Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Gathering from the Case-Study Site
2.2. The DEA Model and the DMUs
2.3. Technical Efficiency and Super Efficiency (TE and SE)
2.4. LCA + DEA Framework
- Collection of input and output data to carry out the life cycle inventory (LCI) analysis of each DMU.
- Environmental life cycle impact assessment (LCIA) for the environmental characterization of each DMU.
- DEA study of the sample of DMUs using the environmental impact indicators obtained, as DEA inputs.
- LCIA of the target DMUs using the new LCI data.
- Interpretation of the results based on the eco-efficiency criteria.
2.5. In-Situ Emissions and Environmental Impacts
3. Results and Discussion
3.1. Calculated Environmental Impacts
3.2. Interpretation of the Results
3.3. DEA Performance
3.4. Super-Efficiency Analysis
4. Conclusions
- Benchmarking within a region is practical from a decision-making point of view.
- Policymakers—as stakeholders—must pay attention to prevalent lock-ins, like the electricity/energy-mix in Iran, which is dominated by fossil fuels, and attempt to ‘green’ it, going forward, towards achieving the SDGs set for year-2030.
- Farmers at the heart of the wheat value chain here, must be encouraged to optimize (dematerialize) the utilization of resources—be they fertilizers, water, pesticides or energy.
- Organic fertilizers must be promoted (trans-materialization) through a combination of top-down (policy-oriented) and bottom-up (learning and sharing knowledge) approach, which may encourage farmers to use crop residues in a better way for their material value.
- Crop rotation can be recommended/mandated in order to retain the fertility of the arable soil and minimize the requirement for synthetic fertilizers.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Information and Early Warning System on Food and Agriculture. Available online: http://www.fao.org. (accessed on 30 March 2022).
- GmbH, S. 2021. Available online: www.statista.com (accessed on 30 March 2022).
- Rafiee, H.; Aminizadeh, M.; Hosseini, E.M.; Aghasafari, H.; Mohammadi, A. A cluster analysis on the energy use indicators and carbon footprint of irrigated wheat cropping systems. Sustainability 2022, 14, 4014. [Google Scholar] [CrossRef]
- Lak, M. Estimation of wheat cultivation mechanization status in Iran. Asian J. Agric. Sci. 2011, 3, 51–55. [Google Scholar]
- Namdari, M.; Mohammadi, A.; Ghasemi Mobtaker, H. Assessment of energy requirements and sensitivity analysis of inputs for watermelon production in Iran. Int. J. Plant Anim. Environ. Sci. 2011, 1, 102–110. [Google Scholar]
- Fantin, V.; Righi, S.; Rondini, I.; Masoni, P. Environmental assessment of wheat and maize production in an Italian farmers’ cooperative. J. Clean. Prod. 2017, 140, 631–643. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Kaab, A.; Rafiee, S. Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy 2020, 193, 116768. [Google Scholar] [CrossRef]
- Lares-Orozco, M.F.; Robles-Morúa, A.; Yepez, E.A.; Handler, R.M. Global warming potential of intensive wheat production in the Yaqui Valley, Mexico: A resource for the design of localized mitigation strategies. J. Clean. Prod. 2016, 127, 522–532. [Google Scholar] [CrossRef]
- Gasso, V.; Oudshoorn, F.W.; Sørensen, C.A.G.; Pedersen, H.H. An environmental life cycle assessment of controlled traffic farming. J. Clean. Prod. 2014, 73, 175–182. [Google Scholar] [CrossRef]
- ISO. Environmental Management. Life Cycle Assessment—Principles and Framework. Geneva. 2006. Available online: http://www.iso.org/iso/catalogue_detail?csnumber=37456 (accessed on 30 March 2022).
- Nemecek, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Tidåker, P.; Mattsson, B.; Jönsson, H. Environmental impact of wheat production using human urine and mineral fertilisers—A scenario study. J. Clean. Prod. 2007, 15, 52–62. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Fallahpour, F.; Aminghafouri, A.; Ghalegolab Behbahani, A.; Bannayan, M. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain. 2012, 14, 979–992. [Google Scholar] [CrossRef]
- Ghahderijani, M.; Komleh, S.H.P.; Keyhani, A.; Sefeedpari, P. Energy analysis and life cycle assessment of wheat production in Iran. Afr. J. Agric. Res. 2013, 8, 1929–1939. [Google Scholar]
- Heidari, M.D.; Mobli, H.; Omid, M.; Rafiee, S.; Jamali Marbini, V.; Elshout, P.M.F.; Van Zelm, R.; Huijbregts, M.A.J. Spatial and technological variability in the carbon footprint of durum wheat production in Iran. Int. J. Life Cycle Assess. 2017, 22, 1893–1900. [Google Scholar] [CrossRef]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 374. [Google Scholar] [CrossRef]
- Sala, S.; Farioli, F.; Zamagni, A. Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int. J. Life Cycle Assess. 2013, 18, 1686–1697. [Google Scholar] [CrossRef]
- Benoit, S.; Margni, M.; Bouchard, C.; Pouliot, Y. A workable tool for assessing eco-efficiency in dairy processing using process simulation. J. Clean. Prod. 2019, 236, 117658. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Mohammadi, A. Development and evaluation of combined adaptive neuro-fuzzy inference system and multi-objective genetic algorithm in energy, economic and environmental life cycle assessments of oilseed production. Sustainability 2021, 13, 290. [Google Scholar] [CrossRef]
- Pereira, C.P.; Prata, D.M.; Santos, L.d.S.; Monteiro, L.P. Development of eco-efficiency comparison index through eco-indicators for industrial applications. Braz. J. Chem. Eng. 2018, 35, 69–90. [Google Scholar] [CrossRef]
- Vázquez, D.; Guillén-Gosálbez, G. Process design within planetary boundaries: Application to CO2 based methanol production. Chem. Eng. Sci. 2021, 246, 116891. [Google Scholar] [CrossRef]
- Iribarren, D.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Further potentials in the joint implementation of life cycle assessment and data envelopment analysis. Sci. Total Environ. 2010, 408, 5265–5272. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.L.T.; Borek, R.; Hermansen, J.E. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Dalgaard, T.; Knudsen, M.T.; Keyhani, A.; Mousavi-Avval, S.H.; Hermansen, J.E. Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. J. Clean. Prod. 2013, 54, 89–100. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Rebolledo-Leiva, R.; Angulo-Meza, L.; Iriarte, A.; González-Araya, M.C. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Sci. Total Environ. 2017, 593–594, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Teresa Moreira, M.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Combined application of life cycle assessment and data envelopment analysis as a methodological approach for the assessment of fisheries. Int. J. Life Cycle Assess. 2010, 15, 272–283. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Rowe, I.; Tyedmers, P. Identifying the importance of the “skipper effect” within sources of measured inefficiency in fisheries through data envelopment analysis (DEA). Mar. Policy 2013, 38, 387–396. [Google Scholar] [CrossRef]
- Laso, J.; Hoehn, D.; Margallo, M.; García-Herrero, I.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Vázquez-Rowe, I.; Irabien, A.; Aldaco, R. Assessing energy and environmental efficiency of the Spanish agri-food system using the LCA/DEA Methodology. Energies 2018, 11, 3395. [Google Scholar] [CrossRef] [Green Version]
- Pardo Martínez, C.I.; Silveira, S. Analysis of energy use and CO2 emission in service industries: Evidence from Sweden. Renew. Sustain. Energy Rev. 2012, 16, 5285–5294. [Google Scholar] [CrossRef]
- Mousavi Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Improving energy productivity of sunflower production using data envelopment analysis (DEA) approach. J. Sci. Food Agric. 2011, 91, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Zhu, J. Super-efficiency infeasibility and zero data in DEA. Eur. J. Oper. Res. 2012, 216, 429–433. [Google Scholar] [CrossRef]
- Barr, R.S. Dea software tools and technology. In Handbook on Data Envelopment Analysis; Cooper, W.W., Seiford, L.M., Zhu, J., Eds.; Springer: Boston, MA, USA, 2004; pp. 539–566. [Google Scholar] [CrossRef]
- Lorenzo-Toja, Y.; Vázquez-Rowe, I.; Chenel, S.; Marín-Navarro, D.; Moreira, M.T.; Feijoo, G. Eco-efficiency analysis of Spanish WWTPs using the LCA + DEA method. Water Res. 2015, 68, 651–666. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel of Climate Change (IPCC) (National Greenhouse Gas Inventories Programme); IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems; Agroscope Reckenholz-Tänikon Research Station ART: Zurich, Switzerland, 2011. [Google Scholar]
- Houshyar, E.; Grundmann, P. Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy 2017, 122, 11–24. [Google Scholar] [CrossRef]
- PRè Consultants. SimaPro 8.0.4; Environmental Database: Amersfoort, The Netherlands, 2014. [Google Scholar]
- Hayer, F.; Kägi, T.; Casado, D.; Czembor, E.; Delval, P.; Gaillard, G.; Jensen, J.; Otto, S.; Strassemeyer, J.O. 53-Life cycle assessment of wheat and apple production systems within the ENDURE project. In Proceedings of the ENDURE International Conference, La Grande-Motte, France, 12–15 October 2008. [Google Scholar]
- Ali, S.A.; Tedone, L.; Verdini, L.; De Mastro, G. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar]
- Mondani, F.; Aleagha, S.; Khoramivafa, M.; Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat Agroecosystems. Energy Rep. 2017, 3, 37–45. [Google Scholar] [CrossRef]
- Syp, A.; Faber, A.; Borzęcka-Walker, M.; Osuch, D. Assessment of greenhouse gas emissions in winter wheat farms using data envelopment analysis approach. Pol. J. Environ. Stud. 2015, 24, 2197–2203. [Google Scholar] [CrossRef]
- Audsley, E.; Brander, M.; Chatterton, J.C.; Murphy-Bokern, D.; Webster, C.; Williams, A.G. How Low Can We Go? An Assessment of Greenhouse Gas Emissions from the UK Food System and the Scope Reduction by 2050. Report for the WWF and Food Climate Research Network; WWF-UK: Surrey, UK, 2010. [Google Scholar]
- Jalali, A.; Maysami, M. Environmental life cycle assessment (LCA) of wheat cultivation in agro industry company of Iranian Novin (Aq-Qala). Nveo-Nat. Volatiles Essent. Oils J. NVEO 2021, 8, 5905–5916. [Google Scholar]
- Sefeedpari, P.; Ghahderijani, M.; Pishgar-Komleh, S. Assessment the effect of wheat farm sizes on energy consumption and CO2 emission. J. Renew. Sustain. Energy 2013, 5, 23131. [Google Scholar] [CrossRef]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017, 607, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental analysis of producing biochar and energy recovery from pulp and paper mill biosludge. J. Ind. Ecol. 2019, 23, 1039–1051. [Google Scholar] [CrossRef]
- Mohammadi, A.; Khoshnevisan, B.; Venkatesh, G.; Eskandari, S. A critical review on advancement and challenges of biochar application in Paddy fields: Environmental and life cycle cost analysis. Processes 2020, 8, 1275. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.L.; Mai, T.L.A.; Brandao, M.; de la Rosa, R.A.; Kristiansen, P.; Joseph, S. Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems. J. Clean. Prod. 2017, 162, 260–272. [Google Scholar] [CrossRef]
- Khan, Z.; Haider, G.; Amir, R.; Ikram, R.M.; Ahmad, S.; Schofield, H.K.; Riaz, B.; Iqbal, R.; Fahad, S.; Datta, R. Chemical and biological enhancement effects of biochar on wheat growth and yield under arid field conditions. Sustainability 2021, 13, 5890. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.L.; Cacho, O.; Kristiansen, P.; Mai, T.L.A.; Joseph, S. Biochar addition in rice farming systems: Economic and energy benefits. Energy 2017, 140, 415–425. [Google Scholar] [CrossRef]
- Wójcik-Gront, E. Variables influencing yield-scaled Global Warming Potential and yield of winter wheat production. Field Crops Res. 2018, 227, 19–29. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, X.; Wang, Y. Long-term field measurements of annual methane and nitrous oxide emissions from a Chinese subtropical wheat-rice rotation system. Soil Biol. Biochem. 2017, 115, 21–34. [Google Scholar] [CrossRef]
- Payandeh, Z.; Jahanbakhshi, A.; Mesri-Gundoshmian, T.; Clark, S. Improving energy efficiency of barley production using joint data envelopment analysis (DEA) and life cycle assessment (LCA): Evaluation of greenhouse gas emissions and optimization approach. Sustainability 2021, 13, 6082. [Google Scholar] [CrossRef]
- Angulo-Meza, L.; González-Araya, M.; Iriarte, A.; Rebolledo-Leiva, R.; de Mello, J.C.S. A multiobjective DEA model to assess the eco-efficiency of agricultural practices within the CF+ DEA method. Comput. Electron. Agric. 2019, 161, 151–161. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Zylowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA+ DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110138. [Google Scholar] [CrossRef] [PubMed]
- Pollard, S.J.; Davies, G.J.; Coley, F.; Lemon, M. Better environmental decision making—recent progress and future trends. Sci. Total Environ. 2008, 400, 20–31. [Google Scholar] [CrossRef] [PubMed]
Inputs Emissions | GWP (g CO2 eq.) | AP (g SO2 eq.) | EP (g NO3 eq.) | NRE (MJ) |
---|---|---|---|---|
Diesel | 200.7 (35.6) a | 1.7 (19.5) | 3.0 (17.5) | 2.6 (36.6) |
Electricity | 58.9 (10.5) | 0.1 (1.2) | 0.1 (0.6) | 1.0 (14.1) |
Fertilizer | 171.7 (30.5) | 1.0 (11.5) | 2.6 (15.1) | 3.4 (47.9) |
Chemicals | 3.8 (0.7) | 0.1 (1.2) | 0.3 (1.7) | 0.1 (1.4) |
N2O | 127.5 (22.7) | - | - | - |
NH3 | - | 5.6 (64.3) | 10.8 (62.8) | - |
NOx | - | 0.2 (2.3) | 0.4 (2.3) | - |
Total | 562.6 (100) | 8.7 (100) | 17.2 (100) | 7.1 (100) |
Country | Value of GWP in g CO2-eq/kg Wheat Grain | Scope | References |
---|---|---|---|
Denmark | 360 | Cradle to gate—Farm | [44] |
Italy | 363 | Cradle to gate—Farm | [45] |
Iran | 381 a | Cradle to gate—Farm | [46] |
Italy | 440 | Cradle to gate—storage phase | [7] |
Poland | 450 | Cradle to gate—Farm | [47] |
UK | 510 | Cradle to gate—Farm | [48] |
Germany | 530 | Cradle to gate—Farm | [44] |
Iran | 624 | Cradle to gate—Farm | [8] |
Iran | 680 a | Cradle to gate—Farm | [46] |
Iran | 841 | Cradle to gate—Farm | [49] |
DMU | Ψ | DMU | Ψ | DMU | Ψ |
---|---|---|---|---|---|
113 | 1.53 | 116 | 1.27 | 115 | 1.10 |
157 | 1.48 | 143 | 1.25 | 75 | 1.09 |
55 | 1.45 | 26 | 1.23 | 120 | 1.07 |
126 | 1.42 | 166 | 1.21 | 124 | 1.06 |
58 | 1.39 | 121 | 1.18 | 133 | 1.05 |
37 | 1.36 | 125 | 1.16 | 52 | 1.03 |
125 | 1.34 | 67 | 1.15 | 167 | 1.01 |
51 | 1.31 | 122 | 1.13 | 129 | 1.00 |
74 | 1.28 | 162 | 1.12 | 46 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, A.; Venkatesh, G.; Eskandari, S.; Rafiee, S. Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production. Agriculture 2022, 12, 1031. https://doi.org/10.3390/agriculture12071031
Mohammadi A, Venkatesh G, Eskandari S, Rafiee S. Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production. Agriculture. 2022; 12(7):1031. https://doi.org/10.3390/agriculture12071031
Chicago/Turabian StyleMohammadi, Ali, G. Venkatesh, Samieh Eskandari, and Shahin Rafiee. 2022. "Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production" Agriculture 12, no. 7: 1031. https://doi.org/10.3390/agriculture12071031