Effects of Foliar Spraying of Organic Selenium and Nano-Selenium Fertilizer on Pak Choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under Low Temperature Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Conditions
2.2. Determination of Physiological and Biochemical Indexes
2.3. RNA Extraction and RNA-Seq Sequencing
2.4. Identification of Differential Gene Expression
2.5. GO and KEGG Enrichment Analysis of DEGs
2.6. Analysis of WGCNA
2.7. Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Photosynthetic Pigments
3.2. Antioxidant Properties of Leaves
3.3. Leaf Weight and Total Selenium Content
3.4. Nutritional Quality of Leaves
3.5. Leaf Gene Expression
3.5.1. Sequencing Results and Quality Analysis
3.5.2. Analysis of Differentially Expressed Genes
3.5.3. GO Annotation and Enrichment Analysis of Differentially Expressed Genes
3.5.4. KEGG Annotation and Enrichment Analysis of Differentially Expressed Genes
- (1)
- KEGG annotation of differentially expressed genes
- (2)
- Enrichment of KEGG pathway diagram
3.5.5. Weighted Gene Co-Expression Network Analysis (WGCNA)
3.5.6. Fluorescence Quantitative PCR Analysis
3.5.7. Differential Gene Function Analysis
- (1)
- Genes related to selenium absorption—endocytosis
- (2)
- Genes involved in antioxidant stress
- (3)
- Selenium transport-related gene—ABC transporter
- (4)
- Genes related to selenium metabolism
4. Discussion
4.1. Effects of Spraying Organic Selenium and Nano-Selenium Fertilizer on Leaf Photosynthesis under Low Temperature Stress
4.2. Effects of Spraying Organic Selenium and Nano-Selenium Fertilizer on the Regulation of Antioxidant System of Leaves under Low Temperature Stress
4.3. Effects of Spraying Organic Selenium and Nano-Selenium Fertilizer on Leaf Nutritional Quality under Low Temperature Stress
4.4. Absorption of Organic Selenium and Nano-Selenium at Different Concentrations in Leaves
4.5. Transport of Different Concentrations of Organic Selenium and Nano-Selenium in Leaves
4.6. Metabolism of Different Concentrations of Organic Selenium and Nano-Selenium in Leaves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, W.H.; Ma, Y.B.; Zhang, J.R.; Wang, K.; Meng, Q.W. The influence of physiological characteristics and cold hardiness evaluation of 8 Agropyron Gaertn seedlings under low temperature stress. Grassl. Prataculture 2016, 28, 22–30. [Google Scholar]
- Liu, Z.K.; Zhang, Y.P.; Wang, H.; Han, J.J.; Chen, D.L.; Sun, H.Y.; Yang, X.M. Identification and evaluation on agronomic traits of germplasm resources of Suzhouqing. J. Chang. Veg. 2022, 20, 38–41. [Google Scholar]
- Huang, C.; Qin, N.; Sun, L.; Yu, M.; Hu, W.; Qi, Z. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. Int. Mol. Sci. 2018, 19, 1913. [Google Scholar] [CrossRef]
- Liu, K.; Li, S.; Han, J.; Zeng, X.; Ling, M.; Mao, J.; Li, Y.; Jiang, J. Effect of selenium on tea (Camellia sinensis) under low temperature: Changes in physiological and biochemical responses and quality. Environ. Exp. Bot. 2021, 188, 104475. [Google Scholar] [CrossRef]
- Rao, S.; Yu, T.; Cong, X.; Xu, F.; Lai, X.; Zhang, W.; Liao, Y.; Cheng, S. Integration analysis of PacBio SMRT-and Illumina RNA-seq reveals candidate genes and pathway involved in selenium metabolism in hyperaccumulator Cardamine violifolia. BMC Plant Biol. 2020, 20, 492. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Q.; Wu, M.; Mou, D.; Liu, H.; Wang, S.; Zhang, C.; Ding, L.; Luo, J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci. Rep. 2018, 8, 2789. [Google Scholar] [CrossRef]
- Guo, K.; Yao, Y.; Yang, M.; Li, Y.; Wu, B.; Lin, X. Transcriptome sequencing and analysis reveals the molecular response to selenium stimuli in Pueraria lobata (willd.) Ohwi. PeerJ 2020, 8, e8768. [Google Scholar] [CrossRef]
- Cao, D.; Liu, Y.; Ma, L.; Jin, X.; Guo, G.; Tan, R.; Liu, Z.; Zheng, L.; Ye, F.; Liu, W. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS ONE 2018, 13, e0197506. [Google Scholar] [CrossRef]
- Wang, X.K.; Huang, J.L. Principles and Techniques of Plant Physiological Biochemical Experiment, 3rd ed.; Higher Education Press: Beijing, China, 2015; pp. 131–133. [Google Scholar]
- Ukeda, H.; Kawana, D.; Maeda, S.; Sawamura, M. Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase. J. Agric. Chem. Soc. Jpn. 1999, 63, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Doerge, D.R.; Divi, R.L.; Churchwell, M.I. Identification of the colored guaiacol oxidation product produced by peroxidases. Anal. Biochem. 1997, 250, 10–17. [Google Scholar] [CrossRef]
- Johansson, L.H.; Borg, L.A.H. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Nishimoto, S.; Koike, S.; Inoue, N.; Suzuki, T.; Ogasawara, Y. Activation of Nrf2 attenuates carbonyl stress induced by methylglyoxal in human neuroblastoma cells: Increase in GSH levels is a critical event for the detoxification mechanism. Biochem. Biophys. Res. Commun. 2017, 483, 874. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, X.; Mei, X.; Zhou, Y.; Cheng, S.; Zeng, L.; Dong, F.; Yang, Z. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. J. Proteom. 2017, 157, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Campion, E.M.; Loughran, S.T.; Walls, D. Protein quantitation and analysis of purity. Methods Mol. Biol. 2011, 681, 229–258. [Google Scholar]
- Gao, Y.; Feng, J.; Wu, J.; Wang, K.; Wu, S.; Liu, H.; Jiang, M. Transcriptome analysis of the growth-promoting effect of volatile organic compounds produced by Microbacterium aurantiacum GX14001 on tobacco (Nicotiana benthamiana). BMC Plant Biol. 2022, 22, 208. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar]
- Eom, S.H.; Ahn, M.-A.; Kim, E.; Lee, H.J.; Lee, J.H.; Wi, S.H.; Kim, S.K.; Bin Lim, H.; Hyun, T.K. Plant response to cold stress: Cold stress changes antioxidant metabolism in heading type kimchi cabbage (Brassica rapa L. ssp. Pekinensis). Antioxidants 2022, 11, 700. [Google Scholar] [CrossRef]
- Hassan, Z.U. Melatonin Induced Selenium Tolerance in Oilseed Rape Cultivars through Physio-Biochemical Metabolism, Anatomical, and Molecular Profiling. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Zhang, L.L. Study on Genes Related to Flavonoid Biosynthesis in Foxtail Millet Based on WGCNA. Master’s Thesis, Shanxi Agricultural University, Taigu, China, 2021. [Google Scholar]
- Kong, Q.H. Effects of Biological Nano Se on Yield and Physiological-Biochemical Characteristics of Foxtail Millet. Master’s Thesis, Shandong Normal University, Jinan, China, 2020. [Google Scholar]
- Yang, F.F.; Halike, G.L.Z.Y.; Maimaiti, A.L.J.; Tuerxuntuoheti, N.Z.K.T.; Zhang, M.M.; Yeermieke, A.A.Y. Effects of exogenous trehalose on photosynthesis of Hami melon seedlings under chilling stress. North. Hortic. 2023, 524, 27–30. [Google Scholar]
- Zhang, Y.Y.; Chen, D.; Tan, Y.L.; Wang, D.; Shen, W.Q.; Zhou, J.H.; Huang, C.P. Alleviating effects of exogenous selenium on Dendrobium candidum seedlings under low temperature stress and the change of its antioxidative physiology characteristics. Acta Bot. Boreali-Occident. Sin. 2013, 33, 0747–0754. [Google Scholar]
- Sun, L. Alleviating Effects of Exogenous Selenium on Strawberry Seedlings under Chilling Stress and the Change of Its Ascorbate-Glutathione Cycle Characteristics. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Chen, S.M. Alleviating Effect and Mechanism of Exogenous Selenium on Tobacco Seedlings under Low Temperature. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2021. [Google Scholar]
- Song, Y.P.; Gong, F.R.; Yang, X.K.; Zhang, L.L.; Liu, K.G. Comprehensive evaluation on cold tolerance of various lettuce seedlings. Acta Agric. Jiangxi 2019, 31, 21–25. [Google Scholar]
- Wang, L.L. Effects of Cadmium and Selenium Treatment on Growth and Physiological Quality of Cardamine flexuosa and Brassica alboglabra. Master’s Thesis, Zhejiang A&F University, Lin’an, China, 2019. [Google Scholar]
- Wang, Y.F.; Li, G.X.; Zhao, X.L.; Liu, M.J.; Zhang, Z.Y. Effects of selenium on low temperature stress resistance of Zhengmai 366 at stamen and pistil differentiation stage. J. Anhui Agric. Sci. 2022, 50, 25–28. [Google Scholar]
- Liu, Q.L.; Wang, D.; Wu, G.L. Effects of selenium on leaf senescence and antioxidase system in Pyrus bretchneider ‘Dangshan Suli’. Acta Hortic. Sin. 2011, 38, 2059–2066. [Google Scholar]
- Liu, K.H. The Effect of Exogenous Selenium on the Physiology and Secondary Metabolites of Tea (Camellia sinensis). Master’s Thesis, Anhui Agricultural University, Hefei, China, 2021. [Google Scholar]
- Cao, K. Effects of Selenium on Physiology of Potato under Cold Stress. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2014. [Google Scholar]
- Kong, Q.H.; Li, F.F.; Qin, L.; Chen, E.Y.; Yang, Y.B.; Zhang, H.D.; Guan, Y.A. Screening and analysis of Se responsive genes in leaves of foxtail millet. Mol. Plant Breed. 2021, 19, 2798–2810. [Google Scholar]
- Byrne, S.L.; Durandeau, K.; Nagy, I.; Barth, S. Identification of ABC transporters from Lolium perenne L. that are regulated by toxic levels of selenium. Planta 2010, 231, 901–911. [Google Scholar] [CrossRef]
- Hu, Y.R. Identification and Analysis of Genes Related to Selenium Assimilation and Metabolism in Tea Plant Roots. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2016. [Google Scholar]
- Terry, N.; Zayed, A.M.; Souza, M.P.D.; Tarun, A.S. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401. [Google Scholar] [CrossRef]
- Hoewyk, D.V.; Pilon, M.; Pilon-Smits, E.A.H. The functions of NifS-like proteins in plant sulfur and selenium metabolism. Plant Sci. 2008, 174, 120–123. [Google Scholar]
- Whanger, P.D. Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr. 2002, 21, 223–232. [Google Scholar] [CrossRef]
- Whanger, P.D. Selenium and its relationship to cancer: An update. Br. J. Nutr. 2004, 91, 11–28. [Google Scholar] [CrossRef]
- Ellis, D.R.; Sors, T.G.; Brunk, D.G.; Albrecht, C.; Orser, C.; Lahner, B.; Wood, K.V.; Harris, H.H.; Pickering, I.J.; Salt, D.E. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol. 2004, 4, 1. [Google Scholar] [CrossRef]
- Tan, Z. Studies on the Transcription and Expression Levels of Selenocysteine Methyltransferase in the Leaves of Camellia sinensis. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2009. [Google Scholar]
- Liu, S.; Yan, D.; Zhou, X.; Cao, Y.; Mo, X.; Hu, Y.; Zhou, Y. Cloning and prokaryotic expression of selenocysteine methyltransferase gene from tea plant and its plant overexpression vector construction. Xinan Nongye Xuebao (Southwest China J. Agric. Sci.) 2016, 29, 1540–1546. [Google Scholar]
Treatment | Chlorophyll a Content (mg g−1 Fresh Weight) | Chlorophyll b Content (mg g−1 Fresh Weight) | Total Chlorophyll Content (mg g−1 Fresh Weight) | Chlorophyll a/b | Carotenoid Content (μg g−1) |
---|---|---|---|---|---|
LCK | 0.89 ± 0.02 e | 0.45 ± 0.02 bc | 1.34 ± 0.01 c | 1.96 ± 0.15 c | 107.85 ± 4.39 d |
LO5 | 1.04 ± 0.05 bc | 0.47 ± 0.02 b | 1.5 ± 0.04 b | 2.23 ± 0.16 ab | 155.18 ± 7.11 bc |
LO10 | 0.95 ± 0.02 de | 0.43 ± 0.02 c | 1.37 ± 0.02 c | 2.22 ± 0.10 b | 141.75 ± 13.35 c |
LO20 | 1.53 ± 0.03 a | 0.63 ± 0.02 a | 2.16 ± 0.03 a | 2.44 ± 0.10 a | 249.83 ± 16.58 a |
LN5 | 1.05 ± 0.05 b | 0.47 ± 0.02 b | 1.52 ± 0.07 b | 2.24 ± 0.11 ab | 165.49 ± 13.51 b |
LN10 | 1.03 ± 0.04 bc | 0.45 ± 0.04 bc | 1.48 ± 0.06 b | 2.29 ± 0.20 ab | 145.46 ± 7.23 c |
LN20 | 0.99 ± 0.05 cd | 0.46 ± 0.01 b | 1.45 ± 0.05 b | 2.13 ± 0.09 bc | 146.14 ± 18.27 bc |
Treatment | LCK | LO5 | LO10 | LO20 | LN5 | LN10 | LN20 |
---|---|---|---|---|---|---|---|
SOD activity (U g−1 fresh weight) | 286.76 ± 21.55 d | 498.74 ± 16.02 b | 397.78 ± 14.34 c | 1265.06 ± 81.01 a | 172.44 ± 14.78 e | 376.78 ± 9.21 c | 398.03 ± 22.41 c |
POD activity (U g−1 fresh weight) | 49.63 ± 3.16 d | 137.74 ± 6.40 a | 62.83 ± 3.78 c | 99.29 ± 4.19 b | 39.70 ± 2.04 e | 61.54 ± 2.09 c | 65.36 ± 1.91 c |
CAT activity (μmol min−1 g−1 fresh weight) | 122.68 ± 7.78 e | 130.84 ± 4.58 de | 142.64 ± 4.32 d | 228.14 ± 10.99 a | 85.38 ± 4.22 f | 207.46 ± 11.89 b | 156.75 ± 8.74 c |
GSH content (μmol g−1 fresh weight) | 0.29 ± 0.01 c | 0.33 ± 0.01 b | 0.28 ± 0.02 c | 0.46 ± 0.01 a | 0.33 ± 0.01 b | 0.35 ± 0.01 b | 0.28 ± 0.01 c |
Treatment | LCK | LO5 | LO10 | LO20 | LN5 | LN10 | LN20 |
---|---|---|---|---|---|---|---|
Weight (g fresh weight) | 46.27 ± 0.32 c | 60.27 ± 0.27 b | 65.09 ± 0.18 b | 46.71 ± 0.24 c | 53.76 ± 0.73 a | 59.53 ± 0.82 c | 63.34 ± 0.69 b |
Total selenium content (mg kg−1) | 0.001 ± 0.001 b | 0.0018 ± 0.0003 a | 0.0029 ± 0.0002 b | 0.0024 ± 0.0003 c | 0.0019 ± 0.0003 b | 0.0032 ± 0.0001 b | 0.0026 ± 0.0002 a |
Treatment | Amino Acid Content (mg g−1 Fresh Weight) | Soluble Protein (mg g−1 Fresh Weight) |
---|---|---|
LCK | 2.20 ± 0.02 d | 28.49 ± 1.14 f |
LO5 | 2.62 ± 0.01 b | 33.48 ± 0.54 cd |
LO10 | 1.94 ± 0.03 g | 34.89 ± 0.44 c |
LO20 | 2.91 ± 0.01 a | 45.85 ± 0.99 a |
LN5 | 2.40 ± 0.030 c | 31.64 ± 1.07 e |
LN10 | 2.03 ± 0.03 f | 42.56 ± 1.74 b |
LN20 | 2.10 ± 0.02 e | 32.97 ± 1.23 de |
Treatment | Raw Base (G) | Raw Sequences | Clean Bases (G) | Clean Sequences | Q30 (%) | GC (%) | Error Rate (%) |
---|---|---|---|---|---|---|---|
LCK | 8.13 | 54,217,790 | 7.5 | 50,702,038 | 99.85 | 47.0(%) | 0.03 |
LO5 | 7.74 | 51,575,524 | 7.2 | 48,567,534 | 99.86 | 47.0(%) | 0.03 |
LN5 | 7.95 | 52,979,962 | 7.39 | 49,869,758 | 99.86 | 46.0(%) | 0.03 |
LO10 | 6.47 | 43,115,830 | 5.99 | 40,471,030 | 99.85 | 47.0(%) | 0.03 |
LN10 | 6.25 | 41,655,152 | 5.77 | 38,959,214 | 99.85 | 47.0(%) | 0.03 |
LO20 | 6.71 | 44,757,082 | 6.25 | 42,197,232 | 99.87 | 46.0(%) | 0.03 |
LN20 | 6.06 | 40,381,854 | 5.6 | 37,912,748 | 99.86 | 47.0(%) | 0.03 |
Gene Name | Transcripts Per Million Kilobases (TPM) | Function | ||||||
---|---|---|---|---|---|---|---|---|
LCK | LO5 | LO10 | LO20 | LN5 | LN10 | LN20 | ||
LOC103857346 | 0 | 43.1 | 72.6 | 15.4 | 75 | 121 | 55 | Actin-related protein 2/3 complex subunit 1A |
LOC103828797 | 25 | 24.8 | 19.5 | 11.2 | 21.8 | 0 | 17.7 | Actin-related protein 2/3 complex subunit 2A |
LOC103838512 | 187 | 62.1 | 97.2 | 146 | 191 | 229 | 70.8 | Actin-related protein 2/3 complex subunit 3 |
LOC103863562 | 18.5 | 9.9 | 5.04 | 0 | 11.5 | 0 | 19.8 | Actin-related protein 2/3 complex subunit 4 |
LOC103829270 | 723 | 667 | 236 | 242 | 432 | 360 | 389 | ADP-ribosylation factor 2-B |
LOC103834200 | 223 | 230 | 138 | 47.7 | 152 | 246 | 167 | ADP-ribosylation factor GTPase-activating protein AGD12 |
LOC103838481 | 4.56 | 0 | 2 | 0 | 0 | 1.37 | 3.9 | ADP-ribosylation factor GTPase-activating protein AGD2 |
LOC103845528 | 67.72 | 112.4 | 44.77 | 40.66 | 49.35 | 51.99 | 19.62 | AP-2 complex subunit alpha-1 |
LOC103853730 | 393 | 273 | 278 | 246 | 350 | 337 | 264 | AP-2 complex subunit mu |
LOC103859264 | 15 | 16 | 11 | 2 | 16 | 23 | 12 | Clathrin heavy chain 2 |
LOC103839878 | 262 | 61.5 | 0 | 114 | 123 | 101 | 5.6 | E3 ubiquitin-protein ligase UPL5 |
LOC103836651 | 95.1 | 35.6 | 50.4 | 53.4 | 0 | 35.3 | 60.6 | EH domain-containing protein 1 |
LOC103831794 | 318 | 211 | 169 | 729 | 288 | 154 | 217 | ESCRT-related protein CHMP1B |
LOC103859096 | 390 | 425 | 369 | 149 | 405 | 360 | 365 | F-actin-capping protein subunit alpha |
LOC103830490 | 0 | 3 | 1 | 18 | 0 | 1 | 0 | Nuclear-pore anchor |
LOC103848932 | 7.79 | 0 | 12.1 | 0 | 4 | 0 | 3.39 | Phosphatidylinositol 4-phosphate 5-kinase 6 |
LOC103831688 | 38.4 | 0 | 33.7 | 0 | 1.08 | 0 | 0 | Probable F-actin-capping protein subunit beta |
LOC103840633 | 79.5 | 4.75 | 21.9 | 11.3 | 20.2 | 39.7 | 50.4 | Probable mediator of RNA polymerase II transcription subunit 37e |
LOC103866553 | 730 | 42.7 | 0 | 684 | 363 | 46 | 39.1 | Protein homolog of mammalian lyst-interacting protein 5 |
LOC103827815 | 42 | 39 | 32 | 31 | 34 | 28 | 19 | Ras-related protein RABF2a |
LOC125608966 | 154 | 0 | 148 | 0 | 49.8 | 108 | 142 | Ras-related protein RABG3f |
LOC103827890 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | Vacuolar protein sorting-associated protein 2 homolog 2 |
LOC103844298 | 0 | 16.3 | 6.77 | 0 | 15.9 | 17.3 | 9.31 | Vacuolar protein sorting-associated protein 2 homolog 3 |
LOC103847195 | 130 | 271 | 106 | 106 | 258 | 107 | 137 | Vacuolar protein sorting-associated protein 20 homolog 2 |
LOC103861671 | 0 | 1.25 | 0 | 0 | 0 | 0 | 0 | Vacuolar protein sorting-associated protein 22 homolog 1 |
LOC103857037 | 13.9 | 7.68 | 18.1 | 39.2 | 13.8 | 3.77 | 22.8 | Vacuolar protein sorting-associated protein 25 |
LOC103839783 | 22 | 25 | 39 | 102 | 38 | 18 | 44 | Vacuolar protein sorting-associated protein 28 homolog 2 |
LOC103853808 | 806 | 406 | 455 | 701 | 1167 | 590 | 468 | Vacuolar protein sorting-associated protein 32 homolog 2 |
LOC103847243 | 365 | 329 | 418 | 858 | 239 | 278 | 456 | Vacuolar protein sorting-associated protein 36 |
LOC103853060 | 312 | 196 | 501 | 171 | 240 | 267 | 217 | Vacuolar protein sorting-associated protein 45 homolog |
LOC103859354 | 29.8 | 55.7 | 51.5 | 33.7 | 97.1 | 62.8 | 62.2 | Vacuolar protein sorting-associated protein 60.1 |
LOC103863440 | 0 | 1.25 | 0 | 0 | 0 | 0 | 0 | Vacuolar protein-sorting-associated protein 37 homolog 1 |
Gene Name | Transcripts Per Million Kilobases (TPM) | Function | ||||||
---|---|---|---|---|---|---|---|---|
LCK | LO5 | LO10 | LO20 | LN5 | LN10 | LN20 | ||
LOC103874199 | 30.28 | 19.88 | 57.58 | 0 | 51.84 | 59.11 | 19.66 | Superoxide dismutase [Fe] 3 |
LOC103857203 | 386 | 441 | 791 | 251 | 798 | 332 | 458 | Superoxide dismutase [Fe] 2 |
LOC103838242 | 0 | 214.58 | 7.63 | 0 | 33.25 | 14.4 | 0 | Monodehydroascorbate reductase |
LOC103846588 | 4.08 | 9.16 | 6.09 | 0 | 20.4 | 3.19 | 4.52 | Thioredoxin M2 |
Gene Name | Transcripts Per Million Kilobases (TPM) | Function | ||||||
---|---|---|---|---|---|---|---|---|
LCK | LO5 | LO10 | LO20 | LN5 | LN10 | LN20 | ||
LOC103873206 | 824.4 | 630.78 | 496.96 | 128.14 | 582.37 | 345.51 | 431.95 | ABC transporter A family member 7 |
LOC106353797 | 2169.8 | 2721 | 1746.08 | 1866 | 2128.89 | 1854 | 1048.58 | ABC transporter B family member 26 |
LOC103847350 | 15.2 | 30.03 | 0 | 40.27 | 14.82 | 18.59 | 24.13 | ABC transporter B family member 29 |
LOC103866318 | 296.88 | 203.33 | 710.22 | 204.74 | 559.52 | 133.95 | 153.34 | ABC transporter B family member 4 |
LOC103867037 | 266.9 | 216.14 | 115.52 | 311.32 | 258.27 | 197.28 | 109.8 | ABC transporter B family member 6 |
LOC103841771 | 182.07 | 436 | 721 | 291.67 | 1832 | 488.35 | 665.6 | ABC transporter C family member 10 |
LOC103868683 | 328.47 | 155.67 | 263.61 | 375.64 | 412.3 | 209.69 | 223.52 | ABC transporter C family member 4 |
LOC103838010 | 394.11 | 449.39 | 79.4 | 308.17 | 497.77 | 513.89 | 135.88 | ABC transporter C family member 5 |
LOC103869976 | 980.68 | 1062.82 | 450.92 | 526.92 | 857.17 | 772.79 | 0 | ABC transporter D family member 2 |
LOC103869976 | 0 | 5 | 1 | 0 | 0 | 0 | 1.02 | ABC transporter D family member 2 |
LOC103865536 | 0 | 0 | 0 | 34.46 | 0 | 31.82 | 6.76 | ABC transporter E family member 2 |
LOC103857266 | 0 | 5.19 | 306 | 0 | 628.18 | 324.33 | 0 | ABC transporter E family member 2 |
LOC103851055 | 0 | 0 | 0 | 456.64 | 314.58 | 47.79 | 0 | ABC transporter F family member 1 |
LOC103867761 | 10.94 | 0 | 1.95 | 30.92 | 0 | 20.46 | 7.7 | ABC transporter G family member 1 |
LOC103835938 | 674.37 | 334.08 | 1137.08 | 801.13 | 939.33 | 1435.65 | 800.87 | ABC transporter G family member 11 |
LOC103867209 | 0 | 0 | 0 | 11.45 | 0 | 0 | 76.09 | ABC transporter G family member 33 |
LOC103872310 | 4.97 | 0 | 0 | 0 | 0 | 1.65 | 0 | ABC transporter G family member 35 |
LOC103872346 | 120 | 632 | 245 | 368 | 32 | 402 | 212 | ABC transporter G family member 40 |
LOC103872346 | 44.06 | 247.04 | 33.05 | 111.63 | 0 | 141.49 | 45.11 | ABC transporter G family member 40 |
LOC103832795 | 5693.61 | 1452.2 | 4726 | 640.2 | 0 | 3356.75 | 2220.56 | ABC transporter G family member 7 |
LOC103838079 | 25.13 | 0 | 66 | 53.12 | 42.03 | 73 | 0 | ABC transporter I family member 1 |
LOC103847034 | 126 | 0 | 0 | 78.17 | 0 | 0 | 170.22 | ABC transporter I family member 10 |
LOC103859358 | 7 | 3 | 6 | 0 | 5 | 0 | 1 | ABC transporter I family member 6 |
Gene Name | Transcripts Per Million Kilobases (TPM) | Function | ||||||
---|---|---|---|---|---|---|---|---|
LCK | LO5 | LO10 | LO20 | LN5 | LN10 | LN20 | ||
LOC103859979 | 385 | 820 | 667 | 601 | 2072 | 935 | 820 | ATP sulfurylase 1 |
LOC103859070 | 0 | 32.81 | 12.43 | 18.59 | 128.88 | 9.64 | 7.02 | Cysteine synthase D1 |
LOC103873728 | 53.22 | 12.86 | 20.8 | 0 | 0 | 0 | 0 | Glutaredoxin-C1 |
LOC103834501 | 1.48 | 0 | 3.32 | 0 | 34.39 | 9.1 | 5.9 | Glutaredoxin-C6 |
LOC103831537 | 1.09 | 406 | 76.93 | 52.03 | 0 | 90.99 | 221.85 | Glutathione S-transferase U12 |
LOC103848467 | 338.38 | 278.31 | 268.22 | 0 | 80.84 | 332.68 | 163.07 | Glutathionyl-hydroquinone reductase YqjG |
LOC103838277 | 245.06 | 71.83 | 35.63 | 14.66 | 160.63 | 93.06 | 51.59 | Probable glutathione peroxidase 8 |
LOC103828203 | 387 | 580 | 338 | 150 | 419 | 349 | 331 | S-sulfo-L-cysteine synthase (O-acetyl-L-serine-dependent) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tan, G.; Chen, J.; Wu, J.; Liu, S.; He, X. Effects of Foliar Spraying of Organic Selenium and Nano-Selenium Fertilizer on Pak Choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under Low Temperature Stress. Agriculture 2023, 13, 2140. https://doi.org/10.3390/agriculture13112140
Wang Y, Tan G, Chen J, Wu J, Liu S, He X. Effects of Foliar Spraying of Organic Selenium and Nano-Selenium Fertilizer on Pak Choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under Low Temperature Stress. Agriculture. 2023; 13(11):2140. https://doi.org/10.3390/agriculture13112140
Chicago/Turabian StyleWang, Yanyan, Guozhang Tan, Jiao Chen, Jianfu Wu, Shiyu Liu, and Xiaowu He. 2023. "Effects of Foliar Spraying of Organic Selenium and Nano-Selenium Fertilizer on Pak Choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under Low Temperature Stress" Agriculture 13, no. 11: 2140. https://doi.org/10.3390/agriculture13112140
APA StyleWang, Y., Tan, G., Chen, J., Wu, J., Liu, S., & He, X. (2023). Effects of Foliar Spraying of Organic Selenium and Nano-Selenium Fertilizer on Pak Choi (Brassica chinensis var. pekinensis. cv. ‘Suzhouqing’) under Low Temperature Stress. Agriculture, 13(11), 2140. https://doi.org/10.3390/agriculture13112140