An Effective Hybrid Fungicide Containing Tea Tree Oil and Difenoconazole for Grape Powdery Mildew Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungicides
2.2. Field Studies on Grape Powdery Mildew
2.2.1. Field Trials in Chile
2.2.2. Field Trials and Climate Description in Israel
2.3. Assessment of Powdery Mildew on the Fruit Clusters
2.4. Data Analysis
3. Results
3.1. Field Trials in Chile
3.2. Field Trials in Israel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bois, B.; Zito, S.; Calonnec, A. Climate vs grapevine pests and diseases worldwide: The first results of a global survey. OENO One 2017, 51, 133–139. [Google Scholar] [CrossRef]
- Wilcox, W.F.; Gubler, W.D.; Uyemoto, J.K. Compendium of Grape Diseases, Disorders, and Pests; APS Press, The American Phytopathological Society: Tomball, TX, USA, 2015; pp. 39–45. [Google Scholar]
- Rallos, L.E.E.; Johnson, N.G.; Schmale, D.G., III; Prussin, A.J.; Baudoin, A.B. Fitness of Erysiphe necator with G143A-based resistance to quinone outside inhibitors. Plant Dis. 2014, 98, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Colcol, J.F.; Rallos, L.E.; Baudoin, A.B. Sensitivity of Erysiphe necator to demethylation inhibitor fungicides in Virginia. Plant Dis. 2012, 96, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Kunova, A.; Pizzatti, C.; Saracchi, M.; Pasquali, M.; Cortesi, P. Grapevine powdery mildew: Fungicides for its management and advances in molecular detection of markers associated with resistance. Microorganisms 2021, 9, 1541. [Google Scholar] [CrossRef]
- Reuveni, M. Activity of trifloxystrobin against powdery and downy mildew diseases of grapevines. Can. J. Plant Pathol. 2001, 23, 52–59. [Google Scholar] [CrossRef]
- Baudoin, A.; Olaya, G.; Delmotte, F.; Colcol, J.F.; Sierotzki, H. QoI resistance of Plasmopara viticola and Erysiphe necator in the mid-Atlantic United States. Plant Health Prog. 2008, 9, 25. [Google Scholar] [CrossRef]
- Gur, L.; Reuveni, M.; Cohen, Y.; Ovadia, S.; Frenkel, O. Fungicide’s resistance in Erysiphe necator the causal agent of grape powdery mildew. Phytoparasitica 2019, 47, 241–254. [Google Scholar] [CrossRef]
- Kunova, A.; Pizzatti, C.; Bonaldi, M.; Cortesi, P. Metrafenone resistance in a population of Erysiphe necator in northern Italy. Pest Manag. Sci. 2016, 72, 398–404. [Google Scholar] [CrossRef]
- Steva, H.; Clerjeau, M. Cross resistance to sterol biosynthesis inhibitor fungicides in strains of Uncinula necator isolated in France and Portugal. Meded. Fac. Landbouwwet. Rijksuniv. Gent 1990, 55, 983–988. [Google Scholar]
- Sawant, I.S.; Wadkar, P.N.; Ghule, S.B.; Rajguru, Y.R.; Salunkhe, V.P.; Sawant, S.D. Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulphur. Biol. Control 2017, 114, 133–143. [Google Scholar] [CrossRef]
- Dekker, J. Build-up and persistence of fungicide resistance. In Rational Pesticide Use; Brent, K.J., Atkin, R.K., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 153–168. [Google Scholar]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clinic. Microb. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J. Antimicrob. Chemother. 2004, 53, 1081–1085. [Google Scholar] [CrossRef]
- Reuveni, M.; Neifeld, D.; Dayan, D.; Kotzer, Y. BM-608—A novel organic product based on essential tea tree oil for the control of fungal diseases in tomato. Acta Hort. 2009, 808, 129–132. [Google Scholar] [CrossRef]
- Shao, X.; Cheng, S.; Wang, H.; Yu, D.; Mungai, C. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J. Appl. Microbiol. 2013, 114, 1642–1649. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Shao, X.; Xu, F.; Wang, H. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J. Appl. Microbiol. 2015, 119, 1253–1262. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemoth. 2002, 46, 1914–1920. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. Determining the antimicrobial actions of tea tree oil. Molecules 2001, 6, 87–91. [Google Scholar] [CrossRef]
- Arroyo, J.C.; Sir, G. Control of grapevine Powdery Mildew by the hybrid fungicide Regev. In Proceedings of the 9th International Table Grape Symposium, Santiago, Chile, 16–21 February 2020. [Google Scholar]
- Ovadia, S. Epidemiology of Uncinula necator, the Causal Agent of Grape Powdery Mildew, and Development of a Decision Support System for its Management. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem, Israel, 2005. [Google Scholar]
- FRAC (Fungicide Resistance Action Committee). FRAC Code List: Fungicides Sorted by Mode of Action (including FRAC Code Numbering). 2021. Available online: http://www.frac.info (accessed on 26 February 2023).
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed (FRAC Monograph No. 1); Fungicide Resistance Action Committee: Brussels, Belgium, 2007; p. 48. [Google Scholar]
- Elderfield, J.A.; Lopez-Ruiz, F.J.; van den Bosch, F.; Cunniffe, N.J. Using epidemiological principles to explain fungicide resistance management tactics: Why do mixtures outperform alternations? Phytopathology 2018, 108, 803–817. [Google Scholar] [CrossRef]
- Gisi, U. Synergistic interaction of fungicides in mixtures. Phytopathology 1996, 86, 1273–1279. [Google Scholar]
- van den Bosch, F.; Paveley, N.; van den Berg, F.; Hobbelen, P.; Oliver, R. Mixtures as a fungicide resistance management tactic. Phytopathology 2014, 104, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Reuveni, M.; Barbier, M.; Viti, A.J. Essential tea tree oil as a tool to combat black Sigatoka in banana. Outlooks Pest Manag. 2020, 31, 180–186. [Google Scholar] [CrossRef]
- Reuveni, M.; Cohen, Y. Essential Tea Tree Oil Activity against Bremia lactucae in Lettuce. Agronomy 2020, 10, 836. [Google Scholar] [CrossRef]
- Reuveni, M.; Arroyo, C.J.; Henriquez, J.L. A new tea tree oil-based organic fungicide for the control of grape powdery and downy mildews. Phytopathology 2009, 99, S108. [Google Scholar]
- Reuveni, M.; Sanches, E.; Barbier, M. Curative and suppressive activities of essential tea tree oil against fungal plant pathogens. Agronomy 2020, 10, 609. [Google Scholar] [CrossRef]
- Dalio, R.J.; Maximo, H.J.; Roma-Almeida, R.; Barretta, J.N.; José, E.M.; Vitti, A.J.; Blachinsky, D.; Reuveni, M.; Pascholati, S. Tea tree oil induces systemic resistance against Fusarium wilt in banana and Xanthomonas infection in tomato plants. Plants 2020, 9, 1137. [Google Scholar] [CrossRef]
- Vardi, Y.; Reuveni, M. Antifungal activity of a new broad-spectrum bio-fungicide in the controlling of plant diseases. Phytopathology 2009, 99, S134. [Google Scholar]
- Köller, W.; Scheinpflug, H. Fungal resistance to sterol biosynthesis inhibitors: A new challenge. Plant Dis. 1987, 71, 1066–1074. [Google Scholar] [CrossRef]
- Ma, Z.H.; Michailides, T.J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 2005, 24, 853–863. [Google Scholar] [CrossRef]
- Villani, S.M.; Hulvey, J.; Hily, J.M.; Cox, K.D. Overexpression of the CYP51A1 gene and repeated elements are associated with differential sensitivity to DMI fungicides in Venturia inaequalis. Phytopathology 2016, 106, 562–571. [Google Scholar] [CrossRef]
- Ziogas, B.N.; Malandrakis, A.A. Sterol biosynthesis Inhibitors: C-14 demethylation (DMIs). In Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management; Ishii, H., Hollomon, D.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; p. 490. [Google Scholar]
- Reuveni, M. Regev—A new potent hybrid product for the control of plant diseases. A mini review. Outlooks Pest Manag. 2019, 30, 33–35. [Google Scholar] [CrossRef]
- Reuveni, M.; Gur, L.; Henriquez, J.L.; Frank, J.; Tedford, E.; Cloud, G.; Adaskaveg, J.E. A new highly effective hybrid fungicide containing difenoconazole and tea tree oil for managing scab of apple, pecan and almond trees and as a tool in resistance management. Plant Pathol. 2022, 71, 1774–1783. [Google Scholar] [CrossRef]
Active Ingredient | Product Name | G Active Ingredient per Liter | Formulation 1 | Producer | Fungicides 2 Group | FRAC 3 Code |
---|---|---|---|---|---|---|
Boscalid plus pyraclostrobin | Bellis | 25.8 and 12.8 | WD | BASF | SDHI and QoI | 11 and 7 |
Cyflufenamid | Netz | 50 | EW | Nippon Soda | Phenyl-acetamide | U6 |
Difenoconazole | Score | 250 | SC | Syngenta Crop Protection | DMI | 3 |
Difenoconazole plus tea tree oil | Regev | 200 and 400 | EC | STK Bio-Ag Technologies | DMI and multi-site | 3 and BM 01 |
Meptyldinocarp plus Myclobutanil | 113 and 48 | SC | Dow AgroSciences | Dinitrophenylcrotonates and DMI | 29 and 3 | |
Proquinazid | Talius | 200 | EC | DuPont | Azanaphthalenes | 13 |
Pyriofenone | Cassuri | 300 | SC | ISK | Aryl phenyl ketone | 50 |
Quinoxyfen | Abir | 250 | SC | Dow AgroSciences | Azanaphthalenes | 13 |
Tebuconazole | Folicur | 250 | EC | Bayer CropScience | DMI | 3 |
Tetraconazole | Domark | 100 | ME | Isagro S.p.A | DMI | 3 |
Trials in Chile | ||||||
---|---|---|---|---|---|---|
Year | Location | Cultivar | Vineyard Age | Number of Sprays | Beginning of Sprays b | End of Sprays b |
2017–2018 | Requinoa | “Crimson Seedless”© | 10 | 6 | 26 November 2017 | 8 January 2018 |
2017–2018 | Casablanca | “Chardonnay”© | 7 | 5 | 30 November 2017 | 12 January 2018 |
Trials in Israel | ||||||
Year | Location | Cultivar | Vineyard Age | Number of Sprays | Beginning of Sprays | End of Sprays |
2020 | Gimzo, Judean Foothills, Israel | “Carignan”© | 14 | 4 | April 6 | June 6 |
2020 | Eshtaol, Judean Foothills, Israel | “Carignan”© | 9 | 5 | April 6 | June 8 |
2020 | Neta Farm, Judean Foothills, Israel | “Carignan”© | 20 | 2 | April 4 | June 3 |
2021 | Noham, Judean Foothills, Israel | “Carignan”© | 9 | 3 | April 13 | June 8 |
2021 | Gimzo, Judean Foothills, Israel | “Red Loosh”© | 3 | 4 | May 7 | June 17 |
2021 c | Anava, Judean Foothills, Israel | “Carignan”© | 20 | 2 | May 5 | May 19 |
2021 c | Latroon, Judean Foothills, Israel | “Muscat of Alexandria”© | 11 | 3 | May 12 | June 17 |
Treatment and Rate (g/ha) a.i a | Requinoa, Cacachopal Valley cv. “Crimson Seedless”© | Casablanca cv. “Chardonnay”© | ||
---|---|---|---|---|
Incidence (%) | Severity (%) | Incidence (%) | Severity (%) | |
Control | 100.0 ± 0.0 a b | 47.0 ± 0.2 a | 93.0 ± 0.6 a | 43.0 ± 0.3 a |
Difenoconazole-TTO 60 and 120 | 9.0 ± 0.3 c | 0.1 ± 0.0 b | 22.0 ± 0.4 b | 0.1 ± 0.1 b |
Difenoconazole-TTO 80 and 160 | 5.0 ± 0.2 c | 0.1 ± 0.0 b | 17.0 ± 0.4 b | 0.3 ± 0.1 b |
Boscalid-pyraclostrobin 252 and 128 | 23.0 ± 0.4 b | 1.0 ± 0.0 b | 27.0 ± 0.5 b | 0.3 ± 0.1 b |
Treatment and Rate (g/ha) a.i a | Gimzo | Eshtaol | Neta Farm | |||
---|---|---|---|---|---|---|
Incidence (%) | Severity (%) | Incidence (%) | Severity (%) | Incidence (%) | Severity (%) | |
Control | 91.9 ± 3.2 a b | 76.7 ± 6.8 a | 98.1 ±9.2 a | 98.3 ± 7.6 a | 98.8 ± 8.6 a | 44.3 ± 6.2 a |
Difenoconazole-TTO 60 and 120 | 6.9 ± 3.1 c | 0.1 ± 0.02 c | 38.1 ± 3.6 b | 11.4 ± 4.8 b | 10.0 ± 2.5 b | 0.4 ± 0.2 b |
Tetraconazole 40 | 16.9 ± 2.1 b | 2.5 ± 0.9 b | 31.9± 2.4 b | 5.8 ± 3.4 b | 13.8 ±3.2 b | 0.6 ± 0.4 b |
Treatment and Rate (g/ha) a.i a | Noham cv. “Carignane”© | Gimzo cv. “Red Loosh”© | ||
---|---|---|---|---|
Incidence (%) | Severity (%) | Incidence (%) | Severity (%) | |
Control | 100.0 ± 0.0 a b | 98.9 ± 3.1 a | 96.3 ±7.6 a | 16.0 ± 10.1 a |
Difenoconazole-TTO 40 and 80 | 25.8 ± 6.4 c | 1.6 ± 0.6 b | 1.9 ± 1.1 c | 0.02 ± 0.1 b |
Difenoconazole-TTO 80 and 160 | 5.0 ± 0.3 d | 0.1 ± 0.1 b | 1.3 ± 0.3 c | 0.02 ± 0.1 b |
Difenoconazole 37.5 | 46.7 ± 9.1 b | 2.8 ± 2.4 b | n.t | n.t. |
Tebuconazole 50 | n.t | n.t. | 22.5 ± 9.4 b | 0.3 ± 0.1 b |
Treatment and Rate (g/ha) a.i a | Anava cv. “Carignane”© | Latroon cv. “Muscat of Alexandria”© | ||
---|---|---|---|---|
Incidence (%) | Severity (%) | Incidence (%) | Severity (%) | |
Control | 89.0 ± 8.4 b | 15.0 ± 10.4 | 31.5 ± 13.6 | 3.7 ± 6.2 |
Difenoconazole-TTO 60 and 120 | 7.0 ± 1.2 | 1.5 ± 0.5 | 1.0 ± 0.2 | 0.3± 0.2 |
Commercial standard | 4.4 ± 0.6 | 1.0 ± 0.3 | 1.0 ± 0.1 | 0.5 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuveni, M.; Arroyo, C.J.; Ovadia, S. An Effective Hybrid Fungicide Containing Tea Tree Oil and Difenoconazole for Grape Powdery Mildew Management. Agriculture 2023, 13, 979. https://doi.org/10.3390/agriculture13050979
Reuveni M, Arroyo CJ, Ovadia S. An Effective Hybrid Fungicide Containing Tea Tree Oil and Difenoconazole for Grape Powdery Mildew Management. Agriculture. 2023; 13(5):979. https://doi.org/10.3390/agriculture13050979
Chicago/Turabian StyleReuveni, Moshe, Cristobal J. Arroyo, and Shmuel Ovadia. 2023. "An Effective Hybrid Fungicide Containing Tea Tree Oil and Difenoconazole for Grape Powdery Mildew Management" Agriculture 13, no. 5: 979. https://doi.org/10.3390/agriculture13050979
APA StyleReuveni, M., Arroyo, C. J., & Ovadia, S. (2023). An Effective Hybrid Fungicide Containing Tea Tree Oil and Difenoconazole for Grape Powdery Mildew Management. Agriculture, 13(5), 979. https://doi.org/10.3390/agriculture13050979