Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield
Abstract
:1. Introduction
2. Methodology
3. Origin and Fate of MPs in Agricultural Soils
3.1. Sources
3.2. Outcome and Behavior
3.2.1. Vertical and Horizontal Migration
3.2.2. Transport Vectors for Pollutants
3.2.3. Degradation
4. Summary of the Principal Analytical Methods for the Determination of MPs in Agricultural Soils
4.1. Separation of MP Particles from the Soil Matrix
Separation Method | Soil Type | Identification and Quantification Method | Ref. |
---|---|---|---|
Filtering and Sieving | |||
Wet-sieving (1 mm); transferring the residual to a Petri dishes using a squeeze bottle and spoon; removing the excess water using a disposable syringe. | Kalkmarsch; Brown earth; Pseudogley–Luvisol; Gleysol–podzol; Luvisol; Brown earth–pseudogley and Pseudogley | Stereomicroscope/FTIR | [35] |
Air-drying; 5 g soil with 30 mL distilled water; stirred for 30 min at 150 rpm; centrifuging for 10 min at 3,000 rpm; filtering the supernatant using filter paper (<8 mm); adding distilled water; shacking again and putting in ultrasonic bath (10 min); centrifuging again; filtering the supernatant; air-drying (24 h). | (-) | Stereomicroscope | [47] |
OMR with 20 mL of H2O2 and deionized water (500 mL of sample); sieving (5 mm; 1 mm); repeating until all soil aggregates are dissolved (maximum 3 times). | Clay (Entisols and Vertisols) | ATR-FTIR | [96] |
Dry-sieving (<2 mm); 30 g/200 mL distilled water; stirring for 1 h; wet-sieving (200–2,000 µm); storing for 16 h in 500 mL distilled water; extraction of 20–50 µm; 2–20 µm and 0–2 µm fractions using Robinson’s pipette method; oven-drying (60 °C); supernatant recovery: addition of saturated SrCl2 solution for flocculation; centrifuging; filtering (0.45 µm). | Loam (Luvisols) | Pyr-GC-MS; visible MPs by TEM/EDXS | [29] |
wet-sieving (0.5, 1, 2 and 5 mm). | Soil substrate | ATR-FTIR | [38] |
Wet-sieving using a column of sieves (2, 0.25 and 0.05 mm); submerging of column in distilled water and up-/down-driving at a rate of 30 cycles per minute over a period of 5 min; drying (60 °C); centrifugation of dried samples (150 mL distilled water at 2300 rpm for 10 min); removal of supernatant; repeating the addition of distilled water and centrifugation; drying at 60 °C; OMR: adding 10 mL concentrated H2O2 (35%); 1 mL 10% FeSO4; heating in a sand bath at 50 °C; decomposing of H2O2 using 10% FeSO4; addition of 30 mL 0.5 M NaOH; storing for 24 h; density separation using saturated NaI solution; sieving; oven-drying at 80 °C. | Soil substrate (Nitisols; Gleysols) | Stereomicroscope | [19] |
Density Separation and Flotation | |||
Air-drying; density separation of 100 g soil using 200 mL of saturated NaCl solution (1.19 g cm−3); ultrasonic (5 min); stirred (30 min); filtering using GF/A membranes (0.45 mm); OMR with 100 mL of 30% H2O2 48 h at 50 °C; stirring (30 s every 2 h); vacuum filtering. | (-) | Stereoscopic microscope/µ-FTIR | [54] |
Sampled using shovel; sieving: <2 mm; density separation, ZnCl2 5 M (1.55 g cm−3); vacuum filtering, polycarbonate membrane. | Mollisols predominate (70%), followed by Alfisols (11%), Inceptisols (13%), Entisols (2%) and Vertisols (4%) | Stereomicroscope/µ-FTIR Microscope | [55] |
Sampling using stainless-steel corer; air-dried; OMR (10 g soil with 40 mL 33% (w/v) H2O2 2 h at 60 °C 300 rpm; density separation using saturated NaCl solution (1.2 g cm−3); filtering using stainless-steel mesh (50 μm). | Sandy-loam and clay-loam (Typic Torrifluvents and Typic Haplocambids) | Stereomicroscope/µ-FTIR | [42] |
Sampled using stainless-steel corer; dried 24 h at 65 °C; OMR using Fenton’s reagent: 10 mL 30% (v/v) H2O2 and 10 mL 5% FeSO4·7H2O solution at <40 °C using an ice bath; density separation: filtered RO water; saturated NaI solution (1.8 g cm−3); vacuum filtering through Whatman GF-D filter paper. | Sandy-loam | Stereomicroscope for a lower size limit of 50 µm; ATR-FTIR for >300 µm (excluding fibers); µ-FTIR in transmittance mode for all smaller particles and fibers | [52] |
OMR: (a) 30% (v/v) H2O2 at 60 °C and at 70 °C; (b) Fenton’s reagent (30% (v/v) H2O2 with an iron catalyst consisting of 20 g FeSO4·7H2O in 1 L of filtered RO water and final pH of 3); (c) NaOH solution (1 M NaOH at 60 °C and 10 M NaOH at 60 °C); (d) 10% KOH solution at 60 °C; density separation: (a) use of filtered RO water to extract MPs at freshwater density (1 g cm−3); (b) NaI solution (1.8 g cm−3) to extract higher-density MPs; stirring for 1 minute; settling for 24 h; vacuum-filtering through Whatman GF-D filter paper. | Sandy-loam (organic-rich; brown podzol soils) | Stereomicroscope/ATR-FTIR | [28] |
Drying at 25 °C; density separation using saturated NaI solution (1.6 g cm−3); stirring 5 min; ultrasonic for 15 min; 2 days rest to float out supernatants; filtering of supernatants; OMR with Fenton’s reagent (20 mL 30% H2O2 and 20 mL FeSO4 (0.05 M) (5 min at 60 °C); additional H2O2 (most 15 mL); filtering (0.45 μm GF/C glass-fiber membrane). | (-) | Stereomicroscope/µ-FTIR/SEM | [30] |
Density separation using saturated NaCl solution (1.19 g cm−3); drying at 70 °C for 24 h; ultrasonic treatment (2 min); stirring for 30 min to float out supernatants; settling for 24 h; filtering of supernatants using 20 µm nylon net filter; OMR with 30% H2O2 for 72 h at 50 °C; vacuum filtering (20 µm nylon net filters). | (-) | Stereomicroscope/µ-FTIR | [94] |
Density Separation using saturated NaCl solution (1.24 ± 0.05 g mL−1); stirring for 30 min; suspension for 24 h; collecting of supernatants into clean glass bottles (3 repetitions); filtering (20 µm); OMR with 100 mL of 30% H2O2 (72 h at 65 °C and 80 rpm); filtering (20 µm). | (-) | Stereomicroscope/µ-FTIR | [97] |
Density separation using saturated NaCl solution (1.20 g cm−3); ultrasonic (5 min); flotation using saturated NaI solution (1.60 g cm−3) if they contain many solid particles; filtering using nylon fiber (20 μm); OMR with 30% H2O2 (72 h; 60 °C). | (-) | Stereomicroscope/ATR-FTIR/µ-FTIR/SEM | [34] |
Sampled using stainless shovel; density separation using NaPO3 (50 g air-dried soil dispersed with 0.5 mol L−1 (NaPO3)n solution; Addition of saturated NaCl (flow rate of 1.0 L min−1); floatation via air blowing in the bottom; collecting of the over-flow suspension; sieving of the low-density materials (50 µm); sieve residues are then settled in saturated NaI solution for 48 h; filtering of the liquid through 5 µm cellulose nitrate filter; repeating 3 times; OMR with H2O2 and heating (70 °C for 72 h); filtering using a 20 µm glass-fiber filter. | (-) | Stereomicroscope/µ-FTIR | [44] |
Sampling using steel soil-sampler; density separation of 200 g soil using saturated NaCl solution (1.2 g cm− 3) for 20 min at 25 °C and 200 rpm; filtering using nylon fiber membrane (20 μm); OMR with 30% (v/v) H2O2 (72 h at 60 °C). | Hapli-Stagnic Anthrosols | Stereomicroscope/ATR-FTIR/µ-FTIR/SEM | [33] |
Flotation using distilled water and NaI mixture; centrifuging for 10 min at 3,000 rpm; filtering (11 µm) | (-) | Stereomicroscope/µ-FTIR | [50] |
Flotation using 50 mL distilled water (10 g soil) and ultrasonic treatment (2 h); filtration using filter paper (3 µm). | Clay; loess; sand | Stereomicroscope | [105] |
Flotation of 200 g soil using 200 mL ZnCl2 in a 500 mL glass beaker by stirring for 5–10 min and deposition for 24 h; filtering of supernatant using 0.45 µm GF/A membranes; repeating twice. | (-) | Stereomicroscope/µ-Raman spectroscope | [53] |
Drying at 40 ± 2 °C; sieving (<2 mm); 5 ± 0.01 g soil with 20 mL of deionized water; stirring 30 s at ~21,000 rpm; centrifuging for 15 min at 2,000 rpm; filtering the supernatant using filter paper (>8 µm); density separation using NaCl solution (1.20 g cm−3); filtering; adding 20 mL (ZnCl2; 1.55 g cm−3); stirring for 30 s at 32,000 rpm and centrifuged for 15 min at 2,000 rpm; filtering. | Loam; sand loam (Entic Haploxerolls) | Stereomicroscope | [40] |
Flotation using 50 ml demineralized water (12.3 g soil); ultrasonic cleaning agitation at 50/60 Hz (2 h); settling (36 h); burning of soil samples at 120 °C. | Soil substrate (karstic) | Stereomicroscope | [74] |
Flotation using distilled water; filtering (3 µm); OMR with Fenton’s reagent. | Clay-loam (Mollisols) | FTIR | [69] |
OMR with 30% KOH:NaClO4; ultrasonic treatment with energy input at 60 J mL−1 for 20 min; digestion process at 50 °C for 48 h with 30 s of shaking of the samples every 2 h.; first density fractionation (3×): centrifuging at 4,000 G for 5 min; addition of 30 mL saturated NaCl solution; re-centrifuging at 4,000 G for 5 min; second density fractionation: ZnCl2 solution. | (-) | Stereomicroscope/Raman spectroscope | [99] |
Flotation using 25 mL distilled water; vacuum filtering using a fiber-free membrane. | Silt-loam; fine sandy-loam; clay-loam | Polarized-lightmicroscopy | [37] |
Others | |||
Incubation of samples in 60 °C water bath for 6 h; suspension of sample for 24 h; extraction of a small amount of supernatant liquid which is then dried and put on a Petri dish. | Sandy-loam | TOF-SIMS | [98] |
4.2. Identifying and Quantifying MP Particles
4.3. Contamination Control
5. Occurrence of MPs in Agricultural Soils
6. Effects of MPs in Agricultural Soils
6.1. Soil Physicochemical Properties
6.2. Soil Microbiota
6.3. Soil Fauna
6.4. Vegetation
6.5. Agricultural Production
Species | MP | Size (µm) | Dose a | Measurement Date (Days) | Number or Leaves | Leaf Area | Height | Fresh Aerial Biomass | Dry Aerial Biomass | Bulb Dry Biomass | Bulb Water Content | Fresh Root Biomass | Dry Root Biomass | Dry Root/Leaf Biomass | Root Length | Root Diameter | Root Tissue Density | Seed Germination Rate | Co-Factor | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Barley | PE | 40–48 | 0.01 | 240 | = | = | [174] | |||||||||||||
Barley | PHBV | 1–15 | 0.01 | 240 | = | = | [174] | |||||||||||||
Bean | PE | 250–1,000 | 0.5, 1, 1.5, 2, 2.5 | 46 | c | = | = | = | [163] | |||||||||||
Bean | PLA + PBAT | 250–1,000 | 0.5, 1, 1.5, 2, 2.5 | 46 | ↓c | ↓c | c | ↑c | [163] | |||||||||||
Chinese cabbage | PE | <25, 25–48, 48–150, 150–850 | 0.25, 0.5, 1, 2 | 30 | = | [172] | ||||||||||||||
Chinese cabbage | PS | <25, 25–48, 48–150, 150–850 | 0.25, 0.5, 1, 2 | 30 | ↓c,d | [172] | ||||||||||||||
Cress | Aged-PC | 3,000 | 2 | 7 | ↓e | ↓e | ↓e | ↓e | ↓e | ↓e | ↓ | [166] | ||||||||
Cress | PE | <125 | 0.02 | 6, 21 | ↓,↓ | =,↓ | ↓,↓ | [21] | ||||||||||||
Cress | PE + PVC | <125 | 0.02 | 6, 21 | ↓,↓ | ↑,= | ↓,= | [21] | ||||||||||||
Cress | PET | 5–60, 61–499, 500–3,000 | 0.02 | 6 | ↓ | ↓d | ↓ | AR | [164] | |||||||||||
Cress | PP | <125 | 0.02 | 6, 21 | ↓,↓ | ↑,↓ | ↓,↓ | [21] | ||||||||||||
Cress | PVC | <125 | 0.02 | 6, 21 | ↓,↓ | ↑,↓ | ↓,= | [21] | ||||||||||||
Lettuce | PE | 8.68–500 | 0.1, 1, 10 | 45 | ↓c | ↓c | Cd | [165] | ||||||||||||
Lettuce | PVC | 0.1–18, 18–150 | 0.5, 1, 2 | 21 | ↑c,d | ↑c,d | [170] | |||||||||||||
Maize | PE | 100–154 | 0.1, 1, 10 | 30 | ↑c | ↑c | ZnO | [168] | ||||||||||||
Maize | PLA | 100–154 | 0.1, 1, 10 | 30 | ↓c | ↓c | ZnO | [168] | ||||||||||||
Maize cv. ZNT 488 | PU | 4,280 | 0.01, 0.1, 1 | 54 | = | = | = | [162] | ||||||||||||
Maize cv. ZTN 182 | PU | 4,280 | 0.01, 0.1, 1 | 54 | ↑c | ↑c | = | [162] | ||||||||||||
Rice | PS | 8.5–30.7 | 0.005, 0.025 | 142 | ↓ | ↓ | = | = | [173] | |||||||||||
Spring onion | PA | 15–20 | 2 | 40 | ↑ | ↓ | ↑ | ↓ | ↑ | ↓ | ↓ | [150] | ||||||||
Spring onion | PE | 643 | 2 | 40 | = | ↑ | = | ↑ | ↑ | ↑ | ↓ | ↑ | [150] | |||||||
Spring onion | PES | 5,000 | 0.2 | 40 | = | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | ↑ | [150] | |||||||
Spring onion | PET | 222–258 | 2 | 40 | = | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | = | [150] | |||||||
Spring onion | PP | 647–754 | 2 | 40 | = | ↑ | ↓ | ↑ | ↑ | ↑ | ↓ | = | [150] | |||||||
Spring onion | PS | 547–555 | 2 | 40 | = | ↑ | = | ↑ | ↑ | ↑ | ↓ | = | [150] | |||||||
Tomato | PET | 310–2,110 | 17 870, 27 821, 47 130 b | 109 | = | ↑c | ↑c | = | [175] | |||||||||||
Wheat | PE | 200–250 | 0.5, 1, 2, 5, 8 | 15 | = | ↑c | ↑c | ↑c | PHE | [84] | ||||||||||
Wheat | PE | 50–1,000 | 1 | 61 | = | = | = | = | ↓ | EW | [167] | |||||||||
Wheat | Starch | 50–1,000 | 1 | 61 | ↓ | ↓ | = | ↓ | ↓ | EW | [167] | |||||||||
Zucchini | PE | 40–50 | 0.02, 0.1, 0.2 | 28 | ↓c | = | ↓c | = | = | [169] | ||||||||||
Zucchini | PET | 40–50 | 0.02, 0.1, 0.2 | 28 | = | ↓c | ↓c | ↓c | ↓c | [169] | ||||||||||
Zucchini | PP | 40–50 | 0.02, 0.1, 0.2 | 28 | = | ↓c | ↓ | ↓c | ↓c | [169] | ||||||||||
Zucchini | PVC | 40–50 | 0.02, 0.1, 0.2 | 28 | ↓ | ↓c | ↓ | ↓c | ↓c | [169] |
7. Conclusions and Research Gaps
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rochman, C.M.; Hoellein, T. The global odyssey of plastic pollution. Science 2020, 368, 1184–1185. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, H.; Roser, M. Plastic Pollution. Available online: https://ourworldindata.org/plastic-pollution (accessed on 2 June 2022).
- PlasticsEurope Plastics. The Facts 2021. An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 29 June 2022).
- Zalasiewicz, J.; Waters, C.N.; Sul, J.I.D.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef]
- Hayes, D. Micro-and Nanoplastics in Soil: Should We Be Concerned? Biodegrad. Mulch Perform. Adopt. 2019, 1–6. [Google Scholar]
- Da Costa, J.P.; Da Costa, J.P.; Paço, A.; Paço, A.; Santos, P.; Santos, P.; Duarte, A.C.; Duarte, A.C.; Rocha-Santos, T.; Rocha-Santos, T. Microplastics in soils: Assessment, analytics and risks. Environ. Chem. 2019, 16, 18. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Khalid, N.; Aqeel, M.; Noman, A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ. Pollut. 2020, 267, 115653. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point (SOLAW 2021); FAO: Rome, Italy, 2021; ISBN 978-92-5-135327-1. [Google Scholar]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C.; et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit. Rev. Environ. Sci. Technol. 2019, 50, 2175–2222. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Chen, L.; Cui, Q.; Cui, Y.; Song, D.; Fang, L. Review on migration, transformation and ecological impacts of microplastics in soil. Appl. Soil Ecol. 2022, 176, 104486. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ouyang, D.; Lei, J.; Tan, Q.; Xie, L.; Li, Z.; Liu, T.; Xiao, Y.; Farooq, T.H.; et al. Systematical review of interactions between microplastics and microorganisms in the soil environment. J. Hazard. Mater. 2021, 418, 126288. [Google Scholar] [CrossRef]
- Jin, T.; Tang, J.; Lyu, H.; Wang, L.; Gillmore, A.B.; Schaeffer, S.M. Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. J. Agric. Food Chem. 2022, 70, 4182–4201. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Beriot, N.; Corradini, F.; Silva, V.; Yang, X.; Baartman, J.; Rezaei, M.; van Schaik, L.; Riksen, M.; Geissen, V. Review of microplastic sources, transport pathways and correlations with other soil stressors: A journey from agricultural sites into the environment. Chem. Biol. Technol. Agric. 2022, 9, 20. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef]
- Chai, B.; Li, X.; Liu, H.; Lu, G.; Dang, Z.; Yin, H. Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China. Ecotoxicol. Environ. Saf. 2020, 195, 110521. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological responses of garden cress (L. sativum) to different types of microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Liu, C.; Chen, Q.; Zhang, Z.; Han, J.; Liang, A.; Zhu, D.; Wang, H.; Lv, M.; Chen, L. Extractable additives in microplastics: A hidden threat to soil fauna. Environ. Pollut. 2021, 294, 118647. [Google Scholar] [CrossRef]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Heal. 2021, 25, 100311. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.J.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Rezaei, M.; Abbasi, S.; Pourmahmood, H.; Oleszczuk, P.; Ritsema, C.; Turner, A. Microplastics in agricultural soils from a semi-arid region and their transport by wind erosion. Environ. Res. 2022, 212, 113213. [Google Scholar] [CrossRef]
- Ragoobur, D.; Huerta-Lwanga, E.; Somaroo, G.D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. Sci. Total Environ. 2021, 798, 149326. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef] [Green Version]
- Watteau, F.; Dignac, M.-F.; Bouchard, A.; Revallier, A.; Houot, S. Microplastic Detection in Soil Amended With Municipal Solid Waste Composts as Revealed by Transmission Electronic Microscopy and Pyrolysis/GC/MS. Front. Sustain. Food Syst. 2018, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Ren, S.-Y.; Kong, S.-F.; Ni, H.-G. Contribution of mulch film to microplastics in agricultural soil and surface water in China. Environ. Pollut. 2021, 291, 118227. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Yan, C.; Chadwick, D.; Jones, D.L.; Liu, E.; Liu, Q.; Bai, R.; He, W. Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci. Total Environ. 2021, 814, 152572. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Li, R.; Xu, L.; Shen, Y.; Li, S.; Tu, C.; Wu, L.; Christie, P.; Luo, Y. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environ. Pollut. 2021, 289, 117943. [Google Scholar] [CrossRef]
- Yang, J.; Li, R.; Zhou, Q.; Li, L.; Li, Y.; Tu, C.; Zhao, X.; Xiong, K.; Christie, P.; Luo, Y. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environ. Pollut. 2020, 272, 116028. [Google Scholar] [CrossRef] [PubMed]
- Harms, I.K.; Diekötter, T.; Troegel, S.; Lenz, M. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Sci. Total Environ. 2020, 758, 143615. [Google Scholar] [CrossRef] [PubMed]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total Environ. 2021, 769, 144581. [Google Scholar] [CrossRef]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar] [CrossRef]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2019, 259, 113837. [Google Scholar] [CrossRef]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef]
- Bayo, J.; López-Castellanos, J.; Olmos, S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar. Pollut. Bull. 2020, 156, 111211. [Google Scholar] [CrossRef]
- Pérez-Reverón, R.; González-Sálamo, J.; Hernández-Sánchez, C.; González-Pleiter, M.; Hernández-Borges, J.; Díaz-Peña, F.J. Recycled wastewater as a potential source of microplastics in irrigated soils from an arid-insular territory (Fuerteventura, Spain). Sci. Total Environ. 2022, 817, 152830. [Google Scholar] [CrossRef]
- Liu, X.; Tang, N.; Yang, W.; Chang, J. Microplastics pollution in the soils of various land-use types along Sheshui River basin of Central China. Sci. Total Environ. 2021, 806, 150620. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wen, D.; Luo, Y.; Barceló, D. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. J. Hazard. Mater. 2019, 388, 121814. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. The input–output balance of microplastics derived from coated fertilizer in paddy fields and the timing of their discharge during the irrigation season. Chemosphere 2021, 279, 130574. [Google Scholar] [CrossRef] [PubMed]
- Accinelli, C.; Abbas, H.K.; Shier, W.T.; Vicari, A.; Little, N.S.; Aloise, M.R.; Giacomini, S. Degradation of microplastic seed film-coating fragments in soil. Chemosphere 2019, 226, 645–650. [Google Scholar] [CrossRef]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Lwanga, E.H. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2020, 755, 142653. [Google Scholar] [CrossRef]
- Xu, L.; Xu, X.; Li, C.; Li, J.; Sun, M.; Zhang, L. Is mulch film itself the primary source of meso- and microplastics in the mulching cultivated soil? A preliminary field study with econometric methods. Environ. Pollut. 2022, 299, 118915. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, F.; Flury, M.; Wang, Z.; Xu, L.; Li, S.; Jones, D.L.; Wang, J. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut. 2022, 300, 118945. [Google Scholar] [CrossRef] [PubMed]
- van Den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef]
- Schell, T.; Hurley, R.; Buenaventura, N.T.; Mauri, P.V.; Nizzetto, L.; Rico, A.; Vighi, M. Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Environ. Pollut. 2021, 293, 118520. [Google Scholar] [CrossRef]
- Crossman, J.; Hurley, R.R.; Futter, M.; Nizzetto, L. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Sci. Total Environ. 2020, 724, 138334. [Google Scholar] [CrossRef]
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ. Pollut. 2020, 257, 113449. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Liu, S.; Li, H.; Chen, X.; Peng, C.; Zhang, P.; Liu, X. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands. Environ. Pollut. 2020, 269, 116199. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci. Total Environ. 2020, 752, 141917. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lu, H.; Liu, Y. The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: Different land use and mulching time in facility agriculture. Environ. Pollut. 2021, 279, 116939. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Wang, G.; Yang, Y.; Zhu, W.; Zhang, Y.; Ouyang, Z.; Guo, X. The occurrence and effect of altitude on microplastics distribution in agricultural soils of Qinghai Province, northwest China. Sci. Total Environ. 2021, 810, 152174. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Shi, Q.; Liu, Y.; Lei, H.; Chen, Y. Microplastics in arid soils: Impact of different cropping systems (Altay, Xinjiang). Environ. Pollut. 2022, 303, 119162. [Google Scholar] [CrossRef] [PubMed]
- Haixin, Z.; Yimei, H.; Shaoshan, A.; Haohao, L.; Xiaoqian, D.; Pan, W.; Mengyuan, F. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. J. Hazard. Mater. 2021, 426, 127806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, F.; Li, X. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Zhao, Q.; Ao, H.; Hu, H.; Wu, C. Horizontal transport of macro- and microplastics on soil surface by rainfall induced surface runoff as affected by vegetations. Sci. Total Environ. 2022, 831, 154989. [Google Scholar] [CrossRef]
- Leed, R.; Smithson, M. Ecological Effects of Soil Microplastic Pollution. Sci. Insights 2019, 30, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Rehm, R.; Zeyer, T.; Schmidt, A.; Fiener, P. Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems. Sci. Total Environ. 2021, 795, 148774. [Google Scholar] [CrossRef]
- O’Connor, D.; Pan, S.; Shen, Z.; Song, Y.; Jin, Y.; Wu, W.M.; Hou, D. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ. Pollut. 2019, 249, 527–534. [Google Scholar] [CrossRef]
- Li, H.; Lu, X.; Wang, S.; Zheng, B.; Xu, Y. Vertical migration of microplastics along soil profile under different crop root systems. Environ. Pollut. 2021, 278, 116833. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total. Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.; Le Roux, G.; Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Hao, X.; Wang, J.; Zhang, Y. Distribution of low-density microplastics in the mollisol farmlands of northeast China. Sci. Total Environ. 2019, 708, 135091. [Google Scholar] [CrossRef]
- Maaß, S.; Daphi, D.; Lehmann, A.; Rillig, M.C. Transport of microplastics by two collembolan species. Environ. Pollut. 2017, 225, 456–459. [Google Scholar] [CrossRef]
- Kim, S.W.; An, Y.-J. Soil microplastics inhibit the movement of springtail species. Environ. Int. 2019, 126, 699–706. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Mendoza-Vega, J.; Quej, V.K.; Chi, J.D.L.A.; Del Cid, L.S.; Chi, C.; Escalona-Segura, G.; Gertsen, H.; Salánki, T.; Van Der Ploeg, M.; et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef] [PubMed]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.-H.; Kirkham, M. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef] [PubMed]
- Gkoutselis, G.; Rohrbach, S.; Harjes, J.; Obst, M.; Brachmann, A.; Horn, M.A.; Rambold, G. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci. Rep. 2021, 11, 13214. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef] [PubMed]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Hüffer, T.; Metzelder, F.; Sigmund, G.; Slawek, S.; Schmidt, T.C.; Hofmann, T. Polyethylene microplastics influence the transport of organic contaminants in soil. Sci. Total Environ. 2018, 657, 242–247. [Google Scholar] [CrossRef]
- Boughattas, I.; Zitouni, N.; Hattab, S.; Mkhinini, M.; Missawi, O.; Helaoui, S.; Mokni, M.; Bousserrhine, N.; Banni, M. Interactive effects of environmental microplastics and 2,4-dichlorophenoxyacetic acid (2,4-D) on the earthworm Eisenia andrei. J. Hazard. Mater. 2021, 424, 127578. [Google Scholar] [CrossRef]
- Rillig, M.C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, Y.; Wang, L.; Chen, Q.; Ji, R. Effects of nano- and microplastics on the bioaccumulation and distribution of phenanthrene in the soil feeding earthworm Metaphire guillelmi. Sci. Total Environ. 2022, 834, 155125. [Google Scholar] [CrossRef]
- Kumar, R.; Ivy, N.; Bhattacharya, S.; Dey, A.; Sharma, P. Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives. Sci. Total Environ. 2022, 836, 155619. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Zhu, J.; Wang, J.; Wang, H.; Zhan, X. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. Chemosphere 2021, 282, 130967. [Google Scholar] [CrossRef]
- Zaman, M.S.; Sizemore, R.C.; Zaman, R.S. Microplastics in the Environment: Ecological Interactions and Consequences. Adv. Sci. Technol. 2019, 13, 22–28. [Google Scholar]
- Zhao, T.; Lozano, Y.M.; Rillig, M.C. Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time. Front. Environ. Sci. 2021, 9, 675803. [Google Scholar] [CrossRef]
- Chouchene, K.; Nacci, T.; Modugno, F.; Castelvetro, V.; Ksibi, M. Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS. Environ. Pollut. 2022, 303, 119016. [Google Scholar] [CrossRef]
- Vithanage, M.; Ramanayaka, S.; Hasinthara, S.; Navaratne, A. Compost as a carrier for microplastics and plastic-bound toxic metals into agroecosystems. Curr. Opin. Environ. Sci. Heal. 2021, 24, 100297. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Y.; Wang, Q.; Liu, N.; Li, M. Seasonal variations and feedback from microplastics and cadmium on soil organisms in agricultural fields. Environ. Int. 2022, 161, 107096. [Google Scholar] [CrossRef] [PubMed]
- Scopetani, C.; Chelazzi, D.; Cincinelli, A.; Martellini, T.; Leiniö, V.; Pellinen, J. Hazardous contaminants in plastics contained in compost and agricultural soil. Chemosphere 2022, 293, 133645. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K.; Singh, B. Microplastics in soil: Impacts and microbial diversity and degradation. Pedosphere 2021, 32, 49–60. [Google Scholar] [CrossRef]
- Chen, X.; Gu, X.; Bao, L.; Ma, S.; Mu, Y. Comparison of adsorption and desorption of triclosan between microplastics and soil particles. Chemosphere 2020, 263, 127947. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Wang, J.; Zhang, M.; Jia, W.; Qin, X. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ. Pollut. 2019, 254, 112983. [Google Scholar] [CrossRef]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.N.; Carré, F.; Hoarau-Belkhiri, A.; Joris, A.; Leonards, P.E.; Lamoree, M.H. Innovations in analytical methods to assess the occurrence of microplastics in soil. J. Environ. Chem. Eng. 2022, 10, 107421. [Google Scholar] [CrossRef]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Zhou, W.; Lu, S.; Huang, W.; Yuan, Q.; Tian, M.; Lv, W.; He, D. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Sci. Total Environ. 2018, 652, 1209–1218. [Google Scholar] [CrossRef]
- Du, C.; Liang, H.; Li, Z.; Gong, J. Pollution Characteristics of Microplastics in Soils in Southeastern Suburbs of Baoding City, China. Int. J. Environ. Res. Public Heal. 2020, 17, 845. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liu, X.; Wang, J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Sci. Total Environ. 2019, 694, 133798. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Sun, L.; Liu, M.; Huang, H.; He, H.; Han, F.; Wang, X.; Xu, Z.; Li, B.; Pan, X. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China. Environ. Sci. Pollut. Res. 2020, 28, 1675–1688. [Google Scholar] [CrossRef]
- Choi, Y.R.; Kim, Y.-N.; Yoon, J.-H.; Dickinson, N.; Kim, K.-H. Plastic contamination of forest, urban, and agricultural soils: A case study of Yeoju City in the Republic of Korea. J. Soils Sediments 2020, 21, 1962–1973. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20360–20371. [Google Scholar] [CrossRef]
- Radford, F.; Zapata-Restrepo, L.M.; Horton, A.A.; Hudson, M.D.; Shaw, P.J.; Williams, I.D. Developing a systematic method for extraction of microplastics in soils. Anal. Methods 2021, 13, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2017, 616-617, 1056–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Zhang, S.; Wang, X.; Yang, X.; Zhang, C.; Qi, Y.; Guo, X. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China. Sci. Total Environ. 2020, 720, 137525. [Google Scholar] [CrossRef]
- Käppler, A.; Windrich, F.; Löder, M.G.J.; Malanin, M.; Fischer, D.; Labrenz, M.; Eichhorn, K.-J.; Voit, B. Identification of microplastics by FTIR and Raman microscopy: A novel silicon filter substrate opens the important spectral range below 1300 cm−1 for FTIR transmission measurements. Anal. Bioanal. Chem. 2015, 407, 6791–6801. [Google Scholar] [CrossRef]
- David, J.; Steinmetz, Z.; Kučerík, J.; Schaumann, G.E. Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry. Anal. Chem. 2018, 90, 8793–8799. [Google Scholar] [CrossRef]
- Junhao, C.; Xining, Z.; Xiaodong, G.; Li, Z.; Qi, H.; Siddique, K.H. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: A review. J. Environ. Manag. 2021, 294, 112997. [Google Scholar] [CrossRef]
- Cao, L.; Wu, D.; Liu, P.; Hu, W.; Xu, L.; Sun, Y.; Wu, Q.; Tian, K.; Huang, B.; Yoon, S.J.; et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Sci. Total Environ. 2021, 794, 148694. [Google Scholar] [CrossRef]
- Van Schothorst, B.; Beriot, N.; Lwanga, E.H.; Geissen, V. Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments 2021, 8, 36. [Google Scholar] [CrossRef]
- Fakour, H.; Lo, S.-L.; Yoashi, N.; Massao, A.; Lema, N.; Mkhontfo, F.; Jomalema, P.; Jumanne, N.; Mbuya, B.; Mtweve, J.; et al. Quantification and Analysis of Microplastics in Farmland Soils: Characterization, Sources, and Pathways. Agriculture 2021, 11, 330. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; Liu, Y.; Chen, L.; Tao, S.; Liu, W. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci. Total Environ. 2020, 756, 143860. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Seeley, M.E.; Song, B.; Passie, R.; Hale, R.C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 2020, 11, 2372. [Google Scholar] [CrossRef]
- Xiao, M.; Shahbaz, M.; Liang, Y.; Yang, J.; Wang, S.; Chadwicka, D.R.; Jones, D.; Chen, J.; Ge, T. Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: A three-source-partitioning study. J. Hazard. Mater. 2021, 416, 126221. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Xiang, L.; Redmile-Gordon, M.; Gu, C.; Yang, X.; Jiang, X.; Barceló, D. Perspectives on ecological risks of microplastics and phthalate acid esters in crop production systems. Soil Ecol. Lett. 2021, 4, 97–108. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J. Hazard. Mater. 2021, 424, 127364. [Google Scholar] [CrossRef]
- MacLean, J.; Mayanna, S.; Benning, L.G.; Horn, F.; Bartholomäus, A.; Wiesner, Y.; Wagner, D.; Liebner, S. The Terrestrial Plastisphere: Diversity and Polymer-Colonizing Potential of Plastic-Associated Microbial Communities in Soil. Microorganisms 2021, 9, 1876. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, Y.; Doyle, E.; Zhu, C.; Jin, X.; Chen, Z.; Wang, C.; He, H.; Zhou, D.; Gu, C. Microplastics altered soil microbiome and nitrogen cycling: The role of phthalate plasticizer. J. Hazard. Mater. 2021, 427, 127944. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Effect of Polyvinyl Chloride Microplastics on Bacterial Community and Nutrient Status in Two Agricultural Soils. Bull. Environ. Contam. Toxicol. 2020, 107, 602–609. [Google Scholar] [CrossRef]
- Mueller, M.-T.; Fueser, H.; Höss, S.; Traunspurger, W. Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion. Ecol. Indic. 2020, 118, 106698. [Google Scholar] [CrossRef]
- Selonen, S.; Dolar, A.; Kokalj, A.J.; Sackey, L.N.; Skalar, T.; Fernandes, V.C.; Rede, D.; Delerue-Matos, C.; Hurley, R.; Nizzetto, L.; et al. Exploring the impacts of microplastics and associated chemicals in the terrestrial environment—Exposure of soil invertebrates to tire particles. Environ. Res. 2021, 201, 111495. [Google Scholar] [CrossRef]
- Lahive, E.; Walton, A.; Horton, A.A.; Spurgeon, D.J.; Svendsen, C. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ. Pollut. 2019, 255, 113174. [Google Scholar] [CrossRef]
- Fueser, H.; Mueller, M.-T.; Weiss, L.; Höss, S.; Traunspurger, W. Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size. Environ. Pollut. 2019, 255, 113227. [Google Scholar] [CrossRef]
- Chen, K.; Tang, R.; Luo, Y.; Chen, Y.; Ei-Naggar, A.; Du, J.; Bu, A.; Yan, Y.; Lu, X.; Cai, Y.; et al. Transcriptomic and metabolic responses of earthworms to contaminated soil with polypropylene and polyethylene microplastics at environmentally relevant concentrations. J. Hazard. Mater. 2021, 427, 128176. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yang, Y.; Yu, Y. Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-)metals in earthworms. Environ. Pollut. 2021, 291, 118194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ren, S.; Pei, L.; Sun, Y.; Wang, F. Ecotoxicological effects of polyethylene microplastics and ZnO nanoparticles on earthworm Eisenia fetida. Appl. Soil Ecol. 2022, 176, 104469. [Google Scholar] [CrossRef]
- Zhu, D.; Bi, Q.-F.; Xiang, Q.; Chen, Q.-L.; Christie, P.; Ke, X.; Wu, L.-H.; Zhu, Y.-G. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ. Pollut. 2018, 235, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, Q.-L.; An, X.-L.; Yang, X.-R.; Christie, P.; Ke, X.; Wu, L.-H.; Zhu, Y.-G. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol. Biochem. 2018, 116, 302–310. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci. Total Environ. 2019, 708, 134841. [Google Scholar] [CrossRef]
- Hodson, M.E.; Duffus-Hodson, C.A.; Clark, A.; Prendergast-Miller, M.; Thorpe, K. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates. Environ. Sci. Technol. 2017, 51, 4714–4721. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T.A.P.; Da Costa, J.; Duarte, A.C.; Vala, H.; Pereira, R. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ. Pollut. 2017, 220, 495–503. [Google Scholar] [CrossRef]
- Cao, D.; Wang, X.; Luo, X.; Liu, G.; Zheng, H. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf. Series Earth Environ. Sci. 2017, 61, 012148. [Google Scholar] [CrossRef]
- Ma, J.; Sheng, G.D.; O’Connor, P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ. Pollut. 2020, 264, 114689. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; da Costa, J.P.; Rocha-Santos, T.; Duarte, A.C.; Pereira, R. Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environ. Sci. Pollut. Res. 2018, 25, 33599–33610. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, J.C.; Capowiez, Y.; Ro, K.S. Potential Use of Earthworms to Enhance Decaying of Biodegradable Plastics. ACS Sustain. Chem. Eng. 2020, 8, 4292–4316. [Google Scholar] [CrossRef]
- Sforzini, S.; Oliveri, L.; Chinaglia, S.; Viarengo, A. Application of Biotests for the Determination of Soil Ecotoxicity after Exposure to Biodegradable Plastics. Front. Environ. Sci. 2016, 4, 68. [Google Scholar] [CrossRef]
- Yu, M.; Van Der Ploeg, M.; Lwanga, E.H.; Yang, X.; Zhang, S.; Ma, X.; Ritsema, C.J.; Geissen, V. Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environ. Chem. 2019, 16, 31–40. [Google Scholar] [CrossRef]
- Lei, L.; Wu, S.; Lu, S.; Liu, M.; Song, Y.; Fu, Z.; Shi, H.; Raley-Susman, K.M.; He, D. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2017, 619–620, 1–8. [Google Scholar] [CrossRef]
- Kiyama, Y.; Miyahara, K.; Ohshima, Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans. J. Exp. Biol. 2012, 215, 1178–1183. [Google Scholar] [CrossRef] [Green Version]
- Judy, J.D.; Williams, M.; Gregg, A.; Oliver, D.; Kumar, A.; Kookana, R.; Kirby, J.K. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environ. Pollut. 2019, 252, 522–531. [Google Scholar] [CrossRef]
- Song, Y.; Cao, C.; Qiu, R.; Hu, J.; Liu, M.; Lu, S.; Shi, H.; Raley-Susman, K.M.; He, D. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environ. Pollut. 2019, 250, 447–455. [Google Scholar] [CrossRef]
- Barreto, C.; Rillig, M.C.; Lindo, Z. Addition of Polyester in Soil Affects Litter Decomposition Rates but Not Microarthropod Communities. SOIL Org. 2020, 92, 109–119. [Google Scholar]
- Ju, H.; Zhu, D.; Qiao, M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environ. Pollut. 2019, 247, 890–897. [Google Scholar] [CrossRef]
- Rondoni, G.; Chierici, E.; Agnelli, A.; Conti, E. Microplastics alter behavioural responses of an insect herbivore to a plant-soil system. Sci. Total Environ. 2021, 787, 147716. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, srep46687. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Filipe, D.A.; Paço, A.; Natal-Da-Luz, T.; Sousa, J.P.; Saraiva, J.A.; Duarte, A.C.; Rocha-Santos, T.; Silva, A.L.P. Are mulch biofilms used in agriculture an environmentally friendly solution? —An insight into their biodegradability and ecotoxicity using key organisms in soil ecosystems. Sci. Total Environ. 2022, 828, 154269. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [Green Version]
- Gentili, R.; Quaglini, L.; Cardarelli, E.; Caronni, S.; Montagnani, C.; Citterio, S. Toxic Impact of Soil Microplastics (PVC) on Two Weeds: Changes in Growth, Phenology and Photosynthesis Efficiency. Agronomy 2022, 12, 1219. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Brumer, A.; Gutbrod, L.; Zhang, Z. A microplastic used as infill material in artificial sport turfs reduces plant growth. Plants People Planet 2019, 2, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Lozano, Y.M.; Rillig, M.C. Effects of Microplastic Fibers and Drought on Plant Communities. Environ. Sci. Technol. 2020, 54, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhang, W.; Jiang, M.; Li, S.; Liang, G.; Bu, Q.; Xu, L.; Zhu, H.; Lu, A. Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci. Total Environ. 2021, 796, 148750. [Google Scholar] [CrossRef]
- Khant, N.A.; Kim, H. Review of Current Issues and Management Strategies of Microplastics in Groundwater Environments. Water 2022, 14, 1020. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over a 3-Year Period. Environ. Sci. Technol. 2019, 53, 4775–4783. [Google Scholar] [CrossRef]
- Kumari, A.; Rajput, V.D.; Mandzhieva, S.S.; Rajput, S.; Minkina, T.; Kaur, R.; Sushkova, S.; Kumari, P.; Ranjan, A.; Kalinitchenko, V.P.; et al. Microplastic Pollution: An Emerging Threat to Terrestrial Plants and Insights into Its Remediation Strategies. Plants 2022, 11, 340. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M.; et al. Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Silva, G.; Madrid, F.G.; Hernández, D.; Pincheira, G.; Peralta, A.; Gavilán, M.U.; Vergara-Carmona, V.; Fuentes-Peñailillo, F. Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress. Agronomy 2021, 11, 1528. [Google Scholar] [CrossRef]
- Bouaicha, O.; Mimmo, T.; Tiziani, R.; Praeg, N.; Polidori, C.; Lucini, L.; Vigani, G.; Terzano, R.; Sanchez-Hernandez, J.C.; Illmer, P.; et al. Microplastics make their way into the soil and rhizosphere: A review of the ecological consequences. Rhizosphere 2022, 22, 100542. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2018, 651, 484–492. [Google Scholar] [CrossRef]
- Lian, J.; Liu, W.; Meng, L.; Wu, J.; Zeb, A.; Cheng, L.; Lian, Y.; Sun, H. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 2021, 318, 128571. [Google Scholar] [CrossRef]
- Meng, F.; Yang, X.; Riksen, M.; Xu, M.; Geissen, V. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Sci. Total Environ. 2020, 755, 142516. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Piccardo, M.; Felline, S.; Terlizzi, A.; Renzi, M. Short-term physiological and biometrical responses of Lepidium sativum seedlings exposed to PET-made microplastics and acid rain. Ecotoxicol. Environ. Saf. 2020, 208, 111718. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Song, N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef] [PubMed]
- Pflugmacher, S.; Tallinen, S.; Kim, Y.J.; Kim, S.; Esterhuizen, M. Ageing affects microplastic toxicity over time: Effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum. Sci. Total Environ. 2021, 790, 148166. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Yang, W.; Cheng, P.; Adams, C.A.; Zhang, S.; Sun, Y.; Yu, H.; Wang, F. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biol. Biochem. 2021, 155, 108179. [Google Scholar] [CrossRef]
- Colzi, I.; Renna, L.; Bianchi, E.; Castellani, M.B.; Coppi, A.; Pignattelli, S.; Loppi, S.; Gonnelli, C. Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. J. Hazard. Mater. 2021, 423, 127238. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Li, R.; Zhao, Y.; Geng, J.; Wang, G. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environ. Sci. Pollut. Res. 2020, 27, 30306–30314. [Google Scholar] [CrossRef]
- Xu, G.; Liu, Y.; Yu, Y. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean. Sci. Total Environ. 2021, 783, 147016. [Google Scholar] [CrossRef]
- Yang, M.; Huang, D.-Y.; Tian, Y.-B.; Zhu, Q.-H.; Zhang, Q.; Zhu, H.-H.; Xu, C. Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.). Ecotoxicol. Environ. Saf. 2021, 222, 112480. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Yin, S.; Xiao, K.; Xiong, Q.; Bian, S.; Liang, S.; Hou, H.; Hu, J.; Yang, J. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environ. Pollut. 2020, 266, 115159. [Google Scholar] [CrossRef]
- Greenfield, L.M.; Graf, M.; Rengaraj, S.; Bargiela, R.; Williams, G.; Golyshin, P.N.; Chadwick, D.R.; Jones, D.L. Field response of N2O emissions, microbial communities, soil biochemical processes and winter barley growth to the addition of conventional and biodegradable microplastics. Agric. Ecosyst. Environ. 2022, 336, 108023. [Google Scholar] [CrossRef]
- Hernández-Arenas, R.; Beltrán-Sanahuja, A.; Navarro-Quirant, P.; Sanz-Lazaro, C. The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants. Environ. Pollut. 2020, 268, 115779. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Guo, J.; Dong, Y.; Wang, Z.; Gong, L.; Li, X. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. J. Hazard. Mater. 2021, 415, 125614. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
Potential Source | Study Area (Country) | Depth (cm) | Concentration a | Dominant Shape | Dominant Size (mm) | Polymers | Reference |
---|---|---|---|---|---|---|---|
Plastic mulching | Applied over 5, 15 and 24 years (China) | 0–40 | 80.3 ± 49.3 (5 years) 308 ± 138.1 (15 years) 1075.6 ± 346.8 (24 years) | Fragment | <1 | PE | [30] |
Applied at least once per year over the last 10 years (Spain) | 0–10 | 2116 ± 1024 | (-) | <5 | (-) | [47] | |
Historically applied (China) | (-) | 29.3 ± 33.1 b | Fragment (39.6%) Fiber (43.7%) Film (16.1%) Pellet (0.6%) | 0–1 | PP (27.4%) Rayon (23.5%) PE (18.8%) PET (9.7%) | [48] | |
Applied over 32 years (China) | 0–100 | 7183–10,586 (0–10 cm) 8885 (80–100 cm) | Film Fiber | (-) | PE (film) Rayon Polyester Terephthalic acid PP PET (fibers) | [49] | |
Sewage sludge | 30 fields successively treated over 10 years (Chile) | 0–25 | 1.1–3.5 b | Fiber (97%) | <2 | PES PE PVC Nylon Acrylic | [40] |
Untreated/treated (20–22 t ha−1 between 1 and 8 applications) (Spain) | 0–30 | 930 ± 740 light density and 1100 ± 570 heavy density (untreated) 2130 ± 950 light density and 3060 ± 1680 heavy density (treated) | Fragment (80–90%) Film Fiber | 0.15–0.25 | PP PVC | [50] | |
Untreated/treated (three types of sludge: fresh municipal sludge, fresh mixed sludge, and dry heat-treated municipal sludge) (China) | 0–20 | 40.2 ± 15.6 (untreated) 68.6 ± 21.5–149.2 ± 52.5 (treated) | Fiber (66.7–82.5%) | 1–3 | PP (47.8%) PES (39.1%) PE (6.0%) Rayon (7.1%) | [34] | |
Untreated/treated (treated for 5 years vs. recently treated) (Spain) | 0–15 | 31–120 (untreated) up to 177–235 (treated 5 years) up to 138–288 (recently treated) | Fiber (44–91%) Fragment (4–44%) | >1 (fiber) <0.5 (fragments) | Acrylic (22–37%) PES (22–53%) PE PP PA | [51] | |
Other organic fertilizers (e.g., biosolids, compost and manure) | Three untreated/treated fields (before and after application of biosolids) (Canada) | 0–15 | 18 ± 22.2%, 187 ± 53.1% and 541 ± 56.4 (before) 25 ± 20.8%, 130 ± 23.1% and 298 ± 39.1% (after) | Fiber (41–45%) | >0.05 | PP PE PES Acrylic | [52] |
Untreated/treated (with 22 years of application of pig manure) (China) | ~20 | 16.4 ± 2.7 (untreated) 43.8 ± 16.2 (treated) | Fiber (untreated) Fiber Fragment Film Granule (treated) | <0.5 | PES (39.1%) PP (47.8%) Rayon (7.1%) PE (6.0%) | [33] | |
Untreated/treated with different organic fertilizers (sewage sludge, biogas fermentation residue, liquid manure and dung from cattle, horses, and pigs) (Germany) | 0–30 | 3.7 ± 11.9 b | Foil (61%) Fragment (28%) Fiber (1%) | 1–5 | PE (87%) PP (4%) Nylon (3%) PA (3%) | [35] | |
Irrigation water | Unirrigated/irrigated with recycled wastewater/irrigated with desalinated brackish water (Spain) | 0–5 | 0 (non-irrigated) 159 ± 338 (irrigated with recycled wastewater) 46 ± 92 (irrigated with desalinated brackish water) | Fiber (100%) | <1 | PES (25.8%) Acrylic (9.7%) PP (3.2%) | [42] |
Multiple sources | Different land uses and plastic mulching (Iran) | 0–10 | 67–400 | Fiber Fragment | 0.1 | (-) | [25] |
Non-mulching/mulching and influence of irrigation water from nearby river (China) | 0–10 | 262.7 (non-mulching) 571.2 (mulching) | Fragment (86.7%) Fiber Film | 1–3 | PE PP PES Nylon Rayon PA (fiber) Acrylic (fiber) | [44] | |
Household sewage, plastic bags, nylon nets, organic fertilizer (China) | 0–5 | 320–12 560 | Microbead (48%) Fiber (37%) Fragment (15%) Foam (1%) | <0.2 | PA (32.5%) PP (28.8%) PS (16.9%) PE (4.2%) PVC (1.9%) | [53] | |
Different land-use, plastic mulching, greenhouse soils, irrigation water from river or groundwater (China) | (-) | 3910 ± 1031 (wheat land) 5490 ± 573 (paddy land) 3683 ± 362 (woodland) 3386 ± 593 (orchard land) 5386 ± 835 (plastic mulching soil) 5124 ± 632 (greenhouse soil) Overall average: 4496 ± 1082 | Fragment (54.1%) Fiber (26.9%) Film (10.2%) Sphere (8.5%) | 0.02–0.2 | PE (20.9%) PA (20.3%) PES (12.5%) PS (11.4%) PP (10.8%) PVC (7.8%) Acrylic (6.2%) | [54] | |
Different land-use with possible influence of compost, aeolian deposition and pipes from mining (Chile) | (-) | 306 ± 360 (crop land) 184 ± 266 (pastures) | Fiber (68%) | 1–2 | Acrylic PU PE PP NBR PS PLA PA PES | [55] | |
Conventional cultivation of vegetables whose main source of MPs is packaging bags, plastic nets, plastics/old clothes, scarecrow, rubbish bags, plastic seed trays, drums and plastic hoses for irrigation (Mauritius) | 0–20 | Up to 420 ± 244 | (-) | <1 | PP (56.2%) PA (28.7%) PE (10.2%) PS (2.7%) EVA (2.2%) | [27] | |
Different land-use: cultivated land, grassland, plastic mulch covering and plastic greenhouses (China) | 0–6 | Up to 53.2 ± 29.7 (shallow soil) Up to 43.9 ± 22.3 (deep soil) | Film (36–41%) Fiber (21–24%) Fragment (23–27%) Foam (7–11%) Spherule (4–6%) | 0.1–0.5 | PE (51–59%) PA (16–23%) PS (6–8%) PP (6–9%) | [56] | |
Different land-use (grassland, dry land, paddy fields and plastic greenhouses), wastewater irrigation, organic fertilizer and plastic mulching film (China) | (-) | 875 ± 229–6075 ± 865 Overall average: 2522 ± 1276 | Fiber Fragment | <1 | (-) | [43] | |
Mainly sewage sludge and irrigation water with possible inputs of garbage, river water and aeolian transport (China) | 0–10 | 240–3660 | Film (67%) Fiber (29%) Fragment (2%) Pellet (2%) | <0.5 | (-) | [57] | |
Different cropping characteristics (maize, sunflower, and potato farmland) and agricultural practices (plastic mulching, mechanical plowing, plastic strings, sunshade nets and clothing) (China) | (-) | 11 300–78 100 b | Film Fragment | <0.2 | PE (91.6%) | [58] | |
Different land-use: facility, farmland, grassland and orchard soils with application of plastic mulching and fertilizer (China) | 0–10 | 2795.7 (facility soil) 1860.5 (farmland) 910.9 (grassland) 1322.2 (orchard soil) | Film (18.3–91.6%) Fragment Pellet Fiber | <0.1 | PE (45.5–74.3%) PP PS PVC | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Reverón, R.; Álvarez-Méndez, S.J.; Kropp, R.M.; Perdomo-González, A.; Hernández-Borges, J.; Díaz-Peña, F.J. Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield. Agriculture 2022, 12, 1162. https://doi.org/10.3390/agriculture12081162
Pérez-Reverón R, Álvarez-Méndez SJ, Kropp RM, Perdomo-González A, Hernández-Borges J, Díaz-Peña FJ. Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield. Agriculture. 2022; 12(8):1162. https://doi.org/10.3390/agriculture12081162
Chicago/Turabian StylePérez-Reverón, Raquel, Sergio J. Álvarez-Méndez, Rebecca Magdalena Kropp, Adolfo Perdomo-González, Javier Hernández-Borges, and Francisco J. Díaz-Peña. 2022. "Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield" Agriculture 12, no. 8: 1162. https://doi.org/10.3390/agriculture12081162
APA StylePérez-Reverón, R., Álvarez-Méndez, S. J., Kropp, R. M., Perdomo-González, A., Hernández-Borges, J., & Díaz-Peña, F. J. (2022). Microplastics in Agricultural Systems: Analytical Methodologies and Effects on Soil Quality and Crop Yield. Agriculture, 12(8), 1162. https://doi.org/10.3390/agriculture12081162