Are Proteins Such as MMP2, IGF1, IL-13, and IL-1ra Valuable as Markers of Fitness Status in Racehorses? A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Samples
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Physick-Sheard, P.W.; Avison, A.; Chappell, E.; MacIver, M. Ontario Racehorse Death Registry, 2003–2015, Descriptive analysis and rates of mortality. Equine Vet. J. 2019, 51, 64–76. [Google Scholar] [CrossRef]
- Wilsher, S.; Allen, W.R.; Wood, J.L.N. Factors associated with failure of thoroughbred horses to train and race. Equine Vet. J. 2006, 38, 113–118. [Google Scholar] [CrossRef]
- Ertelt, A.; Merle, R.; Stumpff, F.; Bollinger, L.; Liertz, S.; Weber, C.; Gehlen, H. Evaluation of Different Blood Parameters from Endurance Horses Competing at 160 km. J. Equine Vet. Sci. 2021, 104, 103687. [Google Scholar] [CrossRef]
- Haller, N.; Behringer, M.; Reichel, T.; Wahl, P.; Simon, P.; Krüger, K.; Zimmer, P.; Stöggl, T. Blood-Based Biomarkers for Managing Workload in Athletes: Considerations and Recommendations for Evidence-Based Use of Established Biomarkers. Sports Med. 2023, 53, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Page, A.E.; Adam, E.; Arthur, R.; Barker, V.; Franklin, F.; Friedman, R.; Grande, T.; Hardy, M.; Howard, B.; Partridge, E.; et al. Expression of select mRNA in Thoroughbreds with catastrophic racing injuries. Equine Vet. J. 2022, 54, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xiao, P.; Lei, S.; Deng, F.; Xiao, G.G.; Liu, Y.; Chen, X.; Li, L.; Wu, S.; Chen, Y.; et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim. Biophys. Sin. 2008, 40, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szarska, E.; Szczepaniak, J.; Nowak, Z.; Winnicka, A.; Cywińska, A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals 2019, 9, 616. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.H.; Stanya, K.J.; Hyde, A.L.; Chalom, M.M.; Alexander, R.K.; Liou, Y.H.; Starost, K.A.; Gangl, M.R.; Jacobi, D.; Liu, S.; et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 2020, 368, eaat3987. [Google Scholar] [CrossRef] [PubMed]
- Plisak, U.; Szczepaniak, J.; Żmigrodzka, M.; Giercuszkiewicz-Hecold, B.; Witkowska-Piłaszewicz, O. Changes in novel anti-inflammatory cytokine concetration in the bood of endurance and race horses at different levels of training. Comput. Struct. Biotechnol. J. 2023, 21, 418–424. [Google Scholar] [CrossRef]
- Conde, E.; Bertrand, R.; Balbino, B.; Bonnefoy, J.; Stackowicz, J.; Caillot, N.; Colaone, F.; Hamdi, S.; Houmadi, R.; Loste, A.; et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat. Commun. 2021, 12, 2574. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Dumke, C.L.; Utter, A.C.; Murphy, E.A.; Pearce, S.; Gojanovich, G.; McAnulty, S.R.; Cullen, T.; et al. Blood leukocyte mRNA expression for IL-10, IL-1Ra, and IL-8, but not IL-6, increases after exercise. J. Interf. Cytokine Res. 2006, 26, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Page, A.E.; Adam, E.; Stewart, J.C.; Gonzales, C.; Barker, V.; Horohov, D.W. Alterations of peripheral gene expression in response to lipopolysaccharide-induced synovitis as a model for inflammation in horses. Vet. Immunol. Immunopathol. 2020, 225, 110058. [Google Scholar] [CrossRef] [PubMed]
- Vick, M.M.; Murphy, B.A.; Sessions, D.R.; Reedy, S.E.; Kennedy, E.L.; Horohov, D.W.; Cook, R.F.; Fitzgerald, B.P. Effects of systemic inflammation on insulin sensitivity in horses and inflammatory cytokine expression in adipose tissue. Am. J. Vet. Res. 2008, 69, 130–139. [Google Scholar] [CrossRef]
- Liburt, N.R.; Adams, A.A.; Betancourt, A.; Horohov, D.W.; McKeever, K.H. Exercise-induced increases in inflammatory cytokines in muscle and blood of horses. Equine Vet. J. 2010, 42, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef]
- Kwon, J.H.; Moon, K.M.; Min, K.W. Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare 2020, 8, 378. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef] [PubMed]
- Bates, D. Improved muscle regeneration by combining VEGF with IGF1. Regen. Med. 2010, 5, 853–854. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, L.A.; Nixon, A.J.; Brower-Toland, B.D. Effects of beta-aminopropionitrile on equine tendon metabolism in vitro and on effects of insulin-like growth factor-I on matrix production by equine tenocytes. Am. J. Vet. Res. 2001, 62, 1557–1562. [Google Scholar] [CrossRef]
- Miescher, I.; Rieber, J.; Calcagni, M.; Buschmann, J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int. J. Mol. Sci. 2023, 24, 2370. [Google Scholar] [CrossRef]
- Ochiai, H.; Okada, S.; Saito, A.; Hoshi, K.; Yamashita, H.; Takato, T.; Azuma, T. Inhibition of Insulin-like Growth Factor-1 (IGF-1) Expression by Prolonged Transforming Growth Factor-β1 (TGF-β1) Administration Suppresses Osteoblast Differentiation. J. Biol. Chem. 2012, 287, 22654–22661. [Google Scholar] [CrossRef] [PubMed]
- Eklund, E.; Hellberg, A.; Berglund, B.; Brismar, K.; Hirschberg, A.L. IGF-I and IGFBP-1 in Relation to Body Composition and Physical Performance in Female Olympic Athletes. Front. Endocrinol. 2021, 12, 708421. [Google Scholar] [CrossRef] [PubMed]
- Muniz-Bongers, L.R.; McClain, C.B.; Saxena, M.; Bongers, G.; Merad, M.; Bhardwaj, N. MMP2 and TLRs modulate immune responses in the tumor microenvironment. JCI Insight 2021, 6, e144913. [Google Scholar] [CrossRef] [PubMed]
- Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef]
- Jaoude, J.; Koh, Y. Matrix metalloproteinases in exercise and obesity. Vasc. Health Risk Manag. 2016, 12, 287–295. [Google Scholar]
- Lo Presti, R.; Hopps, E.; Caimi, G. Gelatinases and physical exercise: A systematic review of evidence from human studies. Medicine 2017, 96, e8072. [Google Scholar] [CrossRef]
- Rullman, E.; Norrbom, J.; Strömberg, A.; Wågsäter, D.; Rundqvist, H.; Haas, T.; Gustafsson, T. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J. Appl. Physiol. 2009, 106, 804–812. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. Matrix metalloproteinase and tissue inhibitor of metalloproteinase responses to muscle damage after eccentric exercise. J. Exerc. Rehabil. 2016, 12, 260–265. [Google Scholar] [CrossRef]
- de Sousa Neto, I.V.; Durigan, J.L.Q.; Carreiro de Farias Junior, G.; Bogni, F.H.; Ruivo, A.L.; de Araújo, J.O.; Nonaka, K.O.; Selistre-De-Araújo, H.; Marqueti, R.d.C. Resistance Training Modulates the Matrix Metalloproteinase-2 Activity in Different Trabecular Bones in Aged Rats. Clin. Interv. Aging 2021, 16, 71–81. [Google Scholar] [CrossRef]
- Arfuso, F.; Giudice, E.; Panzera, M.; Rizzo, M.; Fazio, F.; Piccione, G.; Giannetto, C. Interleukin-1Ra (Il-1Ra) and serum cortisol level relationship in horse as dynamic adaptive response during physical exercise. Vet. Immunol. Immunopathol. 2022, 243, 110368. [Google Scholar] [CrossRef]
- Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta 2010, 411, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Luotola, K. IL-1 Receptor Antagonist (IL-1Ra) Levels and Management of Metabolic Disorders. Nutrients 2022, 14, 3422. [Google Scholar] [CrossRef] [PubMed]
- Minciullo, P.L.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile, G. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch. Immunol. Ther. Exp. 2016, 64, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Page, A.E.; Stewart, J.C.; Holland, R.E., Jr.; Horohov, D.W. The Impact of Training Regimen on the Inflammatory Response to Exercise in 2-Year-Old Thoroughbreds. J. Equine Vet. Sci. 2017, 58, 78–83. [Google Scholar] [CrossRef]
- Page, A.E.; Stewart, J.C.; Scollay, M.C.; Horohov, D.W. Comparison of pre-race inflammatory marker mRNA expression with race-related parameters in Thoroughbreds. Comp. Exerc. Physiol. 2020, 16, 101–106. [Google Scholar] [CrossRef]
- Ropka-Molik, K.; Stefaniuk-Szmukier, M.; Musiał, A.D.; Velie, B.D. The Genetics of Racing Performance in Arabian Horses. Int. J. Genom. 2019, 2019, 9013239. [Google Scholar] [CrossRef]
- Cosgrove, E.J.; Sadeghi, R.; Schlamp, F.; Holl, H.M.; Moradi-Shahrbabak, M.; Miraei-Ashtiani, S.R.; Abdalla, S.; Shykind, B.; Troedsson, M.; Stefaniuk-Szmukier, M.; et al. Genome Diversity and the Origin of the Arabian Horse. Sci. Rep. 2020, 10, 9702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzędzicka, J.; Dąbrowska, I.; Kiełbik, P.; Perzyna, M.; Witkowska-Piłaszewicz, O. Are Proteins Such as MMP2, IGF1, IL-13, and IL-1ra Valuable as Markers of Fitness Status in Racehorses? A Pilot Study. Agriculture 2023, 13, 2134. https://doi.org/10.3390/agriculture13112134
Grzędzicka J, Dąbrowska I, Kiełbik P, Perzyna M, Witkowska-Piłaszewicz O. Are Proteins Such as MMP2, IGF1, IL-13, and IL-1ra Valuable as Markers of Fitness Status in Racehorses? A Pilot Study. Agriculture. 2023; 13(11):2134. https://doi.org/10.3390/agriculture13112134
Chicago/Turabian StyleGrzędzicka, Jowita, Izabela Dąbrowska, Paula Kiełbik, Maciej Perzyna, and Olga Witkowska-Piłaszewicz. 2023. "Are Proteins Such as MMP2, IGF1, IL-13, and IL-1ra Valuable as Markers of Fitness Status in Racehorses? A Pilot Study" Agriculture 13, no. 11: 2134. https://doi.org/10.3390/agriculture13112134
APA StyleGrzędzicka, J., Dąbrowska, I., Kiełbik, P., Perzyna, M., & Witkowska-Piłaszewicz, O. (2023). Are Proteins Such as MMP2, IGF1, IL-13, and IL-1ra Valuable as Markers of Fitness Status in Racehorses? A Pilot Study. Agriculture, 13(11), 2134. https://doi.org/10.3390/agriculture13112134