Assessing Grain Yield and Achieving Enhanced Quality in Organic Farming: Efficiency of Winter Wheat Mixtures System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Weather Conditions
2.2. Wheat Cultivars
2.3. Experimental Design and Wheat Cultivation
2.4. Plant Measurements and Quality Evaluations
2.5. Statistical Analysis
3. Results
3.1. Wheat Grain Yield and Quality Parameters
3.2. Mixolab Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gopinath, K.A.; Visha Kumari, V.; Venkatesh, G.; Jayalakshmi, M.; Prabhamani, P.S.; Ravindra Chary, G. Organic agriculture: Potentials in managing abiotic stresses in crop production. In Advances in Crop Environment Interaction; Bal, S.K., Mukherjee, J., Choudhury, B.U., Dhawan, A.K., Eds.; Springer: Singapore, 2018; pp. 229–243. ISBN 9789811318610. [Google Scholar]
- Year Book: Organic Farming in the Czech Republic; Ministry of Agriculture of the Czech Republic: Praha, Czech Republic, 2020; ISBN 978-80-7434-633-0.
- Ceseviciene, J.; Leistrumaite, A.; Paplauskienė, V. Grain yield and quality of winter wheat varieties in organic agriculture. Agron. Res. 2009, 7, 217–223. [Google Scholar]
- Konvalina, P.; Zechner, E.; Moudry, J. Breeding and Variety Testing of Bread Wheat—Triticum Aestivum L. for Organic and Low Input Farming. JU ZF: České Budějovice, Czech Republic, 2007; ISBN 978-80-7394-039-3. [Google Scholar]
- Iqbal, M.; Moakhar, N.; Strenzke, K.; Haile, T.; Pozniak, C.; Hucl, P.; Spaner, D. Genetic improvement in grain yield and other traits of wheat grown in Western Canada. Crop. Sci. 2016, 56. [Google Scholar] [CrossRef]
- Wolfe, M.S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 1985, 23, 251–273. [Google Scholar] [CrossRef]
- Faraji, J. Wheat cultivar blends: A step forward to sustainable agriculture. Afr. J. Agric. Res. 2011, 6, 6780–6789. [Google Scholar] [CrossRef]
- Vrtilek, P.; Handlirova, M.; Smutny, V. Growing winter wheat varieties and their mixtures on different sites of yields, quality, and economy. In the Proceedings of the MendelNet, Brno, Czech Republic, 9–10 November 2016. [Google Scholar]
- Borg, J.; Kiær, L.P.; Lecarpentier, C.; Goldringer, I.; Gauffreteau, A.; Saint-Jean, S.; Barot, S.; Enjalbert, J. Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 2018, 221, 298–313. [Google Scholar] [CrossRef]
- Kong, X.; Li, L.; Peng, P.; Zhang, K.; Hu, Z.; Wang, X.; Zhao, G. Wheat cultivar mixtures increase grain yield under varied climate conditions. Basic Appl. Ecol. 2023, 69, 13–25. [Google Scholar] [CrossRef]
- Fletcher, A.; Ogden, G.; Sharma, D. Mixing it up—Wheat cultivar mixtures can increase yield and buffer the risk of flowering too early or too late. Eur. J. Agron. 2019, 103, 90–97. [Google Scholar] [CrossRef]
- Casagrande, M.; David, C.; Valantin-Morison, M.; Makowski, D.; Jeuffroy, M.-H. Factors limiting the grain protein content of organic winter wheat in South-Eastern France: A mixed-model approach. Agron. Sustain. Dev. 2009, 29, 565–574. [Google Scholar] [CrossRef]
- Reiss, E.R.; Drinkwater, L.E. Cultivar Mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 2018, 28, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Li, Y.; Shi, C.; Song, D.; Wen, X.; Liao, Y.; Siddique, K.H.M. The number of cultivars in varietal winter-wheat mixtures influence aboveground biomass and grain yield in North China. Plant Soil. 2019, 439, 131–143. [Google Scholar] [CrossRef]
- Newton, A.C.; Hackett, C.A.; Swanston, J.S. Analysing the contribution of component cultivars and cultivar combinations to malting quality, yield and disease in complex mixtures. J. Sci. Food Agric. 2008, 88, 2142–2152. [Google Scholar] [CrossRef]
- Rodriguez, E.E. Effect of Cultivar Mixture on the Competitive Ability of Barley Again Weeds. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2006. [Google Scholar]
- Wuest, S.E.; Peter, R.; Niklaus, P.A. Ecological and evolutionary approaches to improving crop variety mixtures. Nat. Ecol. Evol. 2021, 5, 1068–1077. [Google Scholar] [CrossRef]
- Vidal, T.; Saint-Jean, S.; Lusley, P.; Leconte, M.; Ben Krima, S.; Boixel, A.-L.; Consortium, W.; de Vallavieille-Pope, C. Cultivar Mixture effects on disease and yield remain despite diversity in wheat height and earliness. Plant Pathol. 2020, 69, 1148–1160. [Google Scholar] [CrossRef]
- Ajans, N.D.R. Optimization of Wheat Blending. Available online: https://millermagazine.com/blog/optimization-of-wheat-blending-3111 (accessed on 19 April 2023).
- Konvalina, P.; Moudry, J., Jr.; Capouchova, I.; Moudry, J. Baking quality of winter wheat varieties in organic farming. Agron. Res. 2009, 7, 612–617. [Google Scholar]
- Kahraman, K.; Sakıyan, O.; Ozturk, S.; Koksel, H.; Sumnu, G.; Dubat, A. Utilization of Mixolab to predict the suitability of flours in terms of cake quality. Eur. Food Res. Technol. 2008, 227, 565–570. [Google Scholar] [CrossRef]
- Mixolab Application Handbook: Rheological and Enzyme Analyses; Chopin Application Laboratory, CHOPIN Technologies: Villeneuve-la-Garenne, France, 2012.
- Cox, C.M.; Garrett, K.A.; Bowden, R.L.; Fritz, A.K.; Dendy, S.P.; Heer, W.F. Cultivar mixtures for the simultaneous management of multiple diseases: Tan spot and Leaf rust of wheat. Phytopathology 2004, 94, 961–969. [Google Scholar] [CrossRef] [PubMed]
- KatalogSelgen. Product Catalogue. Available online: https://selgen.cz/wp-content/uploads/2021/11/katalogSelgen_AJ_1-44.pdf (accessed on 2 March 2023).
- Sainis, J.K.; Shouche, S.P.; Bhagwat, S.G. Image analysis of wheat grains developed in different environments and its implications for identification. J. Agric. Sci. 2006, 144, 221–227. [Google Scholar] [CrossRef]
- Harasim, E.; Wesołowski, M.; Kwiatkowski, C.; Harasim, P.; Staniak, M.; Feledyn-Szewczyk, B. The contribution of yield components in determining the productivity of winter wheat (Triticum aestivum L.). Acta Agrobot. 2016, 69, 1–10. [Google Scholar] [CrossRef]
- Khan, A.; Muhammad, A.; Asad, M.A. Correlation and path coefficient analysis for some yield components in bread wheat. Asian J. Plant Sci. 2003, 6. [Google Scholar] [CrossRef]
- Mollasadeghi, V.; Imani, A.A.; Shahryari, R.; Khayatnezhad, M. Classifying bread wheat genotypes by multivariable statistical analysis to achieve high yield under after anthesis drought. Middle East J. Sci. Res. 2011, 7, 217–220. [Google Scholar]
- Shankarrao, B.S.; Mukherjee, S.; Pal, A.K.; De, D.K. Estimation of variability for yield parameters in bread wheat (Triticum Aestivum L.) grown in Gangetic West Bengal. Electron. J. Plant Breed. 2010, 1, 764–768. [Google Scholar]
- Sugár, E.; Berzsenyi, Z.; Árendás, T.; Bónis, P. Effect of nitrogen fertilization and genotype on the yield and yield components of winter wheat. Die Bodenkult. J. Land Manag. Food Environ. 2016, 67, 25–34. [Google Scholar] [CrossRef]
- Pržulj, N.; Momčilović, V. Characterization of vegetative and grain filling periods of winter wheat by stepwise regression procedure: I. Vegetative period. Genetika 2011, 43, 349–359. [Google Scholar] [CrossRef]
- Johansson, E.; Malik, A.H.; Hussain, A.; Rasheed, F.; Newson, W.R.; Plivelic, T.; Hedenqvist, M.S.; Gällstedt, M.; Kuktaite, R. Wheat Gluten Polymer Structures: The impact of genotype, environment, and processing on their functionality in various applications. Cereal Chem. 2013, 90, 367–376. [Google Scholar] [CrossRef]
- Cowger, C.; Weisz, R. Winter wheat blends (mixtures) produce a yield advantage in North Carolina. Agron. J. 2008, 100, 169–177. [Google Scholar] [CrossRef]
- Finckh, M.R.; Gacek, E.S.; Goyeau, H.; Lannou, C.; Merz, U.; Mundt, C.C.; Munk, L.; Nadziak, J.; Newton, A.C.; de Vallavieille-Pope, C.; et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 2000, 20, 813–837. [Google Scholar] [CrossRef]
- Lazzaro, M.; Costanzo, A.; Bàrberi, P. Single vs. multiple agroecosystem services provided by common wheat cultivar mixtures: Weed suppression, grain yield and quality. Field Crops Res. 2018, 221, 277–297. [Google Scholar] [CrossRef]
- Mengistu, N.; Baenziger, P.S.; Nelson, L.A.; Eskridge, K.M.; Klein, R.N.; Baltensperger, D.D.; Elmore, R.W. Grain yield performance and stability of cultivar blends vs. component cultivars of hard winter wheat in Nebraska. Crop. Sci. 2010, 50, 617–623. [Google Scholar] [CrossRef]
- Kiær, L.P.; Skovgaard, I.M.; Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 2012, 185, 123–138. [Google Scholar] [CrossRef]
- Dai, J.; Wiersma, J.; Holen, D. Performance of hard red spring wheat cultivar mixtures. Agron. J. 2012, 104, 17–21. [Google Scholar] [CrossRef]
- Hoang, T.N.; Kopecký, M.; Konvalina, P. Winter wheat mixtures influence grain rheological and Mixolab quality. J. Appl. Life Sci. Environ. 2022, 54, 417–428. [Google Scholar] [CrossRef]
- Lacko-Bartosova, M.; Lacko-Bartošová, L.; Konvalina, P. Wheat rheological and Mixolab quality in relation to cropping systems and plant nutrition sources. Czech J. Food Sci. 2021, 39, 265–272. [Google Scholar] [CrossRef]
Cultivars | Seed Ratio | Sowing Method | Abbreviation | |
---|---|---|---|---|
1 | Butterfly | Single | Control | Bu |
2 | Illusion | Single | Control | Illu |
3 | Lorien | Single | Control | Lo |
4 | Vanessa | Single | Control | Va |
5 | Butterfly+Lorien | 1:1 | Mixed | Bu+Lo-Mi |
6 | Butterfly+Vanessa | 1:1 | Mixed | Bu+Va-Mi |
7 | Illusion+Lorien | 1:1 | Mixed | Illu+Lo-Mi |
8 | Illusion+Vanessa | 1:1 | Mixed | Illu+Va-Mi |
9 | Butterfly+Lorien | 1:1 | Row-Row | Bu+Lo-Ro |
10 | Butterfly+Vanessa | 1:1 | Row-Row | Bu+Va-Ro |
11 | Illusion+Lorien | 1:1 | Row-Row | Illu+Lo-Ro |
12 | Illusion+Vanessa | 1:1 | Row-Row | Illu+Va-Ro |
Variable | Plant Height (cm) | Spike Number (No. m–2) | TKW (g) | Yield (t ha–1) | HW (kg hL–1) | Protein Content (%) | Wet Gluten (%) | Gluten Index (%) | Falling Number (s) |
---|---|---|---|---|---|---|---|---|---|
Growing season | |||||||||
2019/20 | 92.06 a | 414.11 a | 50.38 a | 5.75 a | 72.26 a | 9.22 ab | 15.93 | 70.30 b | 247.92 a |
2020/21 | 67.57 c | 290.28 c | 41.34 c | 2.52 b | 67.90 b | 9.49 a | 15.89 | 88.73 a | 240.31 ab |
2021/22 | 84.72 b | 354.27 b | 43.30 b | 5.69 a | 72.95 a | 9.03 b | 17.15 | 74.05 b | 227.53 b |
p-Value | *** | *** | *** | *** | *** | ** | ns | *** | ** |
Sowing method | |||||||||
Control | 80.84 | 330.83 b | 45.62 | 4.84 | 71.30 | 9.15 | 16.22 | 79.77 a | 242.14 |
Mixed | 82.15 | 344.14 b | 45.10 | 4.70 | 70.97 | 9.28 | 16.47 | 73.11 b | 231.67 |
Row-Row | 81.35 | 383.69 a | 44.30 | 4.43 | 70.85 | 9.30 | 16.27 | 80.20 a | 241.94 |
p-Value | ns | ** | ns | ns | ns | ns | ns | ** | ns |
Combination | |||||||||
Butterfly | 82.54 | 304.47 | 45.89 | 4.37 | 71.79 | 9.60 a | 18.12 a | 81.15 ab | 258.33 a |
Illusion | 79.87 | 320.63 | 45.97 | 4.94 | 73.92 | 9.47 a | 17.86 a | 72.27 ab | 215.44 c |
Lorien | 86.57 | 311.84 | 48.61 | 4.78 | 69.99 | 9.22 a | 16.65 ab | 75.70 ab | 239.67 abc |
Vanessa | 74.39 | 386.38 | 41.99 | 5.26 | 69.49 | 8.31 b | 12.26 b | 89.94 a | 255.11 ab |
Bu+Lo-Mi | 86.00 | 282.02 | 47.12 | 4.45 | 71.29 | 9.48 a | 18.03 a | 68.02 ab | 239.44 abc |
Bu+Va-Mi | 80.91 | 387.29 | 43.60 | 4.96 | 70.57 | 9.24 a | 14.97 ab | 75.88 ab | 254.89 ab |
Bu+Lo-Ro | 85.78 | 345.82 | 46.03 | 3.85 | 70.73 | 9.52 a | 15.93 ab | 82.27 b | 245.78 abc |
Bu+Va-Ro | 79.01 | 414.38 | 43.16 | 4.68 | 70.23 | 9.28 a | 15.06 ab | 85.09 ab | 267.67 a |
Illu+Lo-Mi | 85.12 | 336.41 | 46.15 | 4.44 | 71.17 | 9.40 a | 16.43 ab | 75.16 ab | 220.89 bc |
Illu+Va-Mi | 76.58 | 370.84 | 43.52 | 4.94 | 70.84 | 9.00 ab | 16.46 ab | 73.37 ab | 211.44 c |
Illu+Lo-Ro | 84.59 | 356.77 | 45.08 | 4.30 | 71.06 | 9.22 a | 17.57 a | 75.47 ab | 219.22 c |
Illu+Va-Ro | 76.01 | 417.77 | 42.94 | 4.88 | 71.38 | 9.18 a | 16.51 a | 77.97 ab | 235.11 abc |
p-Value | ns | ns | ns | ns | ns | *** | ** | * | *** |
Variable | Plant Height (cm) | Spike Number (No. m–2) | Thousand Kernel Weight (g) | Hectoliter Weight (kg hL–1) | Yield (t ha–1) |
---|---|---|---|---|---|
Plant height | 1 | 0.517 | 0.740 | 0.604 | 0.736 |
Number of spikes | 1 | 0.337 | 0.304 | 0.676 | |
Thousand kernel weight | 1 | 0.362 | 0.526 | ||
Hectoliter weight | 1 | 0.616 |
Variable | WA (%) | TimeC1 (min) | TC2 (Nm) | TC3 (Nm) | TC4 (Nm) | TC5 (Nm) | α | β | γ | Amp. | Stability (min) |
---|---|---|---|---|---|---|---|---|---|---|---|
Growing season | |||||||||||
2019/20 | 61.42 | 2.22 | 0.37 ab | 1.67 a | 0.91 a | 1.57 ab | −0.081 b | 0.513 a | −0.106 b | 0.076 | 5.38 b |
2020/21 | 61.36 | 2.25 | 0.38 a | 1.63 a | 0.94 a | 1.72 a | −0.084 b | 0.535 a | −0.091 a | 0.074 | 6.64 a |
2021/22 | 61.40 | 2.42 | 0.36 b | 1.48 b | 0.81 b | 1.45 b | −0.075 a | 0.429 b | −0.080 a | 0.073 | 4.96 b |
p-Value | ns | ns | ** | *** | ** | ** | *** | *** | *** | ns | *** |
Sowing method | |||||||||||
Control | 61.55 | 2.158 | 0.371 | 1.594 | 0.916 | 1.590 | −0.080 | 0.492 | −0.091 | 0.079 | 5.19 b |
Mixed | 61.25 | 2.305 | 0.363 | 1.584 | 0.850 | 1.525 | −0.080 | 0.497 | −0.095 | 0.071 | 5.74 ab |
Row-Row | 61.38 | 2.434 | 0.379 | 1.597 | 0.890 | 1.622 | −0.080 | 0.487 | −0.092 | 0.072 | 6.06 a |
p-Value | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ** |
Combination | |||||||||||
Butterfly | 66.49 a | 2.15 bcd | 0.38 | 1.38 d | 0.70 c | 1.13 d | −0.077 ab | 0.405 c | −0.099 | 0.066 cde | 5.77 ab |
Illusion | 60.61 c | 1.62 d | 0.38 | 1.57 bc | 0.81 ab | 1.45 bcd | −0.091 c | 0.438 bc | −0.106 | 0.097 a | 5.23 b |
Lorien | 59.81 c | 1.92 cd | 0.35 | 1.63 abc | 0.96 b | 1.70 abc | −0.081 abc | 0.530 abc | −0.091 | 0.090 ab | 4.66 b |
Vanessa | 59.29 c | 2.95 abc | 0.38 | 1.80 a | 1.20 a | 2.08 a | −0.070 a | 0.595 a | −0.069 | 0.066 cde | 5.09 b |
Bu+Lo-Mi | 62.64 b | 2.14 bcd | 0.36 | 1.50 cd | 0.77 ab | 1.35 cd | −0.080 abc | 0.436 bc | −0.094 | 0.071 bcde | 6.06 ab |
Bu+Va-Mi | 62.52 b | 3.05 ab | 0.37 | 1.63 abc | 0.92 b | 1.59 bc | −0.072 a | 0.547 ab | −0.085 | 0.054 e | 5.20 b |
Bu+Lo-Ro | 62.58 b | 2.26 bcd | 0.36 | 1.50 cd | 0.81 ab | 1.47 bcd | −0.075 ab | 0.451 bc | −0.088 | 0.069 cde | 5.74 ab |
Bu+Va-Ro | 62.67 b | 3.51 a | 0.40 | 1.61 bc | 0.94 b | 1.67 bc | −0.070 a | 0.480 abc | −0.085 | 0.060 de | 6.27 ab |
Illu+Lo-Mi | 59.91 c | 1.93 cd | 0.35 | 1.57 bc | 0.85 ab | 1.59 bc | −0.087 bc | 0.471 abc | −0.094 | 0.083 abc | 5.33 b |
Illu+Va-Mi | 59.93 c | 2.10 bcd | 0.36 | 1.64 abc | 0.86 ab | 1.57 bc | −0.079 abc | 0.535 abc | −0.106 | 0.073 bcde | 6.37 ab |
Illu+Lo-Ro | 60.04 c | 1.88 cd | 0.37 | 1.59 bc | 0.86 ab | 1.59 bc | −0.090 c | 0.460 bc | −0.095 | 0.081 abc | 5.04 b |
Illu+Va-Ro | 60.22 c | 2.09 bcd | 0.39 | 1.69 ab | 0.95 b | 1.76 ab | −0.082 abc | 0.556 ab | −0.098 | 0.077 bcd | 7.19 a |
p-Value | *** | *** | ns | *** | *** | *** | *** | *** | ns | *** | *** |
Variable | Yield (t ha–1) | Protein Content (%) | Wet Gluten (%) | Gluten Index (%) | Falling Number (s) |
---|---|---|---|---|---|
Yield | 1.00 | −0.35 *** | 0.02 ns | −0.47 *** | −0.12 ns |
Water absorption | −0.07 ns | 0.35 *** | 0.23 * | −0.02 ns | 0.28 ** |
Time of C1 | 0.02 ns | 0.04 ns | −0.14 ns | 0.10 ns | 0.35 *** |
Torque C2 | −0.27 ** | 0.14 ns | 0.01 ns | 0.34 *** | 0.52 *** |
Torque C3 | −0.08 ns | −0.20 * | −0.40 *** | 0.21 ns | 0.35 *** |
Torque C4 | −0.13 ns | −0.26 ** | −0.45 *** | 0.36 *** | 0.57 *** |
Torque C5 | −0.19 * | −0.23 ns | −0.43 *** | 0.39 *** | 0.43 *** |
A | 0.26 ** | −0.28 ** | −0.21 * | 0.09 ns | 0.36 *** |
Β | −0.24 * | 0.02 ns | −0.32 *** | 0.26 ** | 0.34 *** |
Γ | −0.05 ns | −0.17 ns | −0.19 ns | 0.20 * | 0.01 ns |
Amplitude | −0.01 ns | −0.01 ns | 0.15 ns | −0.16 ns | −0.35 *** |
Stability (min) | −0.49 *** | 0.32 *** | −0.04 ns | 0.43 *** | 0.25 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, T.N.; Konvalina, P.; Kopecký, M.; Ghorbani, M.; Amirahmadi, E.; Bernas, J.; Ali, S.; Nguyen, T.G.; Murindangabo, Y.T.; Tran, D.K.; et al. Assessing Grain Yield and Achieving Enhanced Quality in Organic Farming: Efficiency of Winter Wheat Mixtures System. Agriculture 2023, 13, 937. https://doi.org/10.3390/agriculture13050937
Hoang TN, Konvalina P, Kopecký M, Ghorbani M, Amirahmadi E, Bernas J, Ali S, Nguyen TG, Murindangabo YT, Tran DK, et al. Assessing Grain Yield and Achieving Enhanced Quality in Organic Farming: Efficiency of Winter Wheat Mixtures System. Agriculture. 2023; 13(5):937. https://doi.org/10.3390/agriculture13050937
Chicago/Turabian StyleHoang, Trong Nghia, Petr Konvalina, Marek Kopecký, Mohammad Ghorbani, Elnaz Amirahmadi, Jaroslav Bernas, Shahzaib Ali, Thi Giang Nguyen, Yves Theoneste Murindangabo, Dang Khoa Tran, and et al. 2023. "Assessing Grain Yield and Achieving Enhanced Quality in Organic Farming: Efficiency of Winter Wheat Mixtures System" Agriculture 13, no. 5: 937. https://doi.org/10.3390/agriculture13050937
APA StyleHoang, T. N., Konvalina, P., Kopecký, M., Ghorbani, M., Amirahmadi, E., Bernas, J., Ali, S., Nguyen, T. G., Murindangabo, Y. T., Tran, D. K., & Shim, S. (2023). Assessing Grain Yield and Achieving Enhanced Quality in Organic Farming: Efficiency of Winter Wheat Mixtures System. Agriculture, 13(5), 937. https://doi.org/10.3390/agriculture13050937