Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agrotechnology of the Experiment
2.2. Peat Sampling and Peat Chemical Analysis
2.3. Chemical Analysis of Plant Material
2.4. Chlorophyll Content in Lettuce Leaves
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of P Fertilization on the Chlorophyll and Carotenoid Content in Lettuce Leaves
3.2. Effect of P Fertilization on Vitamin C, Ca, and K Content in Lettuce Leaves
3.3. Effect of P Fertilization on Ca and K Content in Peat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kominko, H.; Gorazda, K.; Wzorek, Z.; Wojtas, K. Sustainable Management of Sewage Sludge for the Production of Organo-Mineral Fertilizers. Waste Biomass Valorization 2018, 9, 1817–1826. [Google Scholar] [CrossRef]
- Petzet, S.; Cornel, P. Towards a complete recycling of phosphorus in wastewater treatment—Options in Germany. Water Sci. Technol. 2011, 64, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- European Commission. Critical Raw Material. Report on Critical Raw Materials for the EU: Report of the Ad hoc Working Group on Defining Critical Raw Materials. Brussels, 2014. Available online: https://ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf (accessed on 20 April 2022).
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef] [Green Version]
- Jama-Rodzeńska, A.; Białowiec, A.; Koziel, J.A.; Sowiński, J. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. J. Environ. Manag. 2021, 281, 112235. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Smol, M.; Kulczycka, J.; Lelek, Ł.; Gorazda, K.; Wzorek, Z. Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Arch. Environ. Prot. 2020, 46, 42–52. [Google Scholar]
- de Boer, M.A.; Romeo-Hall, A.G.; Rooimans, T.M.; Slootweg, J.C. An assessment of the drivers and barriers for the deployment of urban phosphorus recovery technologies: A case study of the Netherlands. Sustainability 2018, 10, 1790. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, M.; Sosulski, T.; Bożętka, A.; Dawidowicz, U.; Wąs, A.; Szara, E.; Malak-Rawlikowska, A.; Sulewski, P.; van Pruissen, G.W.P.; Cornelissen, R.L. Evaluating the struvite recovered from anaerobic digestate in a farm bio-refinery as a slow-release fertiliser. Energies 2020, 13, 5342. [Google Scholar] [CrossRef]
- Hukari, S.; Hermann, L.; Nättorp, A. From wastewater to fertilisers—Technical overview and critical review of European legislation governing phosphorus recycling. Sci. Total Environ. 2016, 542 Pt B, 1127–1135. [Google Scholar] [CrossRef]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.H.; Yu, A.C.; El Abbadi, S.H.; Lu, K.; Chan, D.; Appel, E.A.; Criddle, C.S. More than a fertilizer: Wastewater-derived struvite as a high value, sustainable fire retardant. Green Chem. 2021, 23, 4510–4523. [Google Scholar] [CrossRef]
- Cabeza, R.; Steingrobe, B.; Römer, W.; Claassen, N. Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr. Cycl. Agroecosyst. 2011, 91, 173–184. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Zessner, M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 2015, 105, 325–346. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amann, A.; Zoboli, O.; Krampe, J.; Rechberger, H.; Zessner, M.; Egle, L. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 2018, 130, 127–139. [Google Scholar] [CrossRef]
- Dissanayake, C.B.; Chandrajith, R. Phosphate Mineral Fertilizers, trace metals and human health. J. Natl. Sci. Found. Sri Lanka 2009, 37, 153–165. [Google Scholar]
- Jama-Rodzeńska, A.; Sowiński, J.; Koziel, J.; Białowiec, A. Phosphorus Recovery from Sewage Sludge Ash Based on Cradle-to-Cradle Approach—Mini-Review. Minerals 2021, 11, 985. [Google Scholar] [CrossRef]
- Szymanska, M.; Szara, E.; Was, A.; Sosulski, T.; Van Pruissen, G.W.P.; Cornelissen, R.L. Struvite—An innovative fertilizer from anaerobic digestate produced in a bio-refinery. Energies 2019, 12, 296. [Google Scholar] [CrossRef] [Green Version]
- Jama Rodzeńska, A.; Chochura, P.; Gałka, B.; Szuba-Trznadel, A.; Svecnjak, Z.; Latkovic, D. Effect of Various Rates of P from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca sativa L.) Grown on Peat Substrate. Agriculture 2021, 11, 1279. [Google Scholar] [CrossRef]
- Huygens, D.; Saveyn, H.G.M. Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, A. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environ. Sci. Pollut. Res. 2016, 23, 5949–5959. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.D.; Lee, S.I. Struvite recovery from swine wastewater and its assessment as a fertilizer. Environ. Eng. Res. 2016, 1, 29–35. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio 2015, 4 (Suppl. S2), 217–227. [Google Scholar] [CrossRef] [Green Version]
- Jama-Rodzeńska, A. The Effect of Phosgreen Fertilization on the Growth and Phosphorus Uptake of Lettuce (Lactuca sativa). Int. J. Agric. Biol. 2022, 27, 1–7. [Google Scholar]
- Mirza, H.; Kamrun, N.; Mahabub, M.A., II; Rajib, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar]
- Goupy, P.; Carail, M.; Giuliani, A.; Duflot, D.; Dangles, O.; Caris-Veyrat, C. Carotenoids: Experimental Ionization Energies and Capacity at Inhibiting Lipid Peroxidation in a Chemical Model of Dietary Oxidative Stress. J. Phys. Chem. B 2018, 122, 5860–5869. [Google Scholar] [CrossRef]
- Yilmaz, C.; Gökmen, V. Chlorophyll in Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; Volume 2, pp. 37–41. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal, 5th ed.; Artmed: Porto Alegre, Brazil, 2013; p. 954. [Google Scholar]
- Lecourieux, D.; Ranjeva, R.; Pugin, A. Calcium in plant defence-signalling pathways: Tansley review. New Phytol. 2006, 171, 249–269. [Google Scholar] [CrossRef]
- Nowosielski, O. Zasady Opracowania Zalece ’n Nawozowych w Ogrodnictwie; PWRiL: Warszawa, Poland, 1988. [Google Scholar]
- Jarosz, Z. The effect of Pentakeep® V fertilizer on the yielding and content of selected macro- and micronutrients in lettuce. Acta Sci. Pol. Hortorum Cultus 2016, 15, 1. [Google Scholar]
- Oberta, W.; Łukaszewicz, W.J. Studies on water soluble salts by zone capillary electrophoresis. Acta Univ. Nicolai Copernic. 2015, 46, 363–378. [Google Scholar]
- Chemical Analysis of Soil. 2016. Available online: https://cdr.gov.pl/images/Radom/pliki/2016/06-07/Pobieranie_prob_gleby_i_nawozow.pdf (accessed on 20 April 2022).
- Li, S.; Tan, X.; Tan, B.; He, Y.; Li, N. Interactive Effects of Light and Nitrogen on Pakchoi (Brassica chinensis L.) Growth and Soil Enzyme Activity in an Underground Environment. Agronomy 2020, 10, 1772. [Google Scholar] [CrossRef]
- Gogoi, M.; Basumatary, M. Estimation of the chlorophyll concentration in seven Citrus species of Kokrajhar district, BTAD, Assam, India. Trop. Plant Res. 2018, 5, 83–87. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Srichaikul, B.; Bunsang, R.; Samappito, S.; Butkhup, S.; Bakker, G. Comparative study of chlorophyll content in leaves of Thai Morus alba Linn. Species. Plant Sci. Res. 2011, 3, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Rodolfi, M.; Barbanti, L.; Giordano, C.; Rinaldi, M.; Fabbri, A.; Pretti, L.; Casolari, R.; Beghé, D.; Petruccelli, R.; Ganino, T. The effect of different organic foliar fertilization on physiological and chemical characters in hop (Humulus lupulus L., cv Cascade) leaves and cones. Appl. Sci. 2021, 11, 6778. [Google Scholar] [CrossRef]
- Agüero, M.V.; Barg, M.V.; Yommi, A.; Camelo, A.; Roura, S.I. Postharvest changes in water status and chlorophyll content of lettuce (Lactuca Sativa L.) and their relationship with overall visual quality. J. Food Sci. 2008, 73, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Mou, B. Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange. Horttechnology 2017, 27, 539–543. Available online: https://journals.ashs.org/horttech/view/journals/horttech/27/4/article-p539.xml (accessed on 20 March 2022). [CrossRef]
- Perucka, I.; Olszówka, K. Accumulation of potassium, magnesium, calcium in fresh and cold stored leaves of lettuce (Lactuca sativa L.) after CaCl2 foliar treatment before harvest. J. Elemntology 2011, 16, 445–454. [Google Scholar] [CrossRef]
- Sun, J.; Yang, L.; Yang, X.; Wei, J.; Li, L.; Guo, E.; Kong, Y. Using Spectral Reflectance to Estimate the Leaf Chlorophyll Content of Maize Inoculated With Arbuscular Mycorrhizal Fungi Under Water Stress. Front. Plant Sci. 2021, 12, 646173. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2021.646173/full (accessed on 20 March 2022). [CrossRef]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, e6240. Available online: https://peerj.com/articles/6240/ (accessed on 15 February 2022). [CrossRef]
- Plakalovic, J. Influence of agro-Technical Measures on the Vulnerability and Yield of Young Onions. Master thesis, University of East Sarajevo, Lukavica, Bosnia and Herzegovina, 2018. [Google Scholar]
- Premuzic, Z.; Gárate, A.; Bonilla, I. Yield and quality of greenhouse lettuce as affected by form of N fertiliser and light supply. In Plant Nutrition; Springer: Dordrecht, The Netherlands, 2001; pp. 300–301. [Google Scholar]
- Govedarica-Lučić, A.; Perković, G.; Rahimić, A.; Bošković, I.; Pašić, S. Influence of fertilization on growth and quality of lettuce. Agric. For. 2020, 66, 73–80. [Google Scholar] [CrossRef]
- Poulsen, N.; Johansen, A.S.; Sorensen, J.N. Influence of growth conditions on the value of crisphead lettuce. 4. Quality changes during storage. Plant Foods Hum. Nutr. 1995, 47, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, G.P.; López-de-Sá, E.G.; Plaza, C. Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater. HortScience 2009, 44, 426–430. Available online: https://journals.ashs.org/hortsci/view/journals/hortsci/44/2/article-p426.xml (accessed on 13 December 2021).
- Hoque, M.M.; Ajwa, H.; Othman, M.; Smith, R.; Cahn, M. Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience 2010, 45, 1539–1544. Available online: https://journals.ashs.org/hortsci/view/journals/hortsci/45/10/article-p1539.xml?rskey=kvyZif (accessed on 11 March 2021). [CrossRef] [Green Version]
- Soundy, P.; Smith, I.E. Response of lettuce (Lactuca sativa L.) to nitrogen and phosphorus fertilization. J. S. Afr. Soc. HortSci. 1992, 2, 82–85. [Google Scholar]
- Gaj, R.; Górski, D. Effects of different phosphorus and potassium fertilization on contents and uptake of ma-cronutrients (N, P, K, Ca, Mg) in winter wheat I. Content of macronutrients. J. Cent. Europ. Agric. 2014, 15, 169–187. [Google Scholar] [CrossRef]
- Gondek, K.; Kopeć, M. Potassium content in maize and soil fertilized with organic materials. J. Elem. 2008, 13, 501–512. [Google Scholar]
- Fotyma, M. Content of potassium in different forms in the soils of southeast poland. Pol. J. Soil Sci. 2007, 40, 19–32. [Google Scholar]
- Kucher, L. Forecasting of the impact of acidity on the content of mobile forms of potassium in the soils of forest-steppes of Ukraine. Pol. J. Soil Sci. 2019, 52, 269–275. [Google Scholar] [CrossRef]
- Arzac-Pilz, V.; Parada, F.; Rufi-Saliz, M.; Stringari, G.; Gonzales, R.; Villalba, G.; Gabarell, X. Extended use and optimization of struvite in hydroponic cultivation systems. Res. Conser. Rec. 2022, 179, 106130. [Google Scholar] [CrossRef]
- Loide, V. About the effect of the contents and ratios of soil’s available calcium, potassium and magnesium in liming of acid soils. Agron. Res. 2004, 2, 71–82. [Google Scholar]
- Hannan, J.M. Potassium-Magnesium Antagonism in High Magnesium Vineyard Soils. In Graduate Theses and Dissertations; Iowa State University: Ames, IA, USA, 2011; p. 41. Available online: https://dr.lib.iastate.edu/handle/20.500.12876/26296 (accessed on 20 April 2022).
- Abayneh, E.; Demeke, T.; Ashenafi, A. Soils of the Mekelle Agricultural Research Center and Its Testing Sites Report; Ethiopian Institute of Agricultural Research, National Soil Research Center (NSRC): Addis Abeba, Ethiopia, 2005. [Google Scholar]
- Hillette, H.; Tekalign, M.; Riikka, K.; Erik, K.; Heluf, G.; Taye, B. Soil fertility status and wheat nutrient content in Vertisol cropping systems of central highlands of Ethiopia. Agric. Food Secur. 2015, 4, 19. [Google Scholar]
- Hoskins, B.R. Soil Testing Handbook for Professionals in Agriculture, Horticulture, Nutrient and Residuals Management, 3rd ed.; Maine Forestry & Agricultural Experiment Station: Orono, ME, USA, 1997; p. 119. [Google Scholar]
Experiment Factor | Chlorophyll Content and Carotenoids | |||
---|---|---|---|---|
Chlorophyll a mg 100g−1 FM | Chlorophyll b mg 100g −1 FM | Chlorophyll a + b mg 100g−1 FM | Carotenoids µg 100g−1 FM | |
Phosphorus fertilizer (A) | ||||
Control | 95 a ± 5.5 | 23 ab ± 1.7 | 118 a ± 5.6 | 228± 18.2 |
SUP | 105 a ± 15.4 | 22 a ± 10.4 | 127 a ± 18.4 | 188 ± 13.8 |
Phosgreen | 186 b ± 13.9 | 46 b ± 27.9 | 225 b ± 13.9 | 153 ± 26.5 |
p value | 0.001 | 0.05 | 0.001 | ns |
Doses of P fertilizer (B) | ns | ns | ns | ns |
A × B | ns | ns | ns | ns |
Experiment Factor | Chemical Composition of Lettuce Leaves | ||||
---|---|---|---|---|---|
Vit. C (mg 100 g−1 FM) | K Content (mg 100 g−1 DM) | K Uptake mg per Mass of Leaves | Ca Content (mg 100 g−1 DM) | Ca Uptake mg per Mass of Leaves | |
Phosphorus fertilizer (A) | |||||
Control | 8.2 a ± 0.3 | 5625 ± 312.5 | 541 a ± 30.1 | 541 ± 41.6 | 52 ± 4.01 |
SUP | 10.0 b ± 0.4 | 5226. ± 142.8 | 589 a ± 38.3 | 628 ± 80.1 | 73 ± 12.9 |
Phosgreen | 8.3 a ± 0.4 | 5321 ± 20 2.7 | 676 a ± 11.3 | 538 ± 15.1 | 68 ± 5.47 |
p value | 0.001 | ns | ns | ns | ns |
Doses of P fertilizer (B) | |||||
Control | 8.3 ± 0.3 | 5625 ab ± 312.5 | 541 a ± 30.1 | 541 a ± 41.6 | 52 a ± 4.01 |
Reduced rate | 9.0 ± 0.4 | 5013 a ± 204.3 | 599 a ± 15.9 | 4654 a ± 41.4 | 55 a ± 5.18 |
Recommended rate | 9.6 ± 1.0 | 5079 ab ± 188.2 | 575 a ± 46.6 | 457 a ± 13.6 | 52 a ± 3.86 |
Increased rate | 10.1 ± 0.7 | 5729 b ± 95.8 | 723 b ± 5.0 | 827 b ± 54.6 | 105 b ± 9.09 |
p value | ns | 0.05 | 0.01 | 0.001 | 0.001 |
A × B | |||||
Control | 8.3 a ± 0.3 | 5625 b ± 312.5 | 541 b ± 30.1 | 542 ab ± 41.6 | 52 ab ± 4.0 |
SUP Reduced rate | 9.7 abc ± 0.1 | 547 b ± 0.0 | 564 b ± 0.0 | 512 a ± 10.8 | 53 ab ± 1.1 |
SUP Recommended rate | 12.1 c ± 0.3 | 4688 a ± 155.8 | 472 a ± 15.7 | 429 a ± 4.2 | 43 a ± 0.4 |
SUP Increased rate | 11.1 c ± 0.3 | 552 b ± 51.6 | 731 d ± 6.8 | 944 c ± 18.3 | 125 d ± 2.4 |
Phosgreen Reduced rate | 8.3 a ± 0.5 | 4556 a ± 12.6 | 635 c ± 1.8 | 420 a ± 80.0 | 57 b ± 11.2 |
Phosgreen Recommended rate | 7.6 a ± 0.1 | 5470 b ± 0.0 | 678 cd ± 0.0 | 487 a ± 8.8 | 60 b ± 1.2 |
Phosgreen Increased rate | 9.2 ab ± 1.5 | 5937 b ± 0.0 | 714 d ± 0.0 | 709 b ± 27.2 | 85 c ± 3.3 |
p value | 0.05 | 0.001 | 0.001 | 0.001 | 0.001 |
Experiment Factor | Chemical Composition of Peat | ||||
---|---|---|---|---|---|
K Content mg dm−3 | Ca Content mg dm−3 | Mg Content mg dm−3 | K:Mg Ratio | Ca:Mg Ratio | |
Phosphorus fertilizer (A) | |||||
Control (C) | 1716 b ± 16.6 | 399 a ± 20.3 | 32 ± 1.2 | 54 | 12 |
SUP | 65 a ± 8.5 | 1126 b ± 67.3 | 38 ± 9.8 | 1.71 | 43 |
Phosgreen | 56 a ± 20.8 | 936 b ± 142.8 | 58 ± 10.4 | 0.96 | 23 |
p value | 0.001 | 0.01 | ns | - | - |
Dose of P fertilizer | |||||
Control | 1716 b ± 16.7 | 397 a ± 20.3 | 32 ab ± 1.2 | 54 | 12 |
Reduced rate | 58 a ± 9.8 | 1052 b ± 31.6 | 25 a ± 7.5 | 2.3 | 54 |
Recommended rate | 58 a ± 11.4 | 1247 b ± 125.1 | 47 ab ± 12.4 | 1.2 | 31 |
Increased rate | 65 a ± 15.3 | 793 ab ± 166.6 | 73 b ± 10.8 | 0.9 | 13 |
p value | 0.001 | 0.01 | 0.05 | - | - |
A × B | |||||
Control | 1716 ± 16.7 | 399 a ± 20.3 | 32 ± 1.2 | 54 | 12 |
SUP Reduced rate | 79 b ± 4.3 | 1120 b ± 7.3 | 15.3 ± 1.8 | 5.2 | 75 |
SUP Recommended rate | 83 b ± 4.3 | 1093 b ± 229.2 | 51 ± 27.3 | 1.67 | 31 |
SUP Increased rate | 32 a ± 1.0 | 1163 b ± 25 | 49 ± 2.6 | 0.7 | 23 |
Phosgreen Reduced rate | 36 a ± 2.7 | 983 b ± 16.6 | 36 ± 13.0 | 1.0 | 34 |
Phosgreen Recommended rate | 33 a ± 1.7 | 1401 b ± 44.7 | 42 ± 1.1 | 0.8 | 33 |
Phosgreen Increased rate | 99 b ± 7.4 | 423 a ± 38.4 | 97 ± 2.4 | 1.0 | 4 |
p value | 0.001 | 0.001 | ns | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jama-Rodzeńska, A.; Chohura, P.; Gałka, B.; Szuba-Trznadel, A.; Falkiewicz, A.; Białkowska, M. Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate. Agriculture 2022, 12, 788. https://doi.org/10.3390/agriculture12060788
Jama-Rodzeńska A, Chohura P, Gałka B, Szuba-Trznadel A, Falkiewicz A, Białkowska M. Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate. Agriculture. 2022; 12(6):788. https://doi.org/10.3390/agriculture12060788
Chicago/Turabian StyleJama-Rodzeńska, Anna, Piotr Chohura, Bernard Gałka, Anna Szuba-Trznadel, Agnieszka Falkiewicz, and Monika Białkowska. 2022. "Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate" Agriculture 12, no. 6: 788. https://doi.org/10.3390/agriculture12060788
APA StyleJama-Rodzeńska, A., Chohura, P., Gałka, B., Szuba-Trznadel, A., Falkiewicz, A., & Białkowska, M. (2022). Effect of Different Doses of Phosgreen Fertilization on Chlorophyll, K, and Ca Content in Butterhead Lettuce (Lactuca sativa L.) Grown in Peat Substrate. Agriculture, 12(6), 788. https://doi.org/10.3390/agriculture12060788