagnation analysis of major crops in France over more than a century. Sci. Rep. 2018, 8, 16865. [Google Scholar] [CrossRef]
- Maitah, M.; Malec, K.; Maitah, K. Influence of precipitation and temperature on maize production in the Czech Republic from 2002 to 2019. Sci. Rep. 2021, 11, 10467. [Google Scholar] [CrossRef]
- Medina, H.; Tian, D. Synergistic contributions of climate and management intensifications to maize yield trends from 1961 to 2017. Environ. Res. Lett. 2023, 18, 024020. [Google Scholar] [CrossRef]
- Han, X.; Dong, L.; Cao, Y.; Lyu, Y.; Shao, X.; Wang, Y.; Wang, L. Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain. Agronomy 2022, 12, 984–998. [Google Scholar] [CrossRef]
- Kisekka, I.; Schlegel, A.; Ma, L.; Gowda, P.H.; Prasad, P.V.V. Optimizing preplant irrigation for maize under limited water in the High Plains. Agric. Water Manag. 2017, 187, 154–163. [Google Scholar] [CrossRef]
- Bayerisches Landesamt für Statistik (LfStat). Ernte: Kreis, Durchschnittlicher Hektarertrag, Ausgewählte Fruchtarten, Jahre; Bayerisches Landesamt für Statistik: Fürth, Germany, 2021. [Google Scholar]
- Statistisches Landesamt Baden-Württemberg (Statistik-BW). Hektarerträge der Feldfrüchte Seit 1988; Statistisches Landesamt Baden-Württemberg: Stuttgart, Germany, 2021. [Google Scholar]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Erntebericht 2022. Mengen und Preise; Referat 723: Berlin, Germany, 2022. [Google Scholar]
- Gewässerkundlicher Dienst Bayern (GKD); Bayerisches Landesamt für Umwelt (LfU). Stammdaten Kleinheubach. Available online: https://www.gkd.bayern.de/de/fluesse/abfluss/main_unten/kleinheubach-24064003 (accessed on 23 February 2023).
- Bayerisches Landesamt für Umwelt (LfU). Mittelwerte des Gebietsniederschlags. Available online: https://www.lfu.bayern.de/klima/klimawandel/klima_in_bayern/niederschlag/index.htm (accessed on 11 November 2021).
- Schwaller, C.; Keller, Y.; Helmreich, B.; Drewes, J.E. Estimating the agricultural irrigation demand for planning of non-potable water reuse projects. Agric. Water Manag. 2021, 244, 106529. [Google Scholar] [CrossRef]
- Bayerisches Landesamt für Umwelt (LfU). Fließgewässernetz 1:25.000; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2016. [Google Scholar]
- ESRI. World Topographic Map [Basemap]; ESRI: Redlands, CA, USA, 2013. [Google Scholar]
- European Union. Copernicus Land Monitoring Service 2018. European Environment Agency (EEA). Corine Land Cover (CLC) 2018; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Landesamt für Digitalisierung Breitband und Vermessung (LDBV). Geoportal Bayern. Verwaltungsgebiete; Landesamt für Digitalisierung Breitband und Vermessung: München, Germany, 2020. [Google Scholar]
- Landesamt für Geoinformation und Landentwicklung (LGL-BW). Verwaltungsgrenzen. Kreise; Landesamt für Geoinformation und Landentwicklung: Stuttgart, Germany, 2017. [Google Scholar]
- Bayerisches Staatsministerium für Umwelt und Verbraucherschutz (STMUV). Klima-Report Bayern 2021. Klimawandel, Auswirkungen, Anpasssungs- und Forschungsaktivitäten; Bayerisches Staatsministerium für Umwelt und Verbraucherschutz: Munich, Germany, 2021. [Google Scholar]
- Chambers, J.M. Linear models. In Statistical Models in S, 1st ed.; Chambers, J.M., Hastie, T.J., Eds.; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1992; p. 608. [Google Scholar]
- Wilkinson, G.N.; Rogers, C.E. Symbolic Description of Factorial Models for Analysis of Variance. Appl. Stat. 1973, 22, 392–399. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst (DWD). Hourly Climate Data; Deutscher Wetterdienst: Hamburg, Germany, 2021. [Google Scholar]
- Hank, T.; Bach, H.; Mauser, W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sens. 2015, 7, 3934–3965. [Google Scholar] [CrossRef] [Green Version]
- Mauser, W.; Bach, H. PROMET—Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J. Hydrol. 2009, 376, 362–377. [Google Scholar] [CrossRef]
- Zabel, F.; Mauser, W. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol. Earth Syst. Sci. 2013, 17, 1705–1714. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis Under Different Environmental Conditions. In Progress in Photosynthesis Research, 1st ed.; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; Volume 4, pp. 221–224. [Google Scholar]
- Mauser, W.; Klepper, G.; Zabel, F.; Delzeit, R.; Hank, T.; Putzenlechner, B.; Calzadilla, A. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 2015, 6, 8946. [Google Scholar] [CrossRef] [Green Version]
- Deutscher Wetterdienst (DWD). Eintrittsdaten verschiedener Entwicklungsstadien landwirtschaftlicher Kulturpflanzen von der Bestellung bis zur Ernte; Deutscher Wetterdienst: Hamburg, Germany, 2021. [Google Scholar]
- Hank, T. A Biophysically Based Coupled Model Approach For the Assessment of Canopy Processes under Climate Change Conditions. Ph.D. Thesis, Ludwig-Maximilians-Universität, Munich, Germany, 2008. [Google Scholar]
- Miner, G.L.; Bauerle, W.L. Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Cell Environ 2017, 40, 1874–1886. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; van Laar, H.H. Crop Systems Dynamics: An ecophysiological simulation model for genotype-by-environment interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; p. 156. [Google Scholar]
- Chen, D.-X.; Coughenour, M.B.; Knapp, A.K.; Owensby, C.E. Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2. Ecol. Model. 1994, 73, 63–80. [Google Scholar] [CrossRef]
- Degife, A.W.; Zabel, F.; Mauser, W. Land Use Scenarios and Their Effect on Potential Crop Production: The Case of Gambella Region, Ethiopia. Agriculture 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.M.; Zabel, F.; Schunemann, F.; Delzeit, R.; Mauser, W. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS ONE 2022, 17, e0263063. [Google Scholar] [CrossRef]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Vaclavik, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.G.; Morison, J.I.L. The control of transpiration and photosynthesis by the stomata. In Stomatal physiology. Society for Experimental Biology Seminar Series, 1st ed.; Jarvis, P.G., Mansfield, T.A., Eds.; Cambridge University Press: Cambridge, UK, 1981; Volume 8, pp. 247–279. [Google Scholar]
- Angermair, W. Personal Communication; VISTA GmbH: Munich, Germany, 2023. [Google Scholar]
- Hatfield, J.L. Increased Temperatures Have Dramatic Effects on Growth and Grain Yield of Three Maize Hybrids. Agric. Environ. Lett. 2016, 1, 150006. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhang, Q.; Hu, S.; Wang, R.; Wang, H.; Zhang, K.; Zhao, H.; Ren, S.; Yang, Y.; Zhao, F.; et al. Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China. Agriculture 2022, 12, 1948. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018; p. 204. [Google Scholar] [CrossRef]
- Bundesamt für Kartographie und Geodäsie (BKG). Digitales Geländemodell Gitterweite 1000 m. DGM1000. 2006–2015; Bundesamt für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2015. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union (EU). EUROSTAT. Crops by Classes of Utilised Agricultural Area in Number of Farms and Hectare by NUTS 2 Regions (ef_lus_allcrops); European Union: Brussels, Belgium, 2016. [Google Scholar]
- Statistisches Bundesamt (DESTATIS). Inlandsabsatz von Düngemitteln: Deutschland, Wirtschaftsjahr, Düngemittelsorten; Statistisches Bundesamt: Standort Wiesbaden, Germany, 2018. [Google Scholar]
- Ahmed, I.; Ur Rahman, M.H.; Ahmed, S.; Hussain, J.; Ullah, A.; Judge, J. Assessing the impact of climate variability on maize using simulation modeling under semi-arid environment of Punjab, Pakistan. Env. Sci. Pollut. Res. Int. 2018, 25, 28413–28430. [Google Scholar] [CrossRef]
- Yin, X.; Leng, G. Modelling global impacts of climate variability and trend on maize yield during 1980–2010. Int. J. Climatol. 2020, 41, E1583–E1596. [Google Scholar] [CrossRef]
- Iizumi, T.; Ramankutty, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 2016, 11, 034003. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, G.; Monzon, J.P.; Tenorio, F.A.; Howard, R.; Cassman, K.G.; Grassini, P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proc. Natl. Acad. Sci. USA 2022, 119, e2113629119. [Google Scholar] [CrossRef]
- Sharma, R.K.; Kumar, S.; Vatta, K.; Bheemanahalli, R.; Dhillon, J.; Reddy, K.N. Impact of recent climate change on corn, rice, and wheat in southeastern USA. Sci. Rep. 2022, 12, 16928. [Google Scholar] [CrossRef]
- Lopez, G.; Gaiser, T.; Ewert, F.; Srivastava, A. Effects of Recent Climate Change on Maize Yield in Southwest Ecuador. Atmosphere 2021, 12, 299. [Google Scholar] [CrossRef]
- Pareek, N. Climate Change Impact on Soils: Adaptation and Mitigation. MOJ Ecol. Environ. Sci. 2017, 2, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Pregitzer, K.S.; King, J.S. Effects of Soil Temperature on Nutrient Uptake. In Nutrient Acquisition by Plants. An Ecological Perspective, 1st ed.; BassiriRad, H., Ed.; Springer: Berlin, Heidelberg, 2005; Volume 181, pp. 277–310. [Google Scholar]
- Zheng, D.; Hunt, E.R., Jr.; Running, S.W. A daily soil temperature model based on air temperature and precipitation for continental applications. Clim. Res. 1993, 2, 183–191. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Hasegawa, T.; Lasco, R.; Bhatt, I.; Deryng, D.; Farrell, A.; Gurney-Smith, H.; Ju, H.; Lluch-Cota, S.; Meza, F.; et al. Food, Fibre, and Other Ecosystem Products. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 713–906. [Google Scholar]
- Holzkämper, A. Varietal adaptations matter for agricultural water use—A simulation study on grain maize in Western Switzerland. Agric. Water Manag. 2020, 237, 106202. [Google Scholar] [CrossRef]
- Ma, L.; Ahuja, L.R.; Islam, A.; Trout, T.J.; Saseendran, S.A.; Malone, R.W. Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation. Agric. Water Manag. 2017, 180, 88–98. [Google Scholar] [CrossRef]
PCF/NF | Phenological Phase |
---|---|
1 | Emergence to leaf development (BBCH 0–1) |
2 | Sideshoot development to harvestable vegetative parts (BBCH 3) |
3 | Inflorescence to fruit development (BBCH 5–7) |
4 | Maturity (BBCH 8) |
Data | Description | Data Sources |
---|---|---|
DWD Climate Data | Hourly meteorological station data | Deutscher Wetterdienst (DWD [41]) |
Digital Elevation Model (DEM) | Spatial resolution of 1000 m | Bundesamt für Kartographie und Geodäsie (BKG [61]) |
SoilGrids | Global data set at 250 m spatial resolution | Hengl et al. [62] |
Land Use |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetin, K.; Mauser, W. The Role of Recent Climate Change in Explaining the Statistical Yield Increase of Maize in Northern Bavaria—A Model Study. Agriculture 2023, 13, 1370. https://doi.org/10.3390/agriculture13071370
Cetin K, Mauser W. The Role of Recent Climate Change in Explaining the Statistical Yield Increase of Maize in Northern Bavaria—A Model Study. Agriculture. 2023; 13(7):1370. https://doi.org/10.3390/agriculture13071370
Chicago/Turabian StyleCetin, Kevser, and Wolfram Mauser. 2023. "The Role of Recent Climate Change in Explaining the Statistical Yield Increase of Maize in Northern Bavaria—A Model Study" Agriculture 13, no. 7: 1370. https://doi.org/10.3390/agriculture13071370