Effects of Peroral Microbiota Transplantation on the Establishment of Intestinal Microorganisms in a Newly-Hatched Chick Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Experimental Design and Sample Collection
2.3. DNA Extraction and 16S rRNA Amplicon Sequencing
2.4. 16S rRNA Amplicon Pyro-Sequencing
2.5. Sequence Analysis
2.6. Bioinformatics and Statistical Analysis
3. Results
3.1. Numbers of Total Bacteria, Lactobacillus and Escherichia coli
3.2. Taxonomic Information of Inoculant
3.3. OTU Partition and Classification
3.4. Composition of Microbiota at Phylum, Class, Order, Family and Genus
3.5. Diversity Analysis of Microbiota
3.6. Taxonomic Composition and Key Metabolic Pathways Comparison of Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, S.; Nag, S.; Saini, A.; Choudhury, L. Association of human gut microbiota with rare diseases: A close peep through. Intractable Rare Dis. Res. 2022, 11, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Ianiro, G.; Bibbò, S.; Gasbarrini, A. Gut microbiota modulation: Probiotics, antibiotics or fecal microbiota transplantation? Intern. Emerg. Med. 2014, 9, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Clavijo, V.; Flórez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Psoult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta 2020, 503, 90–98. [Google Scholar] [CrossRef]
- Smits, L.P.; Bouter, K.E.; de Vos, W.M.; Borody, T.J.; Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013, 145, 946–953. [Google Scholar] [CrossRef]
- Patel, K.; Patel, A.; Hawes, D.; Shah, J.; Shah, K. Faecal microbiota transplantation: Looking beyond clostridium difficile infection at inflammatory bowel disease. Gastroenterol. Hepatol. Bed Bench 2018, 11, 1–8. [Google Scholar]
- Wang, J.; Xiao, Y.; Lin, K.; Song, F.; Ge, T.; Zhang, T. Pediatric severe pseudomembranous enteritis treated with fecal microbiota transplantation in a 13-month-old infant. Biomed. Rep. 2015, 3, 173–175. [Google Scholar] [CrossRef]
- Oh, S.; Yap, G.C.; Hong, P.Y.; Huang, C.H.; Aw, M.M.; Shek, L.P.; Liu, W.T.; Lee, B.W. Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema. PLoS ONE 2017, 12, e0184955. [Google Scholar] [CrossRef]
- Wang, J.W.; Kuo, C.H.; Kuo, F.C.; Wang, Y.K.; Hsu, W.H.; Yu, F.J.; Hu, H.M.; Hsu, P.I.; Wang, J.Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019, 118 (Suppl. 1), S23–S31. [Google Scholar] [CrossRef]
- Siegerstetter, S.C.; Petri, R.M.; Magowan, E.; Lawlor, P.G.; Zebeli, Q.; O’Connell, N.E.; Metzler-Zebeli, B.U. Fecal Microbiota Transplant from Highly Feed-Efficient Donors Shows Little Effect on Age-Related Changes in Feed-Efficiency-Associated Fecal Microbiota from Chickens. Appl. Environ. Microbiol. 2018, 84, e02330-17. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Siegerstetter, S.C.; Magowan, E.; Lawlor, P.G.; NE, O.C.; Zebeli, Q. Fecal Microbiota Transplant From Highly Feed Efficient Donors Affects Cecal Physiology and Microbiota in Low- and High-Feed Efficient Chickens. Front. Microbiol. 2019, 10, 1576. [Google Scholar] [CrossRef]
- Diao, H.; Xiao, Y.; Yan, H.L.; Yu, B.; He, J.; Zheng, P.; Yu, J.; Mao, X.B.; Chen, D.W. Effects of Early Transplantation of the Faecal Microbiota from Tibetan Pigs on the Gut Development of DSS-Challenged Piglets. Biomed Res. Int. 2021, 2021, 9823969. [Google Scholar] [CrossRef]
- Lei, J.; Dong, Y.; Hou, Q.; He, Y.; Lai, Y.; Liao, C.; Kawamura, Y.; Li, J.; Zhang, B. Intestinal Microbiota Regulate Certain Meat Quality Parameters in Chicken. Front. Nutr. 2022, 9, 747705. [Google Scholar] [CrossRef]
- Ramírez, G.A.; Richardson, E.; Clark, J.; Keshri, J.; Drechsler, Y.; Berrang, M.E.; Meinersmann, R.J.; Cox, N.A.; Oakley, B.B. Broiler chickens and early life programming: Microbiome transplant-induced cecal community dynamics and phenotypic effects. PLoS ONE 2020, 15, e0242108. [Google Scholar] [CrossRef]
- Yan, C.; Xiao, J.; Li, Z.; Liu, H.; Zhao, X.; Liu, J.; Chen, S.; Zhao, X. Exogenous Fecal Microbial Transplantation Alters Fearfulness, Intestinal Morphology, and Gut Microbiota in Broilers. Front. Vet. Sci. 2021, 8, 706987. [Google Scholar] [CrossRef]
- Nothaft, H.; Perez-Muñoz, M.E.; Yang, T.; Murugan, A.V.M.; Miller, M.; Kolarich, D.; Plastow, G.S.; Walter, J.; Szymanski, C.M. Improving Chicken Responses to Glycoconjugate Vaccination Against Campylobacter jejuni. Front. Microbiol. 2021, 12, 734526. [Google Scholar] [CrossRef]
- Borges, C.A.; Tarlton, N.J.; Riley, L.W. Escherichia coli from Commercial Broiler and Backyard Chickens Share Sequence Types, Antimicrobial Resistance Profiles, and Resistance Genes with Human Extraintestinal Pathogenic Escherichia coli. Foodborne Pathog. Dis. 2019, 16, 813–822. [Google Scholar] [CrossRef]
- Tedersoo, T.; Roasto, M.; Mäesaar, M.; Häkkinen, L.; Kisand, V.; Ivanova, M.; Valli, M.H.; Meremäe, K. Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia. Microorganisms 2022, 10, 1067. [Google Scholar] [CrossRef]
- Jurinović, L.; Duvnjak, S.; Kompes, G.; Šoprek, S.; Šimpraga, B.; Krstulović, F.; Mikulić, M.; Humski, A. Occurrence of Campylobacter jejuni in Gulls Feeding on Zagreb Rubbish Tip, Croatia; Their Diversity and Antimicrobial Susceptibility in Perspective with Human and Broiler Isolates. Pathogens 2020, 9, 695. [Google Scholar] [CrossRef]
- Qiu, K.; Wang, X.; Zhang, H.; Wang, J.; Qi, G.; Wu, S. Dietary Supplementation of a New Probiotic Compound Improves the Growth Performance and Health of Broilers by Altering the Composition of Cecal Microflora. Biology 2022, 11, 633. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, S.T.; Yi, W. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Austral. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Asnicar, F.; Weingart, G.; Tickle, T.L.; Huttenhower, C.; Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015, 3, e1029. [Google Scholar] [CrossRef]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef]
- White, J.R.; Nagarajan, N.; Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009, 5, e1000352. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- McKenna, P.; Hoffmann, C.; Minkah, N.; Aye, P.P.; Lackner, A.; Liu, Z.; Lozupone, C.A.; Hamady, M.; Knight, R.; Bushman, F.D. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog. 2008, 4, e20. [Google Scholar] [CrossRef]
- Bowman, K.A.; Broussard, E.K.; Surawicz, C.M. Fecal microbiota transplantation: Current clinical efficacy and future prospects. Clin. Exp. Gastroenterol. 2015, 8, 285–291. [Google Scholar] [CrossRef]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef]
- Li, P.; Niu, Q.; Wei, Q.; Zhang, Y.; Ma, X.; Kim, S.W.; Lin, M.; Huang, R. Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus Faecalis as alternatives to antibiotics. Sci. Rep. 2017, 7, 41395. [Google Scholar] [CrossRef]
- Hu, L.; Geng, S.; Li, Y.; Cheng, S.; Fu, X.; Yue, X.; Han, X. Exogenous Fecal Microbiota Transplantation from Local Adult Pigs to Crossbred Newborn Piglets. Front. Microbiol. 2017, 8, 2663. [Google Scholar] [CrossRef]
- Crist, T.O.; Veech, J.A.; Gering, J.C.; Summerville, K.S. Partitioning species diversity across landscapes and regions: A hierarchical analysis of alpha, beta, and gamma diversity. Am. Nat. 2003, 162, 734–743. [Google Scholar] [CrossRef]
- Guo, X.; Xia, X.; Tang, R.; Zhou, J.; Zhao, H.; Wang, K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 2008, 47, 367–373. [Google Scholar] [CrossRef]
- Weingarden, A.R.; Chen, C.; Bobr, A.; Yao, D.; Lu, Y.; Nelson, V.M.; Sadowsky, M.J.; Khoruts, A. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G310–G319. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- He, Y.; Zhou, B.J.; Deng, G.H.; Jiang, X.T.; Zhang, H.; Zhou, H.W. Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons. BMC Microbiol. 2013, 13, 208. [Google Scholar] [CrossRef]
- Pérez-Enciso, M.; Tenenhaus, M. Prediction of clinical outcome with microarray data: A partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 2003, 112, 581–592. [Google Scholar] [CrossRef]
- Klukas, C.; Schreiber, F. Dynamic exploration and editing of KEGG pathway diagrams. Bioinformatics 2007, 23, 344–350. [Google Scholar] [CrossRef]
- Choi, K.Y.; Lee, T.K.; Sul, W.J. Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens—A Review. Asian-Australas. J. Anim. Sci. 2015, 28, 1217–1225. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Zhang, Q.; Luo, Y.; Li, L.; Hu, M.; Song, X.; Dai, M.; Qi, J.; Liu, Y. Effect of Fecal Microbiota Transplantation from SPF Chickens on Intestinal Flora and E. coli Resistance to Antibiotics in Chicks. Shandong Agric. Sci. 2018, 7, 6–12. [Google Scholar] [CrossRef]
- Pan, T.; Zheng, S.; Zheng, W.; Shi, C.; Ning, K.; Zhang, Q.; Xie, Y.; Xiang, H.; Xie, Q. Christensenella regulated by Huang-Qi-Ling-Hua-San is a key factor by which to improve type 2 diabetes. Front. Microbiol. 2022, 13, 1022403. [Google Scholar] [CrossRef]
- Jang, J.H.; Yeom, M.J.; Ahn, S.; Oh, J.Y.; Ji, S.; Kim, T.H.; Park, H.J. Acupuncture inhibits neuroinflammation and gut microbial dysbiosis in a mouse model of Parkinson’s disease. Brain Behav. Immun. 2020, 89, 641–655. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Chen, J.; Xu, W.; Li, H.; Chen, J. Investigation of the effects of cup plant (Silphium perfoliatum L.) on the growth, immunity, gut microbiota and disease resistance of Penaeus vannamei. Fish Shellfish Immunol. 2023, 135, 108631. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Carrascal, O.M.; Choi, R.; Massot, M.; Pees, B.; Narayan, V.; Shapira, M. Host Preference of Beneficial Commensals in a Microbially-Diverse Environment. Front. Cell Infect. Microbiol. 2022, 12, 795343. [Google Scholar] [CrossRef] [PubMed]
Item | Day 1~21 | Day 22~42 |
---|---|---|
Ingredients (%) | ||
Corn | 58.64 | 61.62 |
Soybean meal | 30.93 | 23.76 |
Cottonseed meal | 3.00 | 5.00 |
Soybean oil | 2.55 | 5.25 |
Dicalcium phosphate | 1.80 | 1.40 |
Limestone | 1.40 | 1.41 |
Salt | 0.40 | 0.40 |
L-Lysine | 0.38 | 0.33 |
L-Methionine | 0.20 | 0.16 |
L-Threonine | - | 0.03 |
Choline | 0.20 | 0.13 |
Premix a | 0.50 | 0.50 |
Total | 100.00 | 100.00 |
Nutrient levels (%, unless otherwise indicated) | ||
Metabolism energy (kcal/kg) b | 2950 | 3150 |
Crude protein | 20.00 | 18.00 |
Crude fiber | 1.93 | 1.87 |
Calcium | 1.00 | 0.90 |
Total phosphorus | 0.65 | 0.55 |
Available phosphorus | 0.45 | 0.40 |
Lysine | 1.25 | 1.08 |
Methionine | 0.52 | 0.45 |
Methionine + Cysteine | 0.89 | 0.89 |
Tryptophan | 0.27 | 0.23 |
Control | Microbiota Transplantation | SEM | p-Value | |
---|---|---|---|---|
Total bacteria (lg/g) | ||||
Day 4 | 9.6 | 9.3 | 0.33 | 0.149 |
Day 6 | 8.1 | 8.0 | 0.29 | 0.648 |
Day 12 | 8.3 | 8.2 | 0.27 | 0.723 |
Lactobacillus (lg/g) | ||||
Day 4 | 7.3 | 7.6 | 0.28 | 0.048 |
Day 6 | 6.3 | 7.4 | 0.36 | 0.025 |
Day 12 | 6.7 | 7.6 | 0.42 | 0.031 |
Escherichia coli (lg/g) | ||||
Day 4 | 8.9 | 7.8 | 0.43 | 0.042 |
Day 6 | 7.8 | 6.6 | 0.32 | 0.023 |
Day 12 | 7.5 | 6.4 | 0.35 | 0.037 |
Control | Microbiota Transplantation | SEM | p-Value | |
---|---|---|---|---|
Cecum | ||||
Chao1 | 295.64 | 274.36 | 64.72 | 0.642 |
ACE | 324.01 | 288.80 | 70.15 | 0.487 |
Simpson | 0.95 | 0.92 | 0.03 | 0.048 |
Shannon | 5.70 | 5.42 | 0.60 | 0.249 |
Ileum | ||||
Chao1 | 83.56 | 79.45 | 31.77 | 0.816 |
ACE | 93.09 | 84.54 | 37.81 | 0.753 |
Simpson | 0.89 | 0.77 | 0.04 | 0.015 |
Shannon | 3.85 | 3.02 | 0.46 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, K.; Cai, H.; Wang, X.; Liu, G. Effects of Peroral Microbiota Transplantation on the Establishment of Intestinal Microorganisms in a Newly-Hatched Chick Model. Agriculture 2023, 13, 1001. https://doi.org/10.3390/agriculture13051001
Qiu K, Cai H, Wang X, Liu G. Effects of Peroral Microbiota Transplantation on the Establishment of Intestinal Microorganisms in a Newly-Hatched Chick Model. Agriculture. 2023; 13(5):1001. https://doi.org/10.3390/agriculture13051001
Chicago/Turabian StyleQiu, Kai, Huiyi Cai, Xin Wang, and Guohua Liu. 2023. "Effects of Peroral Microbiota Transplantation on the Establishment of Intestinal Microorganisms in a Newly-Hatched Chick Model" Agriculture 13, no. 5: 1001. https://doi.org/10.3390/agriculture13051001
APA StyleQiu, K., Cai, H., Wang, X., & Liu, G. (2023). Effects of Peroral Microbiota Transplantation on the Establishment of Intestinal Microorganisms in a Newly-Hatched Chick Model. Agriculture, 13(5), 1001. https://doi.org/10.3390/agriculture13051001