YOLOv5s-T: A Lightweight Small Object Detection Method for Wheat Spikelet Counting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Construction
2.2. YOLOv5s-T Network Structure
2.3. YOLOv5s-T Loss Function
2.4. Measure Metrics
3. Results
3.1. Experimental Environment and Parameter Configuration
3.2. Model Training and Performance Analysis
3.3. Comparison of Spikelet Count Results on the Test Set
3.4. Results of Spikelet Counts on Different Fertility Stages
4. Discussion
4.1. Deep Learning for Wheat Spikelet Counting
4.2. The Influence Factors and the Future
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electr. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sens. Environ. 2014, 147, 219–231. [Google Scholar] [CrossRef]
- Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; de Wit, A. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 228–239. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar] [CrossRef]
- Palazzini, J.; Fumero, V.; Yerkovich, N.; Barros, G.; Cuniberti, M.; Chulze, S. Correlation between Fusarium graminearum and Deoxynivalenol during the 2012/13 Wheat Fusarium Head Blight Outbreak in Argentina. Cereal Res. Commun. 2015, 43, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Vahamidis, P.; Karamanos, A.J.; Economou, G. Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level. Ann. Appl. Biol. 2019, 174, 190–208. [Google Scholar] [CrossRef]
- Matsuyama, H.; Ookawa, T. The effects of seeding rate on yield, lodging resistance and culm strength in wheat. Plant Prod. Sci. 2020, 23, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Zhao, S.; Gu, J.; Zhao, Y.; Hassan, M.; Li, Y.; Ding, W. A method for estimating spikelet number per panicle: Integrating image analysis and a 5-point calibration model. Sci. Rep. 2015, 5, 16241. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.L.; Chang, H.Y.; Chen, K.H. The Pest and Disease Identification in the Growth of Sweet Peppers Using Faster R-CNN and Mask R-CNN. J. Internet Technol. 2020, 21, 605–614. [Google Scholar] [CrossRef]
- Ahmad Loti, N.N.; Mohd Noor, M.R.; Chang, S.W. Integrated analysis of machine learning and deep learning in chili pest and disease identification. J. Sci. Food Agric. 2021, 101, 3582–3594. [Google Scholar] [CrossRef]
- Manavalan, R. Automatic identification of diseases in grains crops through computational approaches: A review. Comput. Electr. Agric. 2020, 178, 105802. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Lootens, P.; Borra-Serrano, I.; Derycke, V.; Haesaert, G.; Roldan-Ruiz, I.; Araus, J.L.; Kefauver, S.C. Automatic wheat ear counting using machine learning based on RGB UAV imagery. Plant J. 2020, 103, 1603–1613. [Google Scholar] [CrossRef]
- Hassan, S.I.; Alam, M.M.; Zia, M.Y.I.; Rashid, M.; Illahi, U.; Su’ud, M.M. Rice Crop Counting Using Aerial Imagery and GIS for the Assessment of Soil Health to Increase Crop Yield. Sensors 2022, 22, 8567. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Hu, J.; Shi, X.; Hua, S.; Yue, J.; Xu, Z.; Yang, G. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform. Sensors 2019, 19, 3106. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Che, J.; Chen, Y. Weed Identification Using Deep Learning and Image Processing in Vegetable Plantation. IEEE Access 2021, 9, 10940–10950. [Google Scholar] [CrossRef]
- Tang, J.; Wang, D.; Zhang, Z.; He, L.; Xin, J.; Xu, Y. Weed identification based on K-means feature learning combined with convolutional neural network. Comput. Electr. Agric. 2017, 135, 63–70. [Google Scholar] [CrossRef]
- Wang, H.; Cimen, E.; Singh, N.; Buckler, E. Deep learning for plant genomics and crop improvement. Curr. Opinion Plant Biol. 2020, 54, 34–41. [Google Scholar] [CrossRef]
- Kolhar, S.; Jagtap, J. Phenomics for Komatsuna plant growth tracking using deep learning approach. Exp. Syst. Appl. 2023, 215, 119368. [Google Scholar] [CrossRef]
- Qiu, R.; Wei, S.; Zhang, M.; Li, H.; Sun, H.; Liu, G.; Li, M. Sensors for measuring plant phenotyping: A review. Int. J. Agric. Biol. Eng. 2018, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Riche, A.B.; Hawkesford, M.J.; Whalley, W.R.; Atkinson, B.S.; Sturrock, C.J.; Mooney, S.J. Determination of wheat spike and spikelet architecture and grain traits using X-ray Computed Tomography imaging. Plant Methods 2021, 17, 26. [Google Scholar] [CrossRef]
- Yang, W.; Nigon, T.; Hao, Z.; Paiao, G.D.; Fernandez, F.G.; Mulla, D.; Yang, C. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electr. Agric. 2021, 184, 106092. [Google Scholar] [CrossRef]
- Pound, M.P.; Atkinson, J.A.; Wells, D.M.; Pridmore, T.P.; French, A.P. Deep Learning for Multi-task Plant Phenotyping. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2055–2063. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gallego, J.A.; Luisa Buchaillot, M.; Aparicio Gutierrez, N.; Teresa Nieto-Taladriz, M.; Luis Araus, J.; Kefauver, S.C. Automatic Wheat Ear Counting Using Thermal Imagery. Remote Sens. 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Baret, F.; Andrieu, B.; Burger, P.; Hemmerle, M. Estimation of Wheat Plant Density at Early Stages Using High Resolution Imagery. Front. Plant Sci. 2017, 8, 739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoroshevsky, F.; Khoroshevsky, S.; Bar-Hillel, A. Parts-per-Object Count in Agricultural Images: Solving Phenotyping Problems via a Single Deep Neural Network. Remote Sens. 2021, 13, 2496. [Google Scholar] [CrossRef]
- Qiu, R.; He, Y.; Zhang, M. Automatic Detection and Counting of Wheat Spikelet Using Semi-Automatic Labeling and Deep Learning. Front. Plant Sci. 2022, 13, 872555. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; Ganeshkumar, P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustain. Comput. -Inform. Syst. 2020, 28, 100300. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, X.; Zhang, X.; Zhang, P.; Hou, Y.T. Cooperative Task Offloading in Three-Tier Mobile Computing Networks: An ADMM Framework. IEEE Trans. Veh. Technol. 2019, 68, 2763–2776. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Feng, G.; Lv, H.; Liu, J.; Gao, Z. TOS-LRPLM: A task value-aware offloading scheme in IoT edge computing system. Cluster Comput. 2023, 26, 319–335. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Liu, X.; Liu, K.; Xu, F.; Guo, H.; Tian, X.; Li, M.; Bao, Z.; Li, Y. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Comput. Electr. Agric. 2022, 194, 106780. [Google Scholar] [CrossRef]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Comput. Electr. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Wang, C.; Liao, H.M.; Wu, Y.; Chen, P.; Hsieh, J.; Yeh, I. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020; Computer Vision Foundation/IEEE: New York, NY, USA, 2020; pp. 1571–1580. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Wang, X.; Song, J. ICIoU: Improved Loss Based on Complete Intersection Over Union for Bounding Box Regression. IEEE Access 2021, 9, 105686–105695. [Google Scholar] [CrossRef]
- Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid Detection and Counting of Wheat Ears in the Field Using YOLOv4 with Attention Module. Agronomy 2021, 11, 1202. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using Convolutional Neural Networks. Plant Methods 2018, 14, 100. [Google Scholar] [CrossRef] [Green Version]
- Misra, T.; Arora, A.; Marwaha, S.; Jha, R.R.; Ray, M.; Jain, R.; Rao, A.R.; Varghese, E.; Kumar, S.; Kumar, S.; et al. Web-SpikeSegNet: Deep Learning Framework for Recognition and Counting of Spikes From Visual Images of Wheat Plants. IEEE Aaccess 2021, 9, 76235–76247. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, W.Y.; Yang, J.C. Physiological mechanism underlying spikelet degeneration in rice. J. Integr. Agric. 2018, 17, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
Model | Precision (%) | Recall (%) | mAP (0.5) (%) | F1 (%) | Processing Time (ms) |
---|---|---|---|---|---|
YOLOv5s | 99.21 | 97.22 | 98.52 | 98.20 | 40 |
YOLOv5s-T(CIoU) | 98.06 | 95.76 | 97.70 | 96.90 | 30 |
YOLOv5s-T(EIoU) | 98.89 | 94.92 | 97.43 | 96.87 | 31 |
Model | Input Size | Parameter | Inference Time (ms) | Model Size (M) | GPU Video Memory Usage (G) | FLOPs (G) |
---|---|---|---|---|---|---|
YOLOv5s | 640 × 640 | 7.06 × 10 | 7.8 | 14.4 | 4.14 | 16.3 |
YOLOv5s-T(CIoU) | 640 × 640 | 4.48 × 10 | 5.6 | 9.1 | 3.32 | 10.2 |
YOLOv5s-T(EIoU) | 640 × 640 | 4.48 × 10 | 5.5 | 9.1 | 3.32 | 10.2 |
Model | MAE | RMSE | |
---|---|---|---|
YOLOv5s | 0.89 | 0.23 | 0.58 |
YOLOv5s-T(CIoU) | 0.84 | 0.35 | 0.74 |
YOLOv5s-T(EIoU) | 0.87 | 0.34 | 0.70 |
Growth Stage | YOLOv5s-T(CIoU) | YOLOv5s-T(EIoU) | ||||
---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |||
Flowering stage | 0.96 | 0.17 | 0.41 | 0.97 | 0.11 | 0.33 |
Grain filling stage | 0.84 | 0.33 | 0.70 | 0.85 | 0.37 | 0.73 |
Mature stage | 0.70 | 0.48 | 0.90 | 0.78 | 0.43 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Sun, J.; Dang, Y.; Zhang, S.; Sun, X.; Xi, L.; Wang, J. YOLOv5s-T: A Lightweight Small Object Detection Method for Wheat Spikelet Counting. Agriculture 2023, 13, 872. https://doi.org/10.3390/agriculture13040872
Shi L, Sun J, Dang Y, Zhang S, Sun X, Xi L, Wang J. YOLOv5s-T: A Lightweight Small Object Detection Method for Wheat Spikelet Counting. Agriculture. 2023; 13(4):872. https://doi.org/10.3390/agriculture13040872
Chicago/Turabian StyleShi, Lei, Jiayue Sun, Yuanbo Dang, Shaoqi Zhang, Xiaoyun Sun, Lei Xi, and Jian Wang. 2023. "YOLOv5s-T: A Lightweight Small Object Detection Method for Wheat Spikelet Counting" Agriculture 13, no. 4: 872. https://doi.org/10.3390/agriculture13040872
APA StyleShi, L., Sun, J., Dang, Y., Zhang, S., Sun, X., Xi, L., & Wang, J. (2023). YOLOv5s-T: A Lightweight Small Object Detection Method for Wheat Spikelet Counting. Agriculture, 13(4), 872. https://doi.org/10.3390/agriculture13040872