Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Field Experiment
2.3. Model Set-Up and Testing
2.3.1. Description of the Model SWAP-WOFOST-N
2.3.2. Model Initialization and Calibration
2.3.3. Scenario Development
- S0: the farmers’ conventional irrigation and fertilisation practices. For all scenarios, fertigation instead of broadcast fertiliser application was used for topdressing urea.
- S1: reduced irrigation depth with farmers’ fertilisation practice. For each irrigation event, fixed irrigation depths were applied: 95 mm for wheat and 80 mm for maize, as recommended by Sun et al. [43].
- S2: optimal irrigation schedule based on the irrigation depth in S1 and the optimal depletion of readily available water.
- S3: farmers’ irrigation practice with application of the recommended N rate, which is 151 kg/ha N for wheat and 168 kg/ha N for maize [57]. The top-dressing urea amount was the same as S0 while the basal fertiliser amount was calculated by subtracting the top-dressing rate from the recommend rate.
- S4: farmers’ irrigation practice with the recommended fertiliser application rate plus an optimal N split ratio between basal fertilisation and top-dressing fertigation.
- S5: a combination of the optimal irrigation scenario S2 and fertilisation scenario S4.
2.4. Evaluation Indicators and Statistical Analysis
3. Results
3.1. Calibration and Validation of the SWAP-WOFOST-N Model
3.2. Analysis of Two-Year Field Experiment
3.2.1. Overview of the Performance of the Experimental Practices
3.2.2. Insight into the Water and Nitrogen Balance of the Experimental Practices
3.3. Scenarios to Improve Water and Nitrogen Use Efficiency
3.3.1. Optimal Irrigation Schedule for Irrigation Strategy Development
3.3.2. Optimal Top-Dressing Ratio for the Fertigation Strategy Development
3.3.3. Comparison of Irrigation and Fertigation Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Measured Item | Sampling Information | Measuring Time | Measuring Method/Tool |
---|---|---|---|
Weather data | Solar radiation, Daily temperature, Air humidity, Wind speed, Daily rainfall | Every half hour | automatic meteorological station (Campbell Scientific, USA) placed within 100 m of the experimental field |
Soil texture | Depth of 2 m at one random point with 20 cm increments each time, 3 replicate samples per soil layer | October 2017 and December 2019 | BT-9300HT laser particle size analyser |
Bulk density (BD) | September 2018 | Cutting ring Oven drying Weighing | |
Field capacity (FC) | |||
θs 1 | |||
SWRC 2 | A total of 3 points in a random border located at 10 m, 100 m, 190 m along the field; 20 cm for each soil layer to 1 m deep | September 2020 | Equitensiometer (Soilmoisture Equipment Corp., Goleta, CA, USA) |
Ks 3 | December 2020 | Laboratory analysis | |
Organic matter | October 2019 | ||
Available N/P/K | |||
Irrigation amount | Recorded for each irrigation event | Before and after irrigation | Flowmeter |
Fertilisation rate | As the set amount | Each fertigation event | Scale |
Soil moisture | A total of 5 points in each border located at 10 m, 50 m, 100 m, 150 m, 190 m along the border, 100 cm deep in one point with 10 cm increments | Before and after irrigation | Oven drying Weighing |
Soil NO3-N concentration | Before and after fertilisation, before sowing and after harvest | Automatic discrete analyser (CleverChem Anna) | |
Leaf Area Index (LAI) | A total of 3 optional borders (one for each treatment group) A total of 3 points in each border: 10 m, 100 m, 190 m along the field; 1 plant at each point | Each development stage | Manually for LAI 4 and CH in 2018 and SunScan (Delta-T) for LAI in 2019 |
Crop height (CH) | |||
Crop yields | All borders were harvested together by combine harvester Measured yield was an average of each treatment | After harvesting | Weighing |
Appendix B. Calibrated Parameters
Soil Depth (cm) | Soil Texture | Residual Water Content (cm3/cm3) | Saturated Water Content (cm3/cm3) | Shape Factor α (cm−1) | Shape Factor n (−) | Saturated Hydraulic Conductivity (cm/d) | Exponent in Hydraulic Conductivity Function (−) | Bulk Density (mg/cm3) |
---|---|---|---|---|---|---|---|---|
0–80 | Silt loam | 0.0334 | 0.4502 | 0.0137 | 1.5801 | 44.18 | 0.5 | 1510.00 |
80–100 | Loam | 0.0332 | 0.4406 | 0.0194 | 1.6383 | 54.76 | 0.5 | 1470.00 |
100–200 | Sandy loam | 0.0310 | 0.4352 | 0.0223 | 1.6801 | 66.04 | 0.5 | 1440.00 |
Parameter | Description | Unit | Calibrated Values | |||
---|---|---|---|---|---|---|
Winter Wheat | Summer Maize | |||||
TSUMEA | Temperature sum from emergence to anthesis | °C | 1160 | 1060 | ||
TSUMAM | Temperature sum from anthesis to maturity | °C | 920 | 910 | ||
TDWI | Initial total crop dry weight | kg/ha | 210 | 20 | ||
SLATB | Specific leaf area as function of development stage | ha/kg | 0.0 | 0.0020 | 0.0 | 0.0025 |
1.0 | 0.0017 | 0.8 | 0.0020 | |||
2.0 | 0.0016 | 2.0 | 0.0020 | |||
SPAN | Life span under leaves under optimal conditions | d | 35 | 39 | ||
AMAXTB | Max. CO2 assimilation rate as function of development stage | kg/ha/hr | 0.0 | 40 | 0.0 | 70 |
1.0 | 40 | 1.5 | 65 | |||
1.3 | 45 | 1.8 | 45 | |||
2.0 | 35 | 2.0 | 20 | |||
CVO | Efficiency of conversion into storage organs | kg/kg | 0.779 | 0.601 | ||
RDI | Initial rooting depth | cm | 10.0 | 10.0 | ||
RDC | Max. rooting depth crop/cultivar | cm | 125.0 | 100.0 | ||
DVSNLT | Development stage above which no crop nitrogen uptake occurs | / | 1.5 | 1.8 | ||
NMXLV | Max. N concentration in leaves as function of development stage | kg N/kg | 0.0 | 0.06 | 0.0 | 0.06 |
0.4 | 0.04 | 0.4 | 0.04 | |||
0.7 | 0.03 | 0.7 | 0.03 | |||
1.0 | 0.02 | 1.0 | 0.02 | |||
2.0 | 0.012 | 2.0 | 0.018 | |||
2.1 | 0.012 | 2.1 | 0.018 |
Parameters | Description | Unit | Calibrated Values |
---|---|---|---|
Temp_ref | Reference temperature at which the transformation rates have been established | °C | 7.5 |
RateConNitrif_ref | Nitrification rate constant established at the reference temperature | d−1 | 1.0 |
RateConDenitri_ref | Denitrification rate constant established at the reference temperature | d−1 | 0.06 |
TCSF_N | Transpiration concentration stream factor | - | 1.0 |
LaiCritNupt | Critical LAI value to calculate uptake rate based on the ammonium availability | - | 0.1 |
dz_WSN | Thickness of the soil layer considered for the simulation of the soil organic matter and nitrogen dynamics | m | 1.0 |
References
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Strokal, M.; Biemans, H.; van Oel, P. The challenge to balance water and food objectives for sustainable development. Curr. Opin. Environ. Sustain. 2019, 40, A1–A4. [Google Scholar] [CrossRef]
- Liang, H.; Hu, K.; Batchelor, W.D.; Qi, Z.; Li, B. An integrated soil-crop system model for water and nitrogen management in North China. Sci. Rep. 2016, 6, 25755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, M.; Xu, T. China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge. Sustainability 2017, 9, 2339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qin, W.; Chen, S.; Shao, L.; Sun, H. Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X.; Zhang, F. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. Ambio 2010, 39, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, H.; Huang, G.; Zhang, R.; Yang, H. Nitrate nitrogen accumulation and leaching pattern at a winter wheat: Summer maize cropping field in the North China Plain. Environ. Earth Sci. 2016, 75, 118. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Bai, Z.; Velthof, G.L.; Wu, Z.; Chadwick, D.; Ma, L. Accumulation and leaching of nitrate in soils in wheat-maize production in China. Agric. Water Manag. 2019, 212, 407–415. [Google Scholar] [CrossRef]
- Jiao, X.-q.; He, G.; Cui, Z.-l.; Shen, J.-b.; Zhang, F.-s. Agri-environment policy for grain production in China: Toward sustainable intensification. China Agric. Econ. Rev. 2018, 10, 78–92. [Google Scholar] [CrossRef]
- Zhang, Q.; Chu, Y.; Xue, Y.; Ying, H.; Chen, X.; Zhao, Y.; Ma, W.; Ma, L.; Zhang, J.; Yin, Y.; et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Global Food Secur. 2020, 26, 100444. [Google Scholar] [CrossRef]
- Zhang, X.; Uwimpaye, F.; Yan, Z.; Shao, L.; Chen, S.; Sun, H.; Liu, X. Water productivity improvement in summer maize—A case study in the North China Plain from 1980 to 2019. Agric. Water Manag. 2021, 247, 106728. [Google Scholar] [CrossRef]
- Meng, Q.; Yue, S.; Hou, P.; Cui, Z.; Chen, X. Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: A Review. Pedosphere 2016, 26, 137–147. [Google Scholar] [CrossRef]
- Liu, B.-Y.; Zhao, X.; Li, S.-S.; Zhang, X.-Z.; Virk, A.L.; Qi, J.-Y.; Kan, Z.-R.; Wang, X.; Ma, S.-T.; Zhang, H.-L. Meta-analysis of management-induced changes in nitrogen use efficiency of winter wheat in the North China Plain. J. Clean. Prod. 2020, 251, 119632. [Google Scholar] [CrossRef]
- Hagin, J.; Lowengart, A. Fertigation for minimizing environmental pollution by fertilizers. Fert. Res. 1996, 43, 5–7. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Wang, J.; Huang, F.; Hao, W.; Li, B. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China. Agric. Water Manag. 2021, 244, 106534. [Google Scholar] [CrossRef]
- Gao, X.; Du, S.; Zhong, Y.; Wu, Y.; Zhang, G. Development status and prospect of Fertigation. China Agric. Inf. 2015, 4, 14–19. (in Chinese). [Google Scholar]
- Zhang, B.; Fu, Z.; Wang, J.; Zhang, L. Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China. Agric. Water Manag. 2019, 212, 349–357. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Keshavarz, M.R.; Playán, E. Surface fertigation: A review, gaps and needs. Span. J. Agric. Res. 2014, 12, 820–837. [Google Scholar] [CrossRef] [Green Version]
- Bai, M.; Xu, D.; Zhang, S.; Li, Y. Spatial–temporal distribution characteristics of water-nitrogen and performance evaluation for basin irrigation with conventional fertilization and fertigation methods. Agric. Water Manag. 2013, 126, 75–84. [Google Scholar] [CrossRef]
- Chen, X. Influences of Different Fertilization Methods under Border Irrigation on Spatial and Temporal Distribution of Soil Water and Nitrogen in Winter Wheat-summer Maize Rotation Cropland. Master’s Thesis, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2017. [Google Scholar]
- Zhang, S.; Xu, D.; Li, Y.; Bai, M. One-Dimensional Coupled Model of Surface Water Flow and Solute Transport for Basin Fertigation. J. Irrig. Drain. Eng. 2013, 139, 181–192. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, S.; Bai, M.; Li, Y.; Xia, Q. Two-Dimensional Coupled Model of Surface Water Flow and Solute Transport for Basin Fertigation. J. Irrig. Drain. Eng. 2013, 139, 972–985. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, S.; Xu, D.; Bai, M.; Shi, Y. Efficient Simulation of Surface Solute Transport in Basin Fertigation. J. Irrig. Drain. Eng. 2017, 143(11), 1–7. [Google Scholar] [CrossRef]
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jimenez-Berni, J.A.; Fereres, E. Water modelling approaches and opportunities to simulate spatial water variations at crop field level. Agric. Water Manag. 2020, 240, 106254. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS. Agric. Water Manag. 2018, 208, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, A.; Rahimikhoob, A.; Ebrahimian, H.; Varavipour, M. Simulation of nitrogen uptake and distribution under furrows and ridges during the maize growth period using HYDRUS-2D. Irrig. Sci. 2019, 37, 495–509. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Pritpal, S.; Bijay, S. Spatial and Temporal Assessment of Nitrate-N under Rice-Wheat System in Riparian Wetlands of Punjab, North-Western India. Agronomy 2021, 11, 1284. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Yu, Q.; Hu, C.S.; Li, X.X.; Malone, R.W.; Ahuja, L.R. Quantifying climate and management effects on regional crop yield and nitrogen leaching in the north china plain. J. Environ. Qual. 2013, 42, 1466–1479. [Google Scholar] [CrossRef]
- Groenendijk, P.; Boogaard, H.; Heinen, M.; Kroes, J.; Supit, I.; de Wit, A. Simulation nitrogen-limited crop growth with SWAP/WOFOST. In Process Descriptions and User Manual; Report 2721; Wageningen Environemntal Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- Kroes, J.G.; Van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; Van Walsum, P.E.V. SWAP Version 4, Theory Description and User Manual; Report 2780; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Kroes, J.; van Dam, J.; Supit, I.; de Abelleyra, D.; Verón, S.; de Wit, A.; Boogaard, H.; Angelini, M.; Damiano, F.; Groenendijk, P.; et al. Agrohydrological analysis of groundwater recharge and land use changes in the Pampas of Argentina. Agric. Water Manag. 2019, 213, 843–857. [Google Scholar] [CrossRef]
- Huo, Z.; Feng, S.; Dai, X.; Zheng, Y.; Wang, Y. Simulation of hydrology following various volumes of irrigation to soil with different depths to the water table. Soil Use Manag. 2012, 28, 229–239. [Google Scholar] [CrossRef]
- Li, P.; Ren, L. Assessing the feasibility of sprinkler irrigation schemes at the regional scale using a distributed agro-hydrological model. J. Hydrol. 2022, 610, 127917. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.; Huo, Z.; Song, X. Application of the SWAP model to simulate the field water cycle under deficit irrigation in Beijing, China. Math. Comput. Model. 2011, 54, 1044–1052. [Google Scholar] [CrossRef]
- Li, Y.; Bai, M.; Zhang, S.; Wu, C.; Li, F. Development in improved surface irrigation in China. Irrig. Drain. 2020, 69, 48–60. [Google Scholar] [CrossRef]
- Dai, X.P.; Zhang, X.H.; Han, Y.P.; Huang, H.P.; Geng, X. Impact of agricultural water reallocation on crop yield and revenue: A case study in China. Water Policy 2017, 19, 513–531. [Google Scholar] [CrossRef]
- Gao, Y.; Shen, X.J.; Li, X.Q.; Meng, Z.J.; Sun, J.S.; Duan, A.W. Effects of pre-Sowing Irrigation on Crop Water Consumption, Grain Yield and Water Productivity of Winter Wheat in the North China Plain. Irrig. Drain. 2015, 64, 566–574. [Google Scholar] [CrossRef]
- Sun, X.; Ritzema, H.; Huang, X.; Bai, X.; Hellegers, P. Assessment of farmers’ water and fertilizer practices and perceptions in the North China Plain. Irrig. Drain. 2022. [Google Scholar] [CrossRef]
- Sun, X. Optimizing surface fertigation practices for application in farmers’ field in the North China Plain. 2022; Unpublished. [Google Scholar]
- Van Dam, J.C.; Groenendijk, P.; Hendriks, R.F.A.; Kroes, J.G. Advances of Modeling Water Flow in Variably Saturated Soils with SWAP. Vadose Zone J. 2008, 7, 640–653. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary Conduction Of Liquids through Porous Mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- De Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 years of the WOFOST cropping systems model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; Report no. EPA/600/2–91/065; U.S. Environmental Protection Agency: Ada, OK, USA, 1991; p. 85. [Google Scholar]
- Pei, H.; Shen, Y.; Liu, C. Nitrogen and water cycling of typical cropland in the North China Plain. Chin. J. Appl. Ecol. 2015, 26, 283–296. [Google Scholar]
- Cai, G.X.; Chen, D.L.; Ding, H.; Pacholski, A.; Fan, X.H.; Zhu, Z.L. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr. Cycl. Agroecosyst. 2002, 63, 187–195. [Google Scholar] [CrossRef]
- Li, P.; Ren, L. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: I. Parameter sensitivity analysis, calibration and model validation. J. Hydrol. 2019, 574, 497–516. [Google Scholar] [CrossRef]
- Li, P.; Ren, L. Evaluating the effects of limited irrigation on crop water productivity and reducing deep groundwater exploitation in the North China Plain using an agro-hydrological model: II. Scenario simulation and analysis. J. Hydrol. 2019, 574, 715–732. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Janssen, P.H.M.; Heuberger, P.S.C. Calibration of process-oriented models. Ecol. Model. 1995, 83, 55–66. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Yin, Y.; Zhao, R.; Yang, Y.; Meng, Q.; Ying, H.; Cassman, K.G.; Cong, W.; Tian, X.; He, K.; Wang, Y.; et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef] [PubMed]
- Van Halsema, G.E.; Vincent, L. Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism. Agric. Water Manag. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency–measurement and management. In IFA International Workshop on Fertilizer Best Management Practices; IFA: Brussels, Belgium, 2007; pp. 1–28. [Google Scholar]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. AMBIO A J. Hum. Environ. 2002, 31, 132–140, 139. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, C.; Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.S.; Wang, J.Q.; Zhang, W.F.; Cui, Z.L.; Ma, W.Q.; Chen, X.P.; Jiang, R.F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol. Sin. 2008, 45, 915–924. [Google Scholar]
- Peng, Z.; Liu, Y.; Li, Y.; Abawi, Y.; Wang, Y.; Men, M.; An-Vo, D.A. Responses of Nitrogen Utilization and Apparent Nitrogen Loss to Different Control Measures in the Wheat and Maize Rotation System. Front. Plant Sci. 2017, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, S.A.; Hamani, A.K.M.; Chen, J.; Traore, A.; Abubakar, N.A.; Usman Ibrahim, A.; Wang, G.; Gao, Y.; Duan, A. Optimized Drip Fertigation Scheduling Improves Nitrogen Productivity of Winter Wheat in the North China Plain. J. Soil Sci. Plant Nutr. 2022, 22, 2955–2968. [Google Scholar] [CrossRef]
- Xie, J.; Qin, W.; Zhang, X. Improving water use efficiency in grain production of winter wheat and summer maize in the North China Plain: A review. Front. Agric. Sci. Eng. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Foley, D.J.; Thenkabail, P.S.; Aneece, I.P.; Teluguntla, P.G.; Oliphant, A.J. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. Int. J. Digit. Earth 2019, 13, 939–975. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards:A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Groenendijk, P.; Renaud, L.V.; Roelsma, J. Prediction of Nitrogen and Phosphorus leaching to groundwater and surface waters. In Process Descriptions of the Animo 4.0 Model; Alterra–Report 983; Alterra: Wageningen, The Netherlands, 2005. [Google Scholar]
Crop | Date | Farming Practice | Irrigation and Fertiliser Amount | |
---|---|---|---|---|
FP * | SP * | |||
2018 wheat | 25 October 2017 | Sowing with basal fertilisation | 750 kg/ha, compound fertiliser (26% N) | |
November 2017 | Irrigation | 249 mm | 210 mm 90 kg/ha, Urea | |
March 2018 | Top-dressing N with irrigation | 212 mm 225 kg/ha, Urea | 194 mm 135 kg/ha, Urea | |
3 June 2018 | Harvest | |||
2018 maize | 24 June 2018 | Sowing with basal fertilisation | 600 kg/ha, compound fertiliser (28% N) | |
July 2018 | Top-dressing N with irrigation | 119 mm 225 kg/ha, Urea | 95 mm 135 kg/ha, Urea | |
August 2018 | Top-dressing N with irrigation | 108 mm | 116 mm 90 kg/ha, Urea | |
12 October 2018 | Harvest | |||
2019 wheat | 23 October 2018 | Sowing with basal fertilisation | 375 kg/ha, compound fertiliser (15% N) | |
December 2018 | Top-dressing N with irrigation | 247 mm | 237 mm 90 kg/ha, Urea | |
March 2019 | Top-dressing N with irrigation | 228 mm 225 kg/ha, Urea | 208 mm 135 kg/ha, Urea | |
May 2019 | Irrigation | 154 mm | 169 mm | |
10 June 2019 | Harvest | |||
2019 maize | 21 June 2019 | Sowing with basal fertilisation | 450 kg/ha, compound fertiliser (27% N) | |
June 2019 | Irrigation | 103 mm | 103 mm | |
July 2019 | Top-dressing N with irrigation | 110 mm 225 kg/ha, Urea | 123 mm 135 kg/ha, Urea | |
August 2019 | Top-dressing N with irrigation | 134 mm | 135 mm 90 kg/ha, Urea | |
20 October 2019 | Harvest |
Scenario | Irrigation | Fertilisation |
---|---|---|
S0 | Farmers’ practice | Farmers’ practice |
S1 | Reduced water amounts for each irrigation by improving irrigation method | Farmers’ practice |
S2 | Optimal irrigation schedule based on crop water requirement and soil moisture | Farmers’ practice |
S3 | Farmers’ practice | Reduced basal fertiliser amount based on recommended N rate |
S4 | Farmers’ practice | Optimal split ratio for basal and top-dressing with recommended N rate |
S5 | Optimal irrigation schedule based on crop water requirement and soil moisture | Optimal split ratio for basal and top-dressing with recommended N rate |
Crop | Rainfall (mm) | Irrigation (mm) | Basal N (kg/ha) | Top-Dressing N (kg/ha) | Measured Yield (t/ha) | Simulated Yield (t/ha) | WUE (kg/m3) | NUE (kg/kg) | Water Percolation (mm) | N Leaching (kg/ha) |
---|---|---|---|---|---|---|---|---|---|---|
FP-18W | 330 | 461 | 195 | 104 | 6.85 | 6.84 | 0.87 | 22.92 | 438 | 323 |
FP-19W | 290 | 629 | 56 | 104 | 7.36 | 7.49 | 0.82 | 46.91 | 478 | 250 |
Average | 310 | 545 | 126 | 104 | 7.11 | 7.17 | 0.84 | 34.92 | 458 | 287 |
SP-18W | 330 | 404 | 195 | 104 | 6.96 | 6.87 | 0.94 | 23.01 | 380 | 319 |
SP-19W | 290 | 614 | 56 | 104 | 7.65 | 7.31 | 0.81 | 45.78 | 449 | 258 |
Average | 310 | 509 | 126 | 104 | 7.30 | 7.09 | 0.87 | 34.39 | 415 | 288 |
FP-18M | 371 | 227 | 168 | 104 | 7.38 | 7.48 | 1.25 | 27.57 | 242 | 174 |
FP-19M | 242 | 347 | 122 | 104 | 7.47 | 7.47 | 1.27 | 33.22 | 218 | 128 |
Average | 306 | 287 | 145 | 104 | 7.42 | 7.48 | 1.26 | 30.39 | 230 | 151 |
SP-18M | 371 | 211 | 168 | 104 | 7.25 | 7.55 | 1.30 | 27.79 | 221 | 162 |
SP-19M | 242 | 361 | 122 | 104 | 7.40 | 7.47 | 1.24 | 33.18 | 250 | 129 |
Average | 306 | 286 | 145 | 104 | 7.33 | 7.51 | 1.27 | 30.49 | 236 | 145 |
Crop | Depletion Factor | Yield (kg/ha) | Irrigation Frequency | Irrigation Amount (mm) |
---|---|---|---|---|
Wheat | FP | 8099 | 3 | 629 |
0.8 | 7181 | 1 | 95 | |
0.45 | 8150 | 2 | 190 | |
0.4 | 8150 | 3 | 285 | |
Maize | FP | 8177 | 3 | 347 |
0.7 | 8014 | 1 | 80 | |
0.45 | 8177 | 2 | 160 | |
0.4 | 8177 | 3 | 240 |
Crop | Scenario | Input Data | Simulation Results | ||||||
---|---|---|---|---|---|---|---|---|---|
Irrigation (mm) | Basal N (kg/ha) | Top-Dressing N (kg/ha) | Yield (t/ha) | WUE (kg/m3) | NUE (kg/kg) | Percolation (mm) | Leaching (kg/ha) | ||
Wheat | S0 | 629 | 195 | 104 | 8.02 | 0.87 | 26.86 | 477 | 358 |
S1 | 285 | 195 | 104 | 8.07 | 1.40 | 27.03 | 204 | 262 | |
S2 | 190 | 195 | 104 | 8.07 | 1.68 | 27.03 | 110 | 201 | |
S3 | 629 | 48 | 104 | 7.42 | 0.81 | 49.15 | 478 | 244 | |
S4 | 629 | 0 | 151 | 7.86 | 0.86 | 52.11 | 477 | 215 | |
S5 | 190 | 0 | 151 | 8.07 | 1.68 | 53.47 | 110 | 112 | |
Maize | S0 | 347 | 168 | 104 | 7.69 | 1.31 | 28.33 | 206 | 150 |
S1 | 240 | 168 | 104 | 8.01 | 1.66 | 29.50 | 59 | 130 | |
S2 | 160 | 168 | 104 | 8.09 | 2.01 | 29.81 | 25 | 103 | |
S3 | 347 | 65 | 104 | 6.93 | 1.18 | 41.25 | 235 | 110 | |
S4 | 347 | 112 | 56 | 7.13 | 1.21 | 42.42 | 216 | 117 | |
S5 | 160 | 112 | 56 | 7.96 | 1.98 | 47.32 | 25 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Li, Y.; Heinen, M.; Ritzema, H.; Hellegers, P.; van Dam, J. Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain. Agriculture 2023, 13, 17. https://doi.org/10.3390/agriculture13010017
Sun X, Li Y, Heinen M, Ritzema H, Hellegers P, van Dam J. Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain. Agriculture. 2023; 13(1):17. https://doi.org/10.3390/agriculture13010017
Chicago/Turabian StyleSun, Xiulu, Yizan Li, Marius Heinen, Henk Ritzema, Petra Hellegers, and Jos van Dam. 2023. "Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain" Agriculture 13, no. 1: 17. https://doi.org/10.3390/agriculture13010017
APA StyleSun, X., Li, Y., Heinen, M., Ritzema, H., Hellegers, P., & van Dam, J. (2023). Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain. Agriculture, 13(1), 17. https://doi.org/10.3390/agriculture13010017