Droplet Penetration Model Based on Canopy Porosity for Spraying Applications
Abstract
:1. Introduction
2. Determination of Canopy Porosity
2.1. Point Cloud Data Acquisition
2.2. Generating a Two-Dimensional Image Scatter
2.3. Determination of Distance Thresholds
2.4. Contour Detection and Filling
2.5. Optical Porosity Calculations
3. Materials and Methods
3.1. Test Set-Up
3.2. Test Methods
3.2.1. Canopy Laser Scanning
3.2.2. Canopy Airflow Field Test
3.2.3. Droplet Deposition Test
4. Results and Discussion
4.1. Optical Porosity of the Test Trees
4.2. Effect of Optical Porosity on Airflow
4.3. Effect of Different Incoming Wind Speeds on Airflow Velocity
4.4. Canopy Penetration Ratio of Droplets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, E. Design and Research of the Qiaohua Orchard Operation Vehicle. Master’s Thesis, Northwest Agriculture and Forestry University of Science and Technology, Xianyang, China, 2018. [Google Scholar]
- Zhang, H.F.; Xu, L.Y. Current status and outlook of orchard sprayer development. China J. Agric. Chem. 2014, 35, 112–118. [Google Scholar]
- Tu, J. Experimental Research on the Design and Optimization of Key Operational Parameters of Tower-Type Air-Fed Spraying System. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar]
- Zhao, Y.; Xiao, H.; Mei, S.; Song, Z.Y.; Ding, W.Q.; Jing, Y.; Xia, X.; Yang, G. Current situation and development strategies of mechanized orchard production in China. J. China Agric. Univ. 2017, 22, 116–127. [Google Scholar]
- Zhang, L.; Wang, J.; Ye, Y.; Yang, D.; Yuan, H.; Tian, H.; Xia, C. Preliminary observations on the attenuation of droplet deposition distribution on maize plants in high pole spraying technology: Public Plant Protection and Green Control. In Proceedings of the 2010 Annual Conference of the Chinese Society for Plant Protection, Hebi, China, 28–31 November 2010. [Google Scholar]
- Qin, W.; Xue, X.; Zhou, L.; Zhang, S.; Sun, Z.; Kong, W.; Wang, B. Influence of spray parameters of unmanned helicopters on the distribution of droplet deposition in maize canopies. J. Agric. Eng. 2014, 30, 50–56. [Google Scholar]
- Gaskin, R.E.; Manktelow, D.W.; Cook, S.; May, W.A. Effects of canopy density on spray deposition in kiwifruit. N. Z. Plant Prot. 2013, 66, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.K.; Zheng, Y.M.; Wang, J.; Xiao, X.M.; Wang, K.Y. Effect of spraying method and spray volume on the deposition distribution of pirimicarb and acetamiprid in cotton fields and the control effect of cotton aphids. J. Insects 2013, 56, 530–536. [Google Scholar]
- Kong, X.; Wang, G.; Ji, J.; Xu, D.; Yuan, H. Study on the distribution of droplet deposition and pesticide utilization rate of seven plant protection machines in maize field spraying: Green ecological sustainable development and plant protection. In Proceedings of the 12th National Members’ Congress and Annual Conference of the Chinese Society for Plant Protection, Changsha, China, 9–10 November 2017. [Google Scholar]
- Zhai, C.; Zhao, C.; Ning, W.; Long, J.; Wang, X.; Weckler, P.; Zhang, H. Research progress on precision control methods of air-assisted spraying in orchards. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–15. [Google Scholar]
- Zhou, L.; Xue, X.; Zhou, L.; Zhang, L.; Ding, S.; Chang, C.; Zhang, X.; Chen, C. Research situation and progress analysis on orchard variable rate spraying technology. Trans. Chin. Soc. Agric. Eng. 2017, 33, 80–92. [Google Scholar]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 1. Effects of spray liquid flow rate. Crop Prot. 2001, 20, 13–30. [Google Scholar] [CrossRef]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 2. Effects of spray quality. Crop Prot. 2001, 20, 333–343. [Google Scholar] [CrossRef]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 3. Effects of air volumetric flow rate. Crop Prot. 2003, 22, 381–394. [Google Scholar] [CrossRef]
- Xue, X.; Song, S.; Chen, J.; Hong, T.; Li, Z.; Dai, Q. Experimental study on spraying effectiveness and droplet penetration of a wide spraying width wind-driven sprayer in fruit tree canopies. Guangdong Agric. Sci. 2014, 41, 155–158. [Google Scholar]
- Duga, A.T.; Ruysen, K.; Dekeyser, D.; Nuyttens, D.; Bylemans, D.; Nicolai, B.M.; Verboven, P. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics. Crop Prot. 2015, 67, 200–213. [Google Scholar] [CrossRef]
- Sun, C.; Qiu, W.; Ding, W.; Gu, J. Parameter optimization and experiment of air-assisted spraying on pear trees. Trans. Chin. Soc. Agric. Eng. 2015, 31, 30–38. [Google Scholar]
- Sun, C.; Liu, C. Construction and application of droplet canopy penetration model for air-assisted spraying pattern. Trans. Chin. Soc. Agric. Eng. 2019, 35, 25–32. [Google Scholar]
- Miranda-Fuentes, A.; Rodríguez-Lizana, A.; Gil, E.; Agüera-Vega, J.; Gil-Ribes, J.A. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies. Sci. Total Environ. 2015, 537, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Endalew, A.M.; Debaer, C.; Rutten, N.; Vercammen, J.; Delele, M.A.; Ramon, H.; Nicolaï, B.M.; Verboven, P. Modelling pesticide flow and deposition from air-assisted orchard spraying in orchards: A new integrated CFD approach. Agric. For. Meteorol. 2010, 150, 1383–1392. [Google Scholar] [CrossRef]
- Hong, S.-W.; Zhao, L.; Zhu, H. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers. Comput. Electron. Agric. 2018, 149, 121–132. [Google Scholar] [CrossRef]
- Chen, S.; Lan, Y.; Bradley, K.F.; Li, J.; Liu, A.; Mao, Y. Effect of Wind Field below Rotor on Distribution of Aerial Spraying Droplet Deposition by Using Multi-rotor UAV. Trans. Chin. Soc. Agric. Mach. 2017, 48, 105–113. [Google Scholar]
- Salcedo, R.; Granell, R.; Palau, G.; Vallet, A.; Garcerá, C.; Chueca, P.; Moltó, E. Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus. Comput. Electron. Agric. 2015, 116, 150–161. [Google Scholar] [CrossRef]
- Wang, B. Study on Flow Field and Resistance Characteristics of Three-Dimensional Microscopic Canopy Structure. Master’s Thesis, Donghua University, Shanghai, China, 2016. [Google Scholar]
- Wu, S.; Pan, F. SPSS Statistical Analysis; Tsinghua University Press: Beijing, China, 2014. [Google Scholar]
- Wang, L. Multivariate Statistical Analysis: Model, Case and SPSS Application; Economic Science Press: Beijing, China, 2010. [Google Scholar]
Canopy Information | Tree Number | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Tree Height/m | 1.391 | 1.386 | 1.419 | 1.439 | 1.423 |
Canopy height/m | 0.919 | 0.887 | 0.876 | 0.908 | 0.893 |
Crown width/m | 0.909 | 0.906 | 0.925 | 0.935 | 0.928 |
Maximum canopy thickness/m | 0.884 | 0.872 | 0.896 | 0.888 | 0.884 |
Optical porosity | 0.40576 | 0.34138 | 0.23287 | 0.13637 | 0.06594 |
Function Type | Model Number | Expressions | R2 | RMSE/% |
---|---|---|---|---|
First-order polynomial | 1 | 0.7889 | 15.17 | |
2 | / | / | ||
Quadratic polynomial | 3 | 0.7898 | 15.14 | |
First-order exponential | 4 | 0.9197 | 6.54 | |
5 | 0.9466 | 6.08 | ||
Second-order exponential | 6 | 0.9271 | 6.52 | |
7 | 0.9672 | 5.56 |
A | a1 | b1 | a2 | b2 | a3 | b3 | c3 |
---|---|---|---|---|---|---|---|
30.874 | 0.057 | 9.622 | 0.351 | 3.262 | 0.023 | 113.038 | 65.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ru, Y.; Hu, C.; Chen, X.; Yang, F.; Zhang, C.; Li, J.; Fang, S. Droplet Penetration Model Based on Canopy Porosity for Spraying Applications. Agriculture 2023, 13, 339. https://doi.org/10.3390/agriculture13020339
Ru Y, Hu C, Chen X, Yang F, Zhang C, Li J, Fang S. Droplet Penetration Model Based on Canopy Porosity for Spraying Applications. Agriculture. 2023; 13(2):339. https://doi.org/10.3390/agriculture13020339
Chicago/Turabian StyleRu, Yu, Chenming Hu, Xuyang Chen, Fengbo Yang, Chao Zhang, Jianping Li, and Shuping Fang. 2023. "Droplet Penetration Model Based on Canopy Porosity for Spraying Applications" Agriculture 13, no. 2: 339. https://doi.org/10.3390/agriculture13020339