Ridge Cultivation for the Adaption of Fodder Maize (Zea mays L.) to Suboptimal Conditions of Low Mountain Ranges in Organic Farming in Central Europe
Abstract
:1. Introduction
- We hypothesise that a ridge cultivation method in silage maize will generate (a) a higher topsoil temperature at midday, (b) higher dry matter corn cob, whole plant and protein yields and (c) an increased phosphorus content in the plant biomass.
- We hypothesise that a ridge cultivation method in silage maize results in (a) accelerated field emergence, (b) accelerated development of young plants and (c) a higher nutrient content for cattle feed.
2. Materials and Methods
2.1. Experimental Design and Soil Sampling
2.2. Evaluation of Plant Growth, Yield and Nutrient Analysis
2.3. Nutritional Quality of Fodder Maize
2.4. Statistical Analysis
3. Results
3.1. Evaluation of Soil Nutrients, Temperature and Maize Field Emergence
3.1.1. Soil N Content
3.1.2. Plant-Available P, K and Mg in Soil
3.1.3. Soil Temperature and Field Emergence
3.1.4. Correlation between Soil Temperature and Field Emergence
3.2. Evaluation of Plant Development
3.2.1. Plant Development
3.2.2. Correlation of Plant Development Parameters
3.3. Crop Yield, Nutrient Content and Fodder Value
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haller, L.; Moakes, S.; Niggli, U.; Riedel, J.; Stolze, M.; Thompson, M. Entwicklungsperspektiven der Ökologischen Landwirtschaft in Deutschland. Texte 32/2020, Dessau-Roßlau. 2020. Available online: https://www.umweltbundesamt.de/publikationen (accessed on 2 February 2023).
- BfN. Landschaften: Gebiete und Lebensräume. 2011. Available online: https://www.bfn.de/landschaften (accessed on 2 February 2023).
- Siegmund, A.; Frankenberg, P.; Lemke, S. Deutschland Klima. In Diercke—Weltatlas; Michael, T., Diercke, C., Eds.; Westermann: Braunschweig, Germany, 2015; ISBN 978-3-14-100800-5. [Google Scholar]
- DWD. Nationaler Klimareport. Klima—Gestern, Heute und in der Zukunft. Stand Errata 8. 2020. Available online: https://www.dwd.de/DE/leistungen/nationalerklimareport/download_report.pdf;jsessionid=FB973CD2CC2D432F8EB2377C037C5D76.live21073?__blob=publicationFile&v=15 (accessed on 2 February 2023).
- FAOSTAT. FAOSTAT Databases & Software. Maize; Crop Description & Climate. 2000. Available online: https://www.fao.org/land-water/databases-and-software/crop-information/maize/en/ (accessed on 2 February 2023).
- Hein, W. Silomaisanbau in Klimatischen Grenzlagen. In Bericht/Fachtagung “Silomais und Feldfutterbau im Alpenraum“; 19. September 2002 an der BAL Gumpenstein; BAL: Irdning, Austria, 2002; pp. 21–26. Available online: https://raumberg-gumpenstein.at/jdownloads/sonst_Tagung/2002_Silomaisfachtag/2sm_2002_hein.pdf (accessed on 1 March 2023).
- DESTATIS. Land- und Forstwirtschaft, Fischerei. Landwirtschaftliche Bodennutzung Anbau auf dem Ackerland. Reihe 3.1.2 2030312218004. 2021. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Publikationen/Bodennutzung/anbau-ackerland-vorbericht-2030312218004.pdf?__blob=publicationFile (accessed on 2 February 2023).
- EUROSTAT. Data Browser. 2022. Available online: https://ec.europa.eu/eurostat/de/home (accessed on 2 February 2023).
- Diepenbrock, W.; Ellmer, F.; Léon, J. Ackerbau, Pflanzenbau und Pflanzenzüchtung. 101 Tabellen; UTB Grundwissen Bachelor 2629; Stuttgart-Hohenheim: Stuttgart, Germany, 2005; ISBN 9783825238438. [Google Scholar]
- European Union. The EU Dairy Sector. Main Features, Challenges and Prospects. Briefing. 2018. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/630345/EPRS_BRI(2018)630345_EN.pdf (accessed on 2 February 2023).
- BOELW. Branchenreport 2022. Ökologische Lebensmittelwirtschaft; BOELW: Berlin/Heidelberg, Germany, 2022; Available online: https://www.boelw.de/fileadmin/user_upload/Dokumente/Zahlen_und_Fakten/Broschuere_2022/BOELW_Branchenreport2022.pdf (accessed on 2 February 2023).
- BLE. Bericht zur Markt- und Versorgungslage mit Milch und Milcherzeugnissen, Bonn. 2002. Available online: https://www.ble.de/SharedDocs/Downloads/DE/BZL/DatenBerichte/MilchUndMilcherzeugnisse/JaehrlicheErgebnisse/Deutschland/2022BerichtMilch.pdf;jsessionid=83B1B11B95B3D0F4F822A187E2F8FF80.internet982?__blob=publicationFile&v=2 (accessed on 1 March 2023).
- Ivemeyer, S.; Brinkmann, J.; March, S.; Simantke, C.; Winckler, C.; Knierim, U. Major organic dairy farm types in Germany and their farm, herd, and management characteristics. Org. Agric. 2018, 8, 231–247. [Google Scholar] [CrossRef]
- Blank, B.; Schaub, D.; Paulsen, H.M.; Rahmann, G. Comparison of performance and feeding parameters in organic and conventional dairy farms in Germany. Appl. Agric. For. Res. 2013, 63, 21–28. [Google Scholar] [CrossRef]
- Steinwidder, A.; Knaus, W. Effizienter Eiweißeinsatz bei Bio-Milchkühen. 2015. Available online: https://orgprints.org/id/eprint/32652/1/01_12%20Eiwei%C3%9Feinsatz_Ansicht_%C3%96AGInfo_Auszug.pdf (accessed on 2 February 2023).
- Spann, B.; Diepolder, M.; Schmidtlein, E.M.; Tutsch, S.; Hermüheim, A.; Sprengel, D. Umstellung zur Ökologischen Milchviehhaltung—Vergleich Verschiedener Leistungsparameter. Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft, 3/2007; pp. 65–77. 2007. Available online: https://www.lfl.bayern.de/mam/cms07/schwerpunkte/dateien/umstellung_milchvieh-1.pdf (accessed on 2 February 2023).
- Baeumer, K. Allgemeiner Pflanzenbau. 87 Tabellen; UTB für Wissenschaft Uni-Taschenbücher Agrarwissenschaften 18; Ulmer: Stuttgart, Germany, 1992; ISBN 3825200183. [Google Scholar]
- Chassot, A.; Richner, W. Root Characteristics and Phosphorus Uptake of Maize Seedlings in a Bilayered Soil. Agron. J. 2002, 94, 118–127. [Google Scholar] [CrossRef]
- Mackay, A.D.; Barber, S.A. Soil Temperature Effects on Root Growth and Phosphorus Uptake by Corn. Soil Sci. Soc. Am. J. 1984, 48, 818–823. [Google Scholar] [CrossRef]
- Walker, J.M. One-Degree Increments in Soil Temperatures Affect Maize Seedling Behavior. Soil Sci. Soc. Am. J. 1969, 33, 729–736. [Google Scholar] [CrossRef]
- Meyercord, A.; Mücke, M. Ökologischer Maisanbau auf Suboptimalen Standorten. Einfluss Variierter Reihenweiten und Auswirkungen einer Dammkultur auf die Ertrags- und Qualitätsleistungen des Maises bei Gleichzeitig Variierter Beikrautregulierung, Hannover. 2006. Available online: https://orgprints.org/id/eprint/13088/1/13088-03OE037-lawikhan-muecke-2006-maisanbau.pdf (accessed on 2 February 2023).
- Zimmer, K.; Hanff, H. Silomais im Ökologischen Anbau—Ergebnisse und Erfahrungen aus Mehrjährigem Anbau in Dammkultur; Nr.: V-006; Landwirtschaft des Landes Brandenburg: Güterfelde, Germany, 2002; Available online: https://docplayer.org/76891677-Silomais-vor-vorfrucht-dt-stalldung-frischmasse-ha-im-fruehjahr-zu-silomais.html (accessed on 8 March 2023).
- DWD. Long-term Mean Annual Temperature and Precipitation from 1991 to 2020. 2020. Available online: https://www.dwd.de/DE/leistungen/klimadatendeutschland/vielj_mittelwerte.html (accessed on 2 February 2023).
- Bleiholder, H.; Meier, U. BBCH-Skala, Band 1. In Phänologische Entwicklungsstadien Wichtiger Landwirtschaftlicher Kulturen, Einschließlich Unkräuter; Erling Verlag: Clenze, Germany, 2016; ISBN 978-3-862631-10-0. [Google Scholar]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0849302-06-0. [Google Scholar]
- Huy, D.H.; Hien, T.T.; Takenaka, N. A new continuous measurement method for gaseous ammonia by counter-current flow tube sampling and indophenol reaction. J. Atmos. Chem. 2016, 73, 223–240. [Google Scholar] [CrossRef]
- Lorenz, F.; Erdle, K. Die Düngeverordnung Umsetzen. DLG Merkblatt 426. 2018. Available online: https://www.dlg.org/fileadmin/downloads/landwirtschaft/themen/publikationen/merkblaetter/dlg-merkblatt_426.pdf (accessed on 1 March 2023).
- VDLUFA. A 6.2.1.1 Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug. 6. Teillieferung 2012 zu Band I. In Die Untersuchung von Böden; Bassler, R., Thun, R., Hoffmann, G., Eds.; Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik Bd. 1,1; VDLUFA-Verl.: Darmstadt, Germany, 2012; ISBN 978-3-941273-13-9. [Google Scholar]
- Walinga, I.; van der Lee, J.J.; Houba, V.J.G.; van Vark, W.; Novozamsky, I. Digestion in Tubes with H2SO4-Salicylic Acid- H2O2 and Selenium and Determination of Ca, K, Mg, N, Na, P, Zn. In Plant Analysis Manual; Walinga, I., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 7–45. ISBN 978-94-011-0203-2. [Google Scholar]
- Süß, A.; Danner, M.; Obster, C.; Locherer, M.; Hank, T.; Richter, K.; EnMAP Consortium. Measuring Leaf Chlorophyll Content with the Konica Minolta SPAD-502Plus. 2015. Available online: https://gfzpublic.gfz-potsdam.de/rest/items/item_1388302/component/file_1388303/content (accessed on 8 March 2023).
- Saiyad, M.M.; Kumar, S. Evaluation of maize genotypes for fodder quality traits and SSR diversity. J. Plant Biochem. Biotechnol. 2018, 27, 78–89. [Google Scholar] [CrossRef]
- Rühlemann, L.; Schmidtke, K.; Bellingrath-Kimura, S.D. Short-Term Effects of Differentiated Tillage on Dry Matter Production and Grain Yield of Autumn and Spring Sown Grain Legumes Grown Monocropped and Intercropped with Cereal Grains in Organic Farming. Plant Prod. Sci. 2015, 18, 76–92. [Google Scholar] [CrossRef]
- VDLUFA. 31.2 Untersuchung von Silage (Gras-, Mais-) Mittels Nahinfrarotspektroskopie im VDLUFA-Netzwerk. 4. Ergänzungslieferung 1997 zu Band III. In Die chemische Untersuchung von Futtermitteln; Bassler, R., Ed.; Methodenbuch/Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. Hrsg. von Rolf Bassler Bd. 3; VDLUFA-Verl.: Darmstadt, Germany, 1976; ISBN 978-3-941273-14-6. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Munzert, M. Landwirtschaftliche und Gartenbauliche Versuche mit SAS; Springer-Lehrbuch; Springer Spektrum: Berlin/Heidelberg, Germany, 2015; ISBN 978-3642545-05-4. [Google Scholar]
- Köhler, W.; Schachtel, G.; Voleske, P. Biostatistik: Eine Einführung für Biologen und Agrarwissenschaftler; Springer-Lehrbuch; Springer Spektrum: Berlin/Heidelberg, Germany, 2012; ISBN 978-3642292-70-5. [Google Scholar]
- Tukey, J.W. The Problem of Multiple Comparisons. In The Collected Works of John W. Tukey VIII; Multiple comparisons: 1948–1983 1–300; Tukey, J.W., Ed.; Chapman & Hall: New York, NY, USA, 1953; ISBN 978-0412051210. [Google Scholar]
- Bätz, G. Einführung in die Methodik des Feldversuchs; VEB Deutscher Landwirtschaftsverlag: Berlin/Heidelberg, Germany, 1987; ISBN 978-3331001250. [Google Scholar]
- Zscheischler, J.; Estler, M.; Staudacher, W.; Groß, F.; Burgstaller, G.; Streyl, H.; Rechmann, T. Handbuch Mais: Umweltgerechter Anbau, wirtschaftliche Verwertung; DLG-Verlag: Frankfurt, Germany; BLV-Verlagsgesellschaft: München, Germany; Landwirtschaftsverlag: Münster, Germany; Österreichischer Agrarverlag: Vienna, Austria; BUGRA SUISSE: Wabern-Bern, Switzerland, 1990; ISBN 9783769004731. [Google Scholar]
- O’Keeffe, K. Maize Growth & Development; PROCROP; NSW Department of Primary Industries: Orange, NSW, Australia, 2009; ISBN 9780734719553.
- Dawes, M.A.; Schleppi, P.; Hättenschwiler, S.; Rixen, C.; Hagedorn, F. Soil warming opens the nitrogen cycle at the alpine treeline. Glob. Chang. Biol. 2017, 23, 421–434. [Google Scholar] [CrossRef]
- Khan, M.; Rafiq, R.; Hussain, M.; Farooq, M.; Jabran, K. Ridge sowing improves root system, phosphorus uptake, growth and yield of maize (Zea mays L) hybrids. J. Anim. Plant Sci. 2012, 22, 309–317. Available online: http://thejaps.org.pk/docs/v-22-2/12.pdf (accessed on 2 February 2023).
- Khan, M.B.; Yousaf, F.; Hussain, M.; Haq, M.W.; Lee, D.-J.; Farooq, M. Influence of planting methods on root development, crop productivity and water use efficiency in maize hybrids. Chil. J. Agric. Res. 2012, 72, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Radke, J.K. Managing Early Season Soil Temperatures in the Northern Corn Belt Using Configured Soil Surfaces and Mulches. Soil Sci. Soc. Am. J. 1982, 46, 1067–1071. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, N.; Zhang, C.; Dong, X.; Zhao, C. Effects of Rock Fragments on the Soil Physicochemical Properties and Vegetation on the Northeastern Tibetan Plateau. Front. Environ. Sci. 2021, 9, 693769. [Google Scholar] [CrossRef]
- Danalatos, N.G.; Kosmas, C.S.; Moustakas, N.C.; Yassoglou, N. Rock fragments IL Their impact on soil physical properties and biomass production under Mediterranean conditions. Soil Use Manag. 1995, 11, 121–126. [Google Scholar] [CrossRef]
- Liao, K.; Lai, X.; Zhou, Z.; Zeng, X.; Xie, W.; Castellano, M.J.; Zhu, Q. Whether the Rock Fragment Content Should Be Considered When Investigating Nitrogen Cycle in Stony Soils? J. Geophys. Res. Biogeosci. 2019, 124, 521–536. [Google Scholar] [CrossRef]
- Spoor, G.; Giles, D.F.H. Effect of cultivations on raising spring soil temperatures for germination with particular reference to maize. J. Soil Sci. 1973, 24, 392–398. [Google Scholar] [CrossRef]
- Blume, H.-P.; Kandeler, E.; Stahr, K. Lehrbuch der Bodenkunde; Spektrum Akademischer Verlag: Berlin/Heidelberg, Germany, 2010; ISBN 978-3827414-44-1. [Google Scholar]
- Mohr, H.; Schopfer, P. Lehrbuch der Pflanzenphysiologie; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 3540087397. [Google Scholar]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendriks, W.H. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef]
- Beckles, D.M.; Thitisaksakul, M. How environmental stress affects starch composition and functionality in cereal endosperm. Starch-Stärke 2014, 66, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Keeling, P.L.; Banisadr, R.; Barone, L.; Wasserman, B.P.; Singletary, G.W. Effect of Temperature on Enzymes in the Pathway of Starch Biosynthesis in Developing Wheat and Maize Grain. Funct. Plant Biol. 1994, 21, 807. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Krause, U.; Koch, H.-J.; Maerlaender, B. Soil properties effecting yield formation in sugar beet under ridge and flat cultivation. Eur. J. Agron. 2009, 31, 20–28. [Google Scholar] [CrossRef]
- Kaune, A.; Turk, T.; Horn, R. Alteration in soil thermal properties by structure formation. J. Soil Sci. 1993, 44, 231–248. [Google Scholar] [CrossRef]
- dos Santos, H.O.; Vasconcellos, R.C.C.; de Pauli, B.; Pires, R.M.O.; Pereira, E.M.; Tirelli, G.V.; Pinho, É.V.R.V. Effect of Soil Temperature in the Emergence of Maize Seeds. JAS 2021, 11, 479. [Google Scholar] [CrossRef]
- Miedema, P.; Post, J.; Groot, P.J. The Effects of Low Temperature on Seedling Growth if Maize Genotypes; Agricultural Research Reports 926; PUDOC: Wageningen, The Netherlands, 1987; ISBN 9022009300. [Google Scholar]
- Harish, M.N.; Choudhary, A.K.; Dass, A.; Singh, V.K.; Pooniya, V.; Varatharajan, T. Tillage and phosphorus management in maize (Zea mays) under maize-wheat cropping system. Indian J. Agric. Sci. 2021, 91, 117–122. [Google Scholar] [CrossRef]
- Mloza-Banda, H.R.; Makwiza, C.N.; Mloza-Banda, M.L. Soil properties after conversion to conservation agriculture from ridge tillage in Southern Malawi. J. Arid Environ. 2016, 127, 7–16. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, S.; Wang, Q.; Zhang, G.; Fu, Y.; Lu, H. Effects of Root Zone Warming on Maize Seedling Growth and Photosynthetic Characteristics Under Different Phosphorus Levels. Front. Plant Sci. 2021, 12, 746152. [Google Scholar] [CrossRef]
- Aslam, M.; Iqbal, A.; Zamir, M.S.I.; Mubeen, M.; Amin, M. Effect of different nitrogen levels and seed rates on yield and quality of maize fodder. Crop Environ. 2011, 2, 47–51. [Google Scholar]
- Pikul, J.L.; Carpenter-Boggs, L.; Vigil, M.; Schumacher, T.E.; Lindstrom, M.J.; Riedell, W.E. Crop yield and soil condition under ridge and chisel-plow tillage in the northern Corn Belt, USA. Soil Tillage Res. 2001, 60, 21–33. [Google Scholar] [CrossRef]
- Amin, M.E.-M.H. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J. Saudi Soc. Agric. Sci. 2011, 10, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Hussain, M.; Raza, A.; Farooq, S.; Jabran, K. Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turk J. Agric. 2015, 39, 193–203. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, G.; Zhang, S.; Wang, Q.; Fu, Y.; Lu, H. Efficacy of Root Zone Temperature Increase in Root and Shoot Development and Hormone Changes in Different Maize Genotypes. Agriculture 2021, 11, 477. [Google Scholar] [CrossRef]
- Mengutay, M.; Ceylan, Y.; Kutman, U.B.; Cakmak, I. Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 2013, 368, 57–72. [Google Scholar] [CrossRef]
- Sangoi, L.; Salvador, J.R. Influence of plant height and of leaf number on maize production at high plant densities. Pesqui. Agropecuária Bras. 1997, 33, 297–306. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/44889/1/influence-of-plant-height-and-of-leaf-number.pdf (accessed on 2 February 2023).
Abbreviation | BB17 1 | OG18 2 | BR20 3 |
---|---|---|---|
Year | 2017 | 2018 | 2020 |
Coordinates | 50°23′ N, 12°06′ E | 50°22′ N, 12°09′ E | 50°20′ N, 12°11′ E |
Soil texture | sandy loam | sandy loam | sandy loam |
M a.s.l. [m] 4 | 495.0 | 514.0 | 602.0 |
APA [mm] 5 | 568.9 | 348.9 | 483.6 |
MAT [°C] 6 | 10.2 | 11.1 | 11.1 |
MAH [%] 7 | 80.0 | 75.0 | 76.0 |
MAR [W m−2] 8 | 110.5 | 118.1 | 115.8 |
Cropping period [DD/MM] | 14 May–19 September | 16 May–05 September | 14 May–23 September |
Accumulated heat [°C] 9 | 1239.5 | 1277.5 | 1242.3 |
Soil pH 10,11 | 6.1 | 4.8 | 5.7 |
P [mg 100 g−1 dry soil −1] 10, 12 14 | 7.7 | 9.8 | 2.6 |
K [mg 100 g−1 dry soil −1] 10, 12 14 | 44.3 | 33.4 | 16.8 |
Mg [mg 100 g−1 dry soil −1] 10, 13 14 | 20.2 | 19.1 | 17.0 |
Abbreviation | BB17 1 | OG18 2 | BR20 3 | Long-Term Values [mm] 4 |
---|---|---|---|---|
Amount of Precipitation per Month [mm] | ||||
May | 24.3 | 28.7 | 52.5 | 57.0 |
June | 90.0 | 17.1 | 38.8 | 69.0 |
July | 133.6 | 34.8 | 29.0 | 81.0 |
August | 43.9 | 24.2 | 107.6 | 70.0 |
September | 13.1 | 44.1 | 42.2 | 53.0 |
Total amount | 304.9 | 148.9 | 270.1 | 330.0 |
Mean monthly temperature [°C] | Long-term values [°C] 4,5 | |||
May | 15.0 | 16.8 | 11.8 | 12.5 |
June | 18.4 | 18.4 | 17.9 | 15.2 |
July | 19.0 | 20.6 | 19.1 | 17.5 |
August | 19.0 | 21.6 | 21.1 | 17.0 |
September | 13.6 | 16.3 | 16.0 | 13.0 |
Mean | 17.0 | 18.7 | 17.2 | 15.4 |
Variables | ST 1 [°C] | BB17 2 | OG18 3 | BR20 4 | ||||
---|---|---|---|---|---|---|---|---|
FCM 5 | RCM 6 | FCM | RCM | FCM | RCM | |||
FE 7 [%] | ||||||||
DAS 8 | 8 | −0.50 n.s. | 0.03 n.s. | |||||
12 | 0.45 n.s | 0.04 n.s. | −0.40 n.s. | 0.80 *** | 0.07 n.s. | 0.92 *** | ||
16 | 0.69 n.s | −0.65 n.s. | 0.13 n.s. | 0.54 n.s. | −0.41 n.s. | 0.61 n.s. | ||
20 | −0.37 n.s. | 0.02 n.s. | 0.05 n.s. | −0.18 n.s. | −0.12 n.s. | 0.57 n.s. |
Parameter | Unit | Data Analysis | Mean CM | |||
---|---|---|---|---|---|---|
En 1 | CM 2 | En x CM | FCM 3 | RCM 4 | ||
Fresh matter yield (whole plant) | [t ha−1] | n.s. | n.s.* | n.s. | 27.463 | 30.933 |
Dry matter yield (whole plant) | n.s | n.s.* | n.s. | 7.45 | 8.97 | |
Dry matter yield (leaves and husk) | n.s | n.s.* | n.s. | 2.13 | 2.59 | |
Dry matter yield (stem) | n.s. | *** | n.s. | 1.84 b | 2.07 a | |
Dry matter yield (corn cob) | n.s. | n.s. | n.s. | 3.84 | 4.75 | |
Proportion of leaves and stem of total dry matter yield | [%] | *** | *** | n.s. | 52.25 a | 51.27 b |
Corn cob proportion of total dry matter yield | *** | n.s. | n.s. | 47.75 | 48.73 | |
Crude Protein yield (whole plant) | [kg ha−1] | *** | n.s.* | n.s. | 468.05 | 537.68 |
Crude Protein yield (leaves and stem) | *** | n.s.* | n.s. | 231.42 | 258.14 | |
Crude Protein yield (corn cob) | n.s. | n.s | n.s. | 236.63 | 279.55 |
Parameter | Unit | Data Analysis | Mean CM | |||
---|---|---|---|---|---|---|
En 1 | CM 2 | En x CM | FCM 3 | RCM 4 | ||
N accumulation (whole plant) | [kg ha−1] | *** | n.s.* | n.s. | 69.26 | 81.58 |
N accumulation (leaves and husk) | n.s. | n.s. | n.s. | 20.06 | 20.96 | |
N accumulation (stem) | n.s. | n.s. | n.s. | 8.06 | 8.57 | |
N accumulation (corn cob) | *** | n.s. | n.s. | 32.54 | 35.56 | |
P accumulation (whole plant) | [kg ha−1] | n.s. | n.s. | n.s. | 450.0 | 430.0 |
N concentration (whole plant) | [%] | n.s. | n.s. | n.s. | 1.27 | 1.35 |
N concentration (leaves and husk) | n.s. | n.s. | n.s. | 1.28 | 1.20 | |
N concentration (stem) | n.s. | n.s. | n.s. | 0.54 | 0.57 | |
N concentration (corn cob) | n.s. | n.s. | n.s. | 1.44 | 1.46 | |
C:N ratio (whole plant) | [%] | n.s. | n.s. | n.s. | 34.00 | 33.59 |
C:N ratio (leaves and husk) | *** | *** | n.s. | 34.40 b | 37.46 a | |
C:N ratio (stem) | n.s. | n.s. | n.s. | 84.90 | 81.19 | |
C:N ratio (corn cob) | n.s. | n.s. | n.s. | 30.62 | 30.94 |
Parameter | Unit | Data Analysis | Mean CM | |||
---|---|---|---|---|---|---|
En 3 | CM 4 | En x CM | FCM 5 | RCM 6 | ||
CA 1 | [g kg−1] | *** | n.s.* | n.s.* | 37.44 | 34.12 |
CP 1 | *** | n.s.* | n.s. | 67.00 | 64.29 | |
CS 1 | *** | n.s * | n.s. | 222.37 | 214.24 | |
CF 1 | *** | n.s. | n.s. | 23.01 | 23.78 | |
Sugar 2 | n.s. | *** | n.s. | 74.89 a | 64.43 b | |
Starch 1 | *** | n.s. | n.s. | 199.16 | 231.07 | |
ADF 2 | *** | n.s. | n.s. | 266.79 | 258.92 | |
uCP 1 | n.s. | n.s. | n.s. | 120.70 | 120.67 | |
RNB 1 | *** | n.s. | n.s. | −8.79 | −9.02 | |
ELOS 1 | [%] | n.s. | n.s. | n.s. | 62.15 | 62.43 |
ME 1 | [MJ kg−1 OS] | n.s. | n.s. | n.s. | 10.15 | 10.19 |
NEL 1 | n.s. | n.s. | n.s. | 5.84 | 5.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krachunova, T.; Scholz, M.; Bellingrath-Kimura, S.D.; Schmidtke, K. Ridge Cultivation for the Adaption of Fodder Maize (Zea mays L.) to Suboptimal Conditions of Low Mountain Ranges in Organic Farming in Central Europe. Agriculture 2023, 13, 650. https://doi.org/10.3390/agriculture13030650
Krachunova T, Scholz M, Bellingrath-Kimura SD, Schmidtke K. Ridge Cultivation for the Adaption of Fodder Maize (Zea mays L.) to Suboptimal Conditions of Low Mountain Ranges in Organic Farming in Central Europe. Agriculture. 2023; 13(3):650. https://doi.org/10.3390/agriculture13030650
Chicago/Turabian StyleKrachunova, Tsvetelina, Martin Scholz, Sonoko D. Bellingrath-Kimura, and Knut Schmidtke. 2023. "Ridge Cultivation for the Adaption of Fodder Maize (Zea mays L.) to Suboptimal Conditions of Low Mountain Ranges in Organic Farming in Central Europe" Agriculture 13, no. 3: 650. https://doi.org/10.3390/agriculture13030650
APA StyleKrachunova, T., Scholz, M., Bellingrath-Kimura, S. D., & Schmidtke, K. (2023). Ridge Cultivation for the Adaption of Fodder Maize (Zea mays L.) to Suboptimal Conditions of Low Mountain Ranges in Organic Farming in Central Europe. Agriculture, 13(3), 650. https://doi.org/10.3390/agriculture13030650