Studies on the Impact of Selected Pretreatments on Protein Solubility of Arthrospira platensis Microalga
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalga Pretreatments
2.2. Incubation for A. platensis after Pretreatments
2.3. Determination of Total Protein by Bradford Method
2.4. Electrophoretic Analysis of Proteins by SDS-PAGE
2.5. Determination of Total Peptides by O-Phthaldialdehyde (OPA) Assay
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Safi, C.; Charton, M.; Ursu, A.V.; Laroche, C.; Zebib, B.; Pontalier, P.-Y.; Vaca-Garcia, C. Release of hydro-soluble microalgal proteins using mechanical and chemical treatments. Algal Res. 2014, 3, 55–60. [Google Scholar] [CrossRef]
- Hayes, M.; Skomedal, H.; Skjånes, K.; Mazur-Marzec, H.; Toruńska-Sitarz, A.; Catala, M.; Isleten Hosoglu, M.; García-Vaquero, M. Microalgal proteins for feed, food and health. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 347–368. [Google Scholar]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022, 11, 2984. [Google Scholar] [CrossRef] [PubMed]
- Palmegiano, G.B.; Agradi, E.; Forneris, G.; Gai, F.; Gasco, L.; Rigamonti, E.; Sicuro, B.; Zoccarato, I. Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquac. Res. 2005, 36, 188–195. [Google Scholar] [CrossRef]
- Teimouri, M.; Amirkolaie, A.K.; Yeganeh, S. The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 2013, 396-399, 14–19. [Google Scholar] [CrossRef]
- Martins, C.F.; Pestana Assunção, J.; Ribeiro Santos, D.M.; Madeira, M.S.M.d.S.; Alfaia, C.M.R.P.M.; Lopes, P.A.A.B.; Coelho, D.F.M.; Cardoso Lemos, J.P.; de Almeida, A.M.; Mestre Prates, J.A.; et al. Effect of dietary inclusion of Spirulina on production performance, nutrient digestibility and meat quality traits in post-weaning piglets. J. Anim. Physiol. Anim. Nutr. 2021, 105, 247–259. [Google Scholar] [CrossRef]
- Pestana, J.M.; Puerta, B.; Santos, H.; Madeira, M.S.; Alfaia, C.M.; Lopes, P.A.; Pinto, R.M.A.; Lemos, J.P.C.; Fontes, C.M.G.A.; Lordelo, M.M.; et al. Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits, and meat quality. Poult. Sci. 2020, 99, 2519–2532. [Google Scholar] [CrossRef]
- Beynen, A.C. Microalgae in petfood. Creat. Companion 2019, 40, 42. [Google Scholar]
- Satyaraj, E.; Reynolds, A.; Engler, R.; Labuda, J.; Sun, P. Supplementation of Diets With Spirulina Influences Immune and Gut Function in Dogs. Front. Nutr. 2021, 8, 667072. [Google Scholar] [CrossRef]
- Böcker, L.; Hostettler, T.; Diener, M.; Eder, S.; Demuth, T.; Adamcik, J.; Reineke, K.; Leeb, E.; Nyström, L.; Mathys, A. Time-temperature-resolved functional and structural changes of phycocyanin extracted from Arthrospira platensis/Spirulina. Food Chem. 2020, 316, 126374. [Google Scholar] [CrossRef]
- Buecker, S.; Grossmann, L.; Loeffler, M.; Leeb, E.; Weiss, J. Thermal and acidic denaturation of phycocyanin from Arthrospira platensis: Effects of complexation with λ-carrageenan on blue color stability. Food Chem. 2022, 380, 132157. [Google Scholar] [CrossRef]
- Agboola, J.O.; Teuling, E.; Wierenga, P.A.; Gruppen, H.; Schrama, J.W. Cell wall disruption: An effective strategy to improve the nutritive quality of microalgae in African catfish (Clarias gariepinus). Aquac. Nutr. 2019, 25, 783–797. [Google Scholar] [CrossRef]
- Middelberg, A.P.J. Process-scale disruption of microorganisms. Biotechnol. Adv. 1995, 13, 491–551. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass Bioenergy 2012, 46, 89–101. [Google Scholar] [CrossRef]
- Sousa, C.V.d. Microalgas: Do Tratamento de Efluentes Para a Biorrefinaria. Master’s Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2014. [Google Scholar]
- Ahmed, J.; Kumar, V. Effect of high-pressure treatment on oscillatory rheology, particle size distribution and microstructure of microalgae Chlorella vulgaris and Arthrospira platensis. Algal Res. 2022, 62, 102617. [Google Scholar] [CrossRef]
- Safi, C.; Ursu, A.V.; Laroche, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Res. 2014, 3, 61–65. [Google Scholar] [CrossRef]
- Soto-Sierra, L.; Stoykova, P.; Nikolov, Z.L. Extraction and fractionation of microalgae-based protein products. Algal Res. 2018, 36, 175–192. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hosano, N.; Hosano, H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules 2022, 27, 2786. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Rodriguez, C.; Durrant, A. Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review. Sustainability 2022, 14, 9953. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhou, W.; Yuan, W.; Wang, D. Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Res. 2020, 46, 101794. [Google Scholar] [CrossRef]
- Annamalai, S.N.; Das, P.; Thaher, M.I.A.; Abdul Quadir, M.; Khan, S.; Mahata, C.; Al Jabri, H. Nutrients and Energy Digestibility of Microalgal Biomass for Fish Feed Applications. Sustainability 2021, 13, 13211. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, H.; Chen, S.; Wen, S.; Wu, X.; Zhang, D.; Yuan, Q.; Cong, W. Microalgal cell disruption via extrusion for the production of intracellular valuables. Energy 2018, 142, 339–345. [Google Scholar] [CrossRef]
- Al Hattab, M.; Ghaly, A. Microalgae Oil Extraction Pre-treatment Methods: Critical Review and Comparative Analysis. J. Fundam. Renew. Energy Appl. 2015, 5, 4. [Google Scholar] [CrossRef]
- Meade, S.J.; Reid, E.A.; Gerrard, J.A. The impact of processing on the nutritional quality of food proteins. J. AOAC Int. 2005, 88, 904–922. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Ritchie, R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 2008, 46, 115–126. [Google Scholar] [CrossRef]
- Lopes, P.A.; Coelho, D.; Prates, J.A.M. Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall. PLoS ONE 2022, 17, e0268565. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Sáez, M.I.; Martínez, T.F.; Acién, F.G.; Alarcón, F.J. Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole. Algal Res. 2019, 37, 145–153. [Google Scholar] [CrossRef]
- Sedighi, M.; Jalili, H.; Darvish, M.; Sadeghi, S.; Ranaei-Siadat, S.-O. Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. Food Chem. 2019, 284, 334–339. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Carbonaro, M.; Cappelloni, M.; Nicoli, S.; Lucarini, M.; Carnovale, E. Solubility−Digestibility Relationship of Legume Proteins. J. Agric. Food Chem. 1997, 45, 3387–3394. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: A comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 2011, 164, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Krzemiñska, I.; Tys, J. Physical methods of microalgal biomass pretreatment. Int. Agrophys 2014, 28, 341–348. [Google Scholar] [CrossRef]
- Viner, K.J.; Champagne, P.; Jessop, P.G. Comparison of cell disruption techniques prior to lipid extraction from Scenedesmus sp. slurries for biodiesel production using liquid CO2. Green Chem. 2018, 20, 4330–4338. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Lee, S.Y.; Zhu, L.; Show, P.L. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem. Eng. J. 2019, 367, 1–8. [Google Scholar] [CrossRef]
- Unterlander, N.; Champagne, P.; Plaxton, W.C. Lyophilization pretreatment facilitates extraction of soluble proteins and active enzymes from the oil-accumulating microalga Chlorella vulgaris. Algal Res. 2017, 25, 439–444. [Google Scholar] [CrossRef]
- Abbassi, A.; Ali, M.; Watson, I.A. Temperature dependency of cell wall destruction of microalgae with liquid nitrogen pretreatment and hydraulic pressing. Algal Res. 2014, 5, 190–194. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Garrido-Fernández, A.; Mijlkovic, A.; Krona, A.; Martínez-Abad, A.; Coll-Marqués, J.M.; López-Rubio, A.; Lopez-Sanchez, P. Composition and rheological properties of microalgae suspensions: Impact of ultrasound processing. Algal Res. 2020, 49, 101960. [Google Scholar] [CrossRef]
Nutritional Composition | |
Energy (MJ/kg) | 13.9 |
Crude protein (% dry matter) | 62.6 |
Ash (% dry matter) | 14.9 |
Crude carbohydrates (% dry matter) | 6.06 |
Crude fibre (% dry matter) | 9.78 |
Crude fat (% dry matter) | 6.70 |
Pigment composition | |
Phycocyanin (% dry matter) | 11.2 |
Item | Pretreatments 1 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
NoP | BM | ET | FD | HT | MW | SO | ||
Total protein (mg/mL) | ||||||||
Bradford method | 1.42 ± 0.112 ab | 1.30 ± 0.061 b | 0.07 ± 0.060 c | 1.20 ± 0.105 b | 1.29 ± 0.125 b | 0.41 ± 0.054 c | 1.72 ± 0.418 a | <0.001 |
SDS-PAGE gel | 9.9 ± 1.58 a | 10.1 ± 0.20 a | 6.50 ± 1.035 b | 9.6 ± 0.99 a | 10.5 ± 1.61 a | 7.0 ± 0.32 b | 10.7 ± 0.54 a | <0.001 |
Proteins (mg/mL) in SDS-PAGE gel | ||||||||
Proteins 18–26 kDa | 2.41 ± 0.066 ab | 2.35 ± 0.107 ab | 1.44 ± 0.176 c | 2.25 ± 0.030 b | 2.74 ± 0.315 a | 1.73 ± 0.256 c | 2.65 ± 0.244 a | <0.001 |
Proteins 40–48 kDa | 1.71 ± 0.094 bc | 2.02 ± 0.205 ab | 1.19 ± 0.188 d | 1.94 ± 0.113 ab | 2.10± 0.273 a | 1.41 ± 0.057 cd | 2.00 ± 0.056 ab | <0.001 |
Other proteins | 5.74 ± 1.553 a | 5.76 ± 0.152 a | 3.87 ± 0.755 bc | 5.39 ± 0.909 abc | 5.61 ± 1.027 ab | 3.81 ± 0.327 c | 6.09 ± 0.588 a | 0.001 |
Proteins (% total protein) in SDS-PAGE gel | ||||||||
Proteins 18–26 kDa | 22.3 ± 5.22 ab | 23.2 ± 1.30 ab | 18.7 ± 2.07 b | 23.7 ± 2.49 ab | 26.4 ± 1.17 a | 24.9 ± 3.58 a | 24.7 ± 2.72 a | 0.011 |
Proteins 40–48 kDa | 17.7 ± 3.15 | 19.9 ± 1.85 | 18.3 ± 0.95 | 20.3 ± 1.25 | 20.2 ± 0.56 | 20.3 ± 0.36 | 18.6 ± 0.52 | 0.047 |
Other proteins | 60.0 ± 7.46 ab | 56.8 ± 0.79 ab | 63.0 ± 1.48 a | 56.0 ± 3.64 ab | 53.5 ± 1.70 b | 54.9 ± 3.89 b | 56.6 ± 3.13 ab | 0.008 |
Proteins (PTRAT/PCON) in SDS-PAGE gel | ||||||||
Total protein | nd | 1.05 ± 0.196 abc | 0.68 ± 0.207 c | 1.00 ± 0.206 abc | 1.07 ± 0.206 ab | 0.72 ± 0.135 b c | 1.12 ± 0.223 a | 0.005 |
Proteins 18–26 kDa | nd | 1.18 ± 0.110 a | 0.69 ± 0.105 b | 1.13 ± 0.046 a | 1.23 ± 0.190 a | 0.82 ± 0.038 b | 1.17 ± 0.054 a | <0.001 |
Proteins 40–48 kDa | nd | 0.98 ± 0.028 ab | 0.60 ± 0.076 c | 0.93 ± 0.021 b | 1.13 ± 0.108 a | 0.72 ± 0.102 c | 1.10 ± 0.127 ab | <0.001 |
Other proteins | nd | 1.08 ± 0.358 | 0.74 ± 0.320 | 1.01 ± 0.335 | 1.03 ± 0.336 | 0.71 ± 0.202 | 1.14 ± 0.426 | 0.237 |
Total peptides (µg/mL) | ||||||||
o-phthaldialdehyde assay | 42.7 ± 2.20 a | 50.4 ± 9.20 a | 24.6 ± 4.81 b | 44.4 ± 9.84 a | 38.5 ± 4.39 a | 39.0 ± 5.02 a | 43.4 ± 3.69 a | <0.001 |
Item | Pretreatments 1 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
NoP | BM | ET | FD | HT | MW | SO | ||
Total protein (mg/mL) | ||||||||
Bradford method | 0.83 ± 0.094 bc | 1.13 ± 0.312 b | 0.03 ± 0.039 d | 0.71 ± 0.091 c | 0.67 ± 0.101 c | 1.13 ± 0.076 b | 2.36 ± 0.246 a | <0.001 |
SDS-PAGE gel | 11.5 ± 0.59 | 12.9 ± 0.79 | 13.8 ± 5.07 | 11.5 ± 1.85 | 11.3 ± 0.31 | 13.6 ± 0.64 | 10.2 ± 1.39 | 0.115 |
Protein quantification (mg/mL) by SDS-PAGE gel | ||||||||
Proteins 18–26 kDa | 2.23 ± 0.026 | 2.40 ± 0.057 | 2.14 ± 0.237 | 2.29 ± 0.132 | 2.16 ± 0.067 | 2.38 ± 0.080 | 2.40 ± 0.337 | 0.075 |
Proteins 40–48 kDa | 1.95 ± 0.032 | 2.14 ± 0.088 | 1.97 ± 0.255 | 1.98 ± 0.264 | 1.96 ± 0.045 | 2.20 ± 0.090 | 2.19 ±0.440 | 0.279 |
Other proteins | 7.36 ± 0.591 | 8.33 ± 0.673 | 9.66 ± 5.041 | 7.20 ± 1.456 | 7.16 ± 0.214 | 8.99 ± 0.698 | 5.60 ± 2.054 | 0.110 |
Protein proportion (% total) by SDS-PAGE gel | ||||||||
Proteins 18–26 kDa | 19.3 ± 0.87 ab | 18.7 ± 0.80 ab | 16.7 ± 4.01 b | 20.3 ± 2.51 ab | 19.1 ± 0.15 ab | 17.6 ± 1.14 b | 24.2 ± 6.39 a | 0.020 |
Proteins 40–48 kDa | 16.9 ± 0.63 | 16.6 ± 0.29 | 15.9 ± 0.59 | 17.4 ± 1.20 | 17.4 ± 5.55 | 16.3 ± 1.06 | 22.2 ± 7.31 | 0.129 |
Other proteins | 63.7 ± 1.91 | 64.7 ± 1.37 | 67.3 ± 9.53 | 62.4 ± 3.09 | 63.5 ± 0.22 | 66.2 ± 2.30 | 53.6 ± 13.69 | 0.056 |
Protein proportion (PTRAT/PCON) by SDS-PAGE gel | ||||||||
Total protein | nd | 1.11 ± 0.037 | 1.21 ± 0.505 | 0.99 ± 0.126 | 0.98 ± 0.071 | 1.18 ± 0.083 | 0.88 ± 0.093 | 0.169 |
Proteins 18–26 kDa | nd | 1.08 ± 0.014 | 0.96 ± 0.117 | 1.03 ± 0.049 | 0.97 ± 0.040 | 1.07 ± 0.037 | 1.08 ± 0.162 | 0.132 |
Proteins 40–48 kDa | nd | 1.10 ± 0.051 | 1.01 ± 0.140 | 1.02 ± 0.144 | 1.00 ± 0.021 | 1.13 ± 0.052 | 1.12 ± 0.214 | 0.385 |
Other proteins | nd | 1.13 ± 0.044 | 1.36 ± 0.812 | 0.97 ± 0.150 | 0.98 ± 0.102 | 1.23 ± 0.134 | 0.75 ± 0.236 | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Studies on the Impact of Selected Pretreatments on Protein Solubility of Arthrospira platensis Microalga. Agriculture 2023, 13, 221. https://doi.org/10.3390/agriculture13010221
Spínola MP, Costa MM, Prates JAM. Studies on the Impact of Selected Pretreatments on Protein Solubility of Arthrospira platensis Microalga. Agriculture. 2023; 13(1):221. https://doi.org/10.3390/agriculture13010221
Chicago/Turabian StyleSpínola, Maria P., Mónica M. Costa, and José A. M. Prates. 2023. "Studies on the Impact of Selected Pretreatments on Protein Solubility of Arthrospira platensis Microalga" Agriculture 13, no. 1: 221. https://doi.org/10.3390/agriculture13010221
APA StyleSpínola, M. P., Costa, M. M., & Prates, J. A. M. (2023). Studies on the Impact of Selected Pretreatments on Protein Solubility of Arthrospira platensis Microalga. Agriculture, 13(1), 221. https://doi.org/10.3390/agriculture13010221