Compost and Biostimulants versus Mineral Nitrogen on Productivity and Grain Quality of Two Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Cultural Practices
2.4. Data Collection
Agronomic Characteristics
2.5. Grain Quality Characteristics
2.5.1. Preparation of Samples
2.5.2. Chemical Composition of Grain
2.5.3. Macro and Micronutrients Composition of Grain
2.6. Statistical Analysis
3. Results
3.1. Agronomic Characteristics
3.2. Grain Chemical Contents
3.3. Macro and Micronutrients Composition of Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aust. J. Crop Sci. 2010, 6, 384–389. [Google Scholar]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world. 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Faltermaier, A.; Waters, D.; Becker, T.; Arendt, E.; Gastl, M. Common wheat (Triticum aestivum L.) and its use as a brewing cereal—A review. J. Inst. Brew. 2014, 120, 1–15. [Google Scholar] [CrossRef]
- Pathak, V.; Shrivastav, S. Biochemical studies on wheat (Triticum aestivum L.). J. Pharmacogn. Phytochem. 2015, 4, 171–175. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Yakhin, O.L.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalysis. VIUSID Agro, Promotor Delcrecimiento. 2014. Available online: http://www.catalysisagro.com/ (accessed on 20 March 2014).
- Saeed, M.R.; Kheir, A.M.; Al-Sayed, A.A. Suppressive effect of some amino acids against Meloidogyne incognita on soybeans. J. Agric. Sci. Mansoura Univ. 2005, 30, 1097–1103. [Google Scholar]
- Peña, K.; Rodriguez, J.C.; Melendrez, J.F. The VIUSID® agro an alternative in the increase of the production of tomato (Solanum lycopersicum L.). Caribb. Mag. Soc. Sci. 2016, 15, 1–10. [Google Scholar]
- Atta, M.M.; Abdel-Lattif, H.M.; Absy, R. Influence of biostimulants supplement on maize yield and agronomic traits. Biosci. Res. 2017, 14, 604–615. [Google Scholar]
- Peña, K.; Rodríguez, J.C.; Olivera, D.; Calero, A.; Dorta, R.; Meléndrez, J.; Veloso, Y.F.; Kukurtcu, B. Effect of the growth promoter VIUSID® agro on the morphophysiological and productive performance of tobacco growth (Nicotian atabacum L.). J. Agric. Sci. Technol. B 2018, 8, 157–167. [Google Scholar]
- Posada-Pérez, L.; Rodríguez, R.B.; Pérez, A.C.; Pérez, A.P.; Montesino, Y.P.; Kukurtcu, B.; Daniels, D.D.; Reyes, G.; Gómez-Kosky, R. Effect of VIUSID-Agro™ on the conversion of somatic embryos of coffee (Coffea arabica L.) cv. Red Caturra rojo-884. Afr. J. Biotechnol. 2021, 20, 229–236. [Google Scholar] [CrossRef]
- Abbas, M.S.; Badawy, R.A.; Abdel-Lattif, H.M.; El-Shabrawi, H.M. Synergistic effect of organic amendments and biostimulants on faba bean grown under sandy soil conditions. Sci. Agric. 2022, 79, e20200300. [Google Scholar] [CrossRef]
- Shah, M.T.; Zodape, S.T.; Chaudhary, D.R.; Eswaran, K.; Chikara, J. Seaweed sap as an alternative to liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. 2013, 36, 192–200. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A 2013, 20, 1205–1211. [Google Scholar] [CrossRef]
- Sarwar, G. Use of compost for crop production in Pakistan. In Okologie Abd Umweltsicherung, 26/2005; Universitat Kassel, Fachgebiet Landschaftsokologie and Naturschutz: Witzenhausen, Germany, 2005. [Google Scholar]
- Agegnehu, G.; Bekele, T. On-farm integrated soil fertility management in wheat on Nitisols of central Ethiopian highlands. Ethiop. J. Nat. Resour. 2005, 7, 141–155. [Google Scholar]
- Kwadwo, A.; Boateng, G.; Christian, L.A. The effect of organic manures on soil fertility and microbial biomass carbon, nitrogen and phosphorus under maize-cowpea intercropping system discourse. J. Agric. Food Sci. 2015, 3, 65–77. [Google Scholar]
- Bayu, W.; Rethman, N.F.G.; Hammes, P.S.; Alemu, G. Application of farmyard manure improved the chemical and physical properties of the soil in a Semi-Arid Area in Ethiopia. Biol. Agric. Hortic. 2006, 24, 293–300. [Google Scholar] [CrossRef]
- Weil, R.; Magdo, F. Significance of soil organic matter to soil quality and health. In Soil Organic Matter in Sustainable Agriculture; Magdo, F., Weil, R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–36. [Google Scholar]
- Agegnehu, G.; van Beek, C.; Bird, M.I. Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. J. Soil Sci. Plant Nutr. 2014, 14, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Zemichael, B.; Dechassa, N. Effect of mineral fertilizer, farmyard manure, and compost on yield of bread wheat and selected soil chemical properties in Enderta District, Tigray Regional State, Northern Ethiopia. East Afr. J. Sci. 2018, 12, 29–40. [Google Scholar]
- Abd El-Gawad, A.M.; Morsy, A.S.M. Integrated impact of organic and inorganic fertilizers on growth, yield of maize (Zea mays L.) and soil properties under Upper Egypt conditions. J. Plant Prod. Mansoura Univ. 2017, 8, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Hussain, N.; Schmeisky, H.; Muhammad, S.; Ibrahim, M.; Safdar, E. Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pak. J. Bot. 2008, 40, 275–282. [Google Scholar]
- Abbasi, M.K.; Yousra, M. Synergestic effects of biofertilizer with organic and chemical N sources in improving soil nutrient status and increasing growth and yield of wheat grown under greenhouse conditions. Plant Biosyst. 2012, 146, 181–189. [Google Scholar] [CrossRef]
- Ismail, M.M.; Moursy, A.A. Organo-mineral fertilization of wheat: Impact on growth and n-recovery using 15N–stable isotope. Bangladesh J. Bot. 2018, 47, 815–821. [Google Scholar] [CrossRef]
- Chen, H.; Deng, A.; Zhang, W.; Li, W.; Qiao, Y.; Yang, T.; Zheng, C.; Cao, C.; Chen, F. Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat. Crop J. 2018, 6, 589–599. [Google Scholar] [CrossRef]
- Tahir, M.; Ayub, M.; Javeed, H.M.R.; Naeem, M.; Rehman, H.; Waseem, M.; Ali, M. effect of different organic matter on growth and yield of wheat (Triticum aestivum L.). Pak. J. Life Soc. Sci. 2011, 9, 63–66. [Google Scholar]
- Akhtar, M.J.; Asghar, H.N.; Asif, M.; Zahir, Z.A. Growth and yield of wheat as affected by compost enriched with chemical fertilizer, l-tryptophan and rhizobacteria. Pak. J. Agric. Sci. 2017, 44, 136–140. [Google Scholar]
- Ahmadian, A.; Ghanbari, A.; Siahsar, B.; Haydari, M.; Ramroodi, M.; Mousavinik, S.M. Study of chamomile’s yield and its components under drought stress and organic and inorganic fertilizers usage and their residue. J. Microbiol. Antimicrob. 2011, 3, 23–28. [Google Scholar]
- Bistgani, Z.E.; Siadat, S.A.; Bakhshandeh, A.; Pirbalouti, A.G.; Hashemi, M.; Maggi, F.; Morshedloo, M.R. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Ind. Crops Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Goulding, K. Nitrate leaching from arable and horticultural land. Soil Use Manag. 2000, 16, 145–151. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Maucieri, C.; Barco, A.; Borin, M. Compost as a substitute for mineral N fertilization? effects on crops, soil and N leaching. Agronomy 2019, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Getachew, A.; Lakew, B.; Paul, N.N. Cropping sequence and nitrogen fertilizer effects on the productivity and quality of malting barley and soil fertility in the Ethiopian highlands. Arch. Agron. Soil Sci. 2014, 60, 1261–1275. [Google Scholar] [CrossRef] [Green Version]
- Quilty, J.; Cattle, S. Use and understanding of organic amendments in Australian agriculture: A review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Klute, A. Methods of Soil Analysis. Part-I: Physical and Mineralogical Methods, 2nd ed.; American Society of Agronomy Madison: Madison, WI, USA, 1986. [Google Scholar]
- Page, A.I.; Miller, R.H.; Keeny, D.R. Methods of Soil Analysis Part II. Chemical and Microbiological Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar] [CrossRef]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, M.; Camerlgnck, R. Chemical Analysis of Plant and Soil; Laboratory Analytical Agrochemistry, State University of Ghent: Ghent, Belgium, 1982; pp. 100–129. [Google Scholar]
- A.O.A.C. Official Methods of Analysis of Association of Official Agricultural Chemists, 17th ed.; Suitem, H.W., Ed.; A.O.A.C.: Rockville, MD, USA, 2000; Volume 2, pp. 66–68. [Google Scholar]
- Fraser, J.R.; Holmes, D.C. Proximate analysis of wheat flour carbohydrates. IV.—Analysis of whole meal flour and some of its fractions. J. Sci. Food Agric. 1959, 10, 506–512. [Google Scholar] [CrossRef]
- Moore, S.; Stein, M.N. A modified ninhydrin reagent for the photometric determination of amino and related compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.F. The quantitative analysis of phenolic constituent. J. Sci. Food Agric. 1959, 10, 63–69. [Google Scholar] [CrossRef]
- Jones, J.R.; Benton, J.; Wolf, B.; Mills, H.A. Plant Analysis Hand Book; Methods of plant analysis and interpretation; Micro-Macro Publishing Inc.: Athens, GA, USA, 1991; pp. 30–34. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis, 1st ed.; Interscience Publishers: New York, NY, USA, 1947; p. 48. [Google Scholar]
- SPSS Statistics. SPSS Statistics 17.0. SPSS for Windows; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. Analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Bartlett, M.S. The statistical conception of mental factors. Br. J. Psychol. 1937, 28, 97–104. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 9th ed.; Iowa State Univ. Press: Ames, IA, USA, 1994. [Google Scholar] [CrossRef]
- Freed, R.S.P.; Einensmith, S.; Gutez, D.; Reicosky, V.; Smail, W.; Wolberg, P. User’s Guide to MSTAT-C Analysis of Agronomic Research Experiments; Michigan State University: East Lansing, MI, USA, 1989. [Google Scholar]
- Timsina, J. Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Gorttappech, A.H.; Ghalavand, A.; Ahmady, M.R.; Mirnia, S.K. Effect of inorganic and organic fertilizer on quantitative and qualitative traits of different cultivars of sunflower (Hellianthus annus L.). Iran J. Agric. Sci. 2000, 6, 85–104. [Google Scholar]
- Kany, M.A. Evaluation of Some Organic Manures. Ph.D. Thesis, Faculty of Agriculture-Mansoura University, Mansoura, Egypt, 2016. [Google Scholar]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The impact of exogenous organic matter on wheat growth and mineral nitrogen availability in soil. Agronomy 2020, 10, 1314. [Google Scholar] [CrossRef]
- Rehman, S.; Khalil, S.K. Organic and inorganic fertilizers increase wheat yield components and biomass under rain-fed condition. Sarhad J. Agric. 2008, 24, 11–20. [Google Scholar]
- Hidayatullah, A.J.; Amanullah, J.; Zahir, S. Residual effect of organic nitrogen sources applied to rice on the subsequent wheat crop. Intr. J. Agron. Plant Prod. 2013, 4, 620–631. [Google Scholar]
- Sharma, G.D.; Risikesh, T.; Som, R.A.J.; Kauraw, D.L.; Kulhare, P.S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility. Typic Haplustert Bioscan 2013, 8, 1159–1164. [Google Scholar]
- Mohamed, M.F.; Thalooth, A.T.; Elewa, T.A.; Ahmed, A.G. Yield and nutrient status of wheat plants (Triticum aestivum) as affected by sludge, compost, and biofertilizers under newly reclaimed soil. Bull. Natl. Res. Cent. 2019, 43, 31. [Google Scholar] [CrossRef]
- Pordeus, A.V.; Moraes, L.D.A.; Medeiros, D.D.O.; Benitez, L.C. Response of hydroponic Lactuca sativa L. to application of fertilizer organic VIUSID Agro®. J. Agric. Sci. 2020, 12, 268–274. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of a biotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant Biostimulant Regulatory Framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- Sohu, I.; Gandahi, A.W.; Bhutto, G.R.; Sarki, M.S.; Gandahi, R. Growth and yield maximization of chickpea (Cicer arietinum) through integrated nutrient management applied to rice-chickpea cropping system. Sarhad J. Agric. 2015, 31, 131–138. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, J.; Li, R.; Wang, H.; Wang, J. Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant Soil 2007, 292, 105–117. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehim, A.; Khan, M.; Imran, M.; Bashir, M.A.; Ul-Allah, S.; Khan, M.N.; Hussain, M. Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat. Ital. J. Agron. 2020, 15, 29–34. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Khan, A.; Akhtar, K.; Wei, S.; Zhao, Q.; Zhang, J.; et al. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS ONE 2020, 15, e0238934. [Google Scholar] [CrossRef]
- Siavoshi, M.; Nasiri, A.L.; Laware, S.L. Effect of organic fertilizer on growth and yield components in rice (Oryza sativa L.). J. Agric. Sci. 2011, 3, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.H.; Xu, M.G.; Gao, S.D.; Yang, X.Y.; Huang, S.M.; Liu, H.B.; Wang, B.R. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crops Res. 2014, 157, 47–56. [Google Scholar] [CrossRef]
- Sheoran, S.; Raj, D.; Antil, R.S.; Mor, V.S.; Dahiya, D.S. Productivity, seed quality and nutrient use efficiency of wheat (Triticum aestivum) under organic, inorganic and integrated nutrient management practices after twenty years of fertilization. Cereal Res. Commun. 2017, 45, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.; Ahmed, T.; Eaton, T.; Hossain, M.; Haque, M.; Soren, E. Yield of wheat (Triticum aestivum) and nutrient uptake in grain and straw as influenced by some macro (S & Mg) and micro (B & Zn) nutrients. Nat. Sci. 2021, 13, 381–391. [Google Scholar] [CrossRef]
- Bulut, S.; Özturk, A.; Yıldız, N.; Karaoğlu, M. Mineral composition of bread wheat cultivars as influenced by different fertilizer sources and weed management practices. Gesunde Pflanz. 2022. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Holland, J.E.; McGrath, S.P.; Glendining, M.J.; Thomas, C.L.; Haefele, S.M. The grain mineral composition of barley, oat and wheat on soils with pH and soil phosphorus gradients. Eur. J. Agron. 2021, 126, 126281. [Google Scholar] [CrossRef]
Month | 2016/2017 | 2017/2018 | ||||
---|---|---|---|---|---|---|
Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | Temperature (°C) | Relative Humidity (%) | Rainfall (mm) | |
October | 27.9 | 29.9 | 0.6 | 26.4 | 28.7 | 1.2 |
November | 21.4 | 23.3 | 30.23 | 22.7 | 25.0 | 20.86 |
December | 19.3 | 21.2 | 50.08 | 16.5 | 18.5 | 8.69 |
January | 15.4 | 59.5 | 5.68 | 13.9 | 60.3 | 40.98 |
February | 16.9 | 62.3 | 12.93 | 15.6 | 54.0 | 11.6 |
March | 20.9 | 50.0 | 0.32 | 21.5 | 43.3 | 1.27 |
April | 24.7 | 41.0 | 91.07 | 26.2 | 38.3 | 5.63 |
Soil Analysis | 2016/2017 | 2017/2018 |
---|---|---|
Physical properties | ||
Sand (%) | 93.75 | 92.77 |
Silt (%) | 4.55 | 5.20 |
Clay (%) | 1.70 | 2.08 |
Texture class | Sandy loam | Sandy loam |
Chemical properties | ||
pH (1:1) | 7.54 | 7.21 |
EC (1:1) (dS m−1) | 5.12 | 5.43 |
Organic matter (%) | 0.57 | 0.63 |
Total CaCO3 (%) | 3.89 | 5.08 |
Available N (mg kg−1) | 7.01 | 8.43 |
Available P (mg kg−1) | 1.77 | 2.31 |
Available K (mg kg−1) | 153 | 176 |
Irrigation system | Sprinkler irrigation | Sprinkler irrigation |
Season | pH | EC (dS m−1) | Ions Concentration meq L−1 | ||||||
---|---|---|---|---|---|---|---|---|---|
HCO3− | CL− | SO4− | Ca++ | Mg++ | Na+ | K+ | |||
2016/17 | 7.8 | 4.16 | 2.8 | 30.5 | 9.0 | 3.9 | 4.3 | 33.3 | 0.64 |
2017/18 | 7.5 | 4.26 | 3.2 | 29.1 | 7.9 | 5.3 | 4.6 | 32.5 | 0.55 |
* Components | % | Components | % |
---|---|---|---|
Potassium phosphate | 5.00 | Calcium pantothenate | 0.115 |
Malic acid | 4.60 | Pyridoxal | 0.225 |
Glucosamine | 4.60 | Folic acid | 0.05 |
Arginine | 4.15 | Cyanocobalamin | 0.0005 |
Glycine | 2.35 | Monoammonium glycyrrizinate | 0.23 |
Ascorbic acid | 1.15 | Zinc sulphate | 0.115 |
Components | 2016/2017 | 2017/2018 |
---|---|---|
Moisture content (%) | 25.00 | 24.00 |
pH (1:10) | 7.00 | 7.1 |
EC (1:10) (ds/m) | 2.65 | 2.70 |
Total Nitrogen (%) | 2.15 | 2.20 |
Ammoniacal Nitrogen—NH4+ (%) | 0.45 | 0.49 |
Nitrate Nitrogen—NO3− (%) | 0.029 | 0.024 |
Organic Matter (%) | 1.671 | 1.686 |
Organic Carbon (%) | 38.90 | 38.85 |
Ash (%) | 32.8 | 32.8 |
C:N Ratio | 1:18 | 1:18 |
Total Phosphorus (P2O5) (%) | 1.09 | 1.07 |
Total Potassium (%) | 2.55 | 2.50 |
No weed seeds or nematodes were detected |
Treatments | VIUSID® (L Ha−1) | Genotypes | Plant Height (cm) | No. of Tillers Plant−1 | Spike Length (cm) | Spike Weight (g) | No. of Grains Spike−1 | Grain Index (g) | Yield ha−1 (ton) |
---|---|---|---|---|---|---|---|---|---|
100% nitrogen fertilization | Control | Gemmiza-10 | 94.60 | 2.87 | 10.67 | 2.07 | 33.84 | 42.03 | 3.08 |
LacriWhit-4 | 103.4 | 2.60 | 12.21 | 2.20 | 39.53 | 37.59 | 3.63 | ||
0.75 | Gemmiza-10 | 96.90 | 3.12 | 10.69 | 2.02 | 34.76 | 39.65 | 2.92 | |
LacriWhit-4 | 103.2 | 3.38 | 12.62 | 2.39 | 39.87 | 41.08 | 3.80 | ||
1.13 | Gemmiza-10 | 93.8 | 2.73 | 11.46 | 2.07 | 35.52 | 39.53 | 3.25 | |
LacriWhit-4 | 106.0 | 4.30 | 13.15 | 2.20 | 40.72 | 36.37 | 3.87 | ||
1.5 | Gemmiza-10 | 93.50 | 2.73 | 12.00 | 2.29 | 36.55 | 43.17 | 3.70 | |
LacriWhit-4 | 111.0 | 3.77 | 13.07 | 2.32 | 41.14 | 38.04 | 3.88 | ||
100% compost | Control | Gemmiza-10 | 102.1 | 3.13 | 11.90 | 2.04 | 34.68 | 40.14 | 3.14 |
LacriWhit-4 | 111.9 | 2.78 | 13.47 | 1.99 | 40.82 | 32.55 | 3.33 | ||
0.75 | Gemmiza-10 | 102.1 | 3.00 | 12.23 | 2.27 | 36.99 | 42.67 | 3.39 | |
LacriWhit-4 | 111.7 | 3.37 | 14.43 | 2.29 | 42.50 | 36.23 | 3.81 | ||
1.13 | Gemmiza-10 | 104.1 | 2.50 | 12.08 | 2.25 | 37.15 | 41.57 | 3.69 | |
LacriWhit-4 | 108.7 | 2.85 | 14.93 | 2.21 | 42.59 | 34.69 | 4.07 | ||
1.5 | Gemmiza-10 | 106.3 | 2.60 | 12.74 | 2.38 | 37.66 | 43.85 | 4.04 | |
LacriWhit-4 | 115.5 | 3.77 | 14.85 | 2.63 | 44.19 | 40.94 | 4.15 | ||
75% compost + 25% nitrogen fertilization | Control | Gemmiza-10 | 108.1 | 3.12 | 11.91 | 2.17 | 36.57 | 40.65 | 2.87 |
LacriWhit-4 | 116.6 | 3.55 | 14.44 | 2.12 | 42.42 | 33.07 | 4.04 | ||
0.75 | Gemmiza-10 | 106.6 | 2.98 | 12.28 | 2.06 | 37.42 | 37.18 | 3.20 | |
LacriWhit-4 | 114.4 | 3.12 | 14.93 | 2.33 | 43.78 | 35.79 | 3.79 | ||
1.13 | Gemmiza-10 | 107.9 | 3.50 | 12.48 | 1.76 | 38.35 | 29.75 | 3.41 | |
LacriWhit-4 | 115.0 | 3.80 | 15.27 | 2.60 | 43.95 | 40.73 | 4.24 | ||
1.5 | Gemmiza-10 | 113.2 | 3.12 | 13.10 | 2.16 | 39.35 | 37.09 | 3.67 | |
LacriWhit-4 | 116.0 | 3.38 | 15.52 | 2.60 | 45.82 | 38.90 | 4.23 | ||
50% compost + 50% nitrogen fertilization | Control | Gemmiza-10 | 109.6 | 3.17 | 11.74 | 2.15 | 37.31 | 39.33 | 3.67 |
LacriWhit-4 | 115.8 | 2.87 | 15.31 | 2.24 | 44.04 | 33.92 | 4.00 | ||
0.75 | Gemmiza-10 | 111.3 | 3.63 | 12.08 | 2.22 | 37.82 | 39.95 | 3.89 | |
LacriWhit-4 | 115.7 | 2.73 | 15.72 | 2.36 | 44.97 | 35.38 | 4.03 | ||
1.13 | Gemmiza-10 | 109.1 | 4.17 | 12.40 | 2.27 | 38.76 | 40.04 | 4.23 | |
LacriWhit-4 | 112.5 | 2.73 | 16.24 | 2.65 | 46.00 | 39.65 | 4.41 | ||
1.5 | Gemmiza-10 | 115.4 | 3.78 | 12.54 | 2.36 | 39.61 | 41.11 | 4.44 | |
LacriWhit-4 | 117.2 | 3.12 | 16.37 | 2.75 | 47.51 | 39.70 | 4.53 | ||
LSD p = 0.05 | 2.83 | 0.59 | ns | 0.12 | ns | 2.30 | 0.04 |
Treatments | VIUSID® (L Ha−1) | Genotypes | Ash | Crude Protein | Ether Extract | Crude Fiber | Carbohydrate | Total Sugar * | Total Phenols ** |
---|---|---|---|---|---|---|---|---|---|
100% nitrogen fertilization | Control | Gemmiza-10 | 2.63 | 4.51 | 1.84 | 2.81 | 88.21 | 23.94 | 2.44 |
LacriWhit-4 | 3.06 | 5.63 | 2.19 | 2.24 | 86.88 | 24.44 | 3.19 | ||
0.75 | Gemmiza-10 | 2.52 | 4.88 | 1.06 | 2.76 | 88.78 | 18.51 | 2.31 | |
LacriWhit-4 | 2.27 | 5.92 | 2.17 | 2.35 | 87.30 | 23.02 | 3.19 | ||
1.13 | Gemmiza-10 | 2.35 | 5.27 | 1.32 | 2.60 | 88.46 | 15.70 | 2.24 | |
LacriWhit-4 | 2.60 | 6.31 | 1.00 | 2.50 | 87.59 | 20.34 | 2.14 | ||
1.5 | Gemmiza-10 | 1.97 | 5.93 | 1.35 | 2.26 | 88.50 | 22.10 | 1.95 | |
LacriWhit-4 | 2.76 | 6.56 | 1.34 | 2.76 | 86.60 | 27.01 | 2.17 | ||
100% compost | Control | Gemmiza-10 | 2.75 | 5.97 | 1.80 | 3.25 | 86.23 | 17.55 | 1.97 |
LacriWhit-4 | 2.81 | 4.91 | 1.86 | 2.99 | 87.44 | 28.44 | 1.88 | ||
0.75 | Gemmiza-10 | 1.78 | 6.16 | 1.42 | 1.99 | 88.66 | 23.95 | 2.22 | |
LacriWhit-4 | 2.65 | 5.44 | 2.08 | 2.77 | 87.06 | 32.91 | 2.56 | ||
1.13 | Gemmiza-10 | 2.06 | 6.58 | 0.79 | 2.46 | 88.11 | 16.11 | 2.10 | |
LacriWhit-4 | 2.63 | 7.75 | 2.38 | 2.85 | 84.40 | 20.98 | 2.23 | ||
1.5 | Gemmiza-10 | 2.30 | 7.75 | 1.67 | 2.52 | 85.76 | 15.19 | 2.44 | |
LacriWhit-4 | 2.65 | 8.23 | 1.91 | 2.75 | 84.46 | 22.54 | 2.32 | ||
75% compost + 25% nitrogen fertilization | Control | Gemmiza-10 | 2.09 | 5.08 | 0.79 | 2.28 | 89.76 | 18.12 | 2.10 |
LacriWhit-4 | 2.45 | 5.16 | 1.80 | 2.48 | 88.12 | 21.73 | 1.71 | ||
0.75 | Gemmiza-10 | 2.35 | 5.72 | 0.71 | 2.61 | 88.61 | 17.79 | 2.20 | |
LacriWhit-4 | 2.71 | 5.68 | 1.99 | 2.79 | 86.84 | 26.89 | 2.17 | ||
1.13 | Gemmiza-10 | 2.05 | 5.94 | 1.59 | 2.12 | 88.31 | 16.81 | 2.05 | |
LacriWhit-4 | 2.86 | 6.84 | 2.22 | 2.99 | 85.09 | 18.70 | 2.22 | ||
1.5 | Gemmiza-10 | 2.00 | 6.83 | 1.62 | 2.19 | 87.36 | 15.04 | 2.15 | |
LacriWhit-4 | 3.06 | 7.16 | 2.35 | 3.21 | 84.22 | 20.36 | 2.21 | ||
50% compost + 50% nitrogen fertilization | Control | Gemmiza-10 | 1.90 | 5.68 | 2.07 | 2.11 | 88.25 | 15.33 | 2.20 |
LacriWhit-4 | 2.15 | 6.36 | 2.57 | 2.24 | 86.68 | 20.17 | 2.20 | ||
0.75 | Gemmiza-10 | 2.15 | 5.94 | 1.87 | 2.35 | 87.70 | 14.89 | 2.14 | |
LacriWhit-4 | 2.45 | 6.85 | 2.57 | 2.58 | 85.56 | 15.39 | 2.21 | ||
1.13 | Gemmiza-10 | 2.16 | 6.04 | 0.58 | 2.42 | 88.79 | 17.80 | 2.35 | |
LacriWhit-4 | 1.10 | 6.17 | 2.42 | 1.18 | 89.14 | 18.59 | 2.31 | ||
1.5 | Gemmiza-10 | 2.48 | 6.00 | 0.54 | 2.75 | 88.24 | 17.58 | 2.18 | |
LacriWhit-4 | 2.78 | 7.20 | 2.14 | 2.91 | 84.97 | 23.74 | 1.96 | ||
LSD p = 0.05 | 0.05 | 0.08 | 0.16 | 0.10 | 0.15 | 1.37 | 0.29 |
Treatments | VIUSID® (L ha−1) | Genotypes | N * | P | K | Ca |
---|---|---|---|---|---|---|
100% nitrogen fertilization | Control | Gemmiza-10 | 871 | 2548 | 3068 | 9055 |
LacriWhit-4 | 1226 | 4921 | 4140 | 2506 | ||
0.75 | Gemmiza-10 | 897 | 2347 | 3116 | 8880 | |
LacriWhit-4 | 980 | 6664 | 3611 | 2112 | ||
1.13 | Gemmiza-10 | 944 | 2769 | 2978 | 10,423 | |
LacriWhit-4 | 1277 | 6835 | 6068 | 2009 | ||
1.5 | Gemmiza-10 | 1063 | 4140 | 2349 | 10,112 | |
LacriWhit-4 | 886 | 6996 | 4980 | 1667 | ||
100% compost | Control | Gemmiza-10 | 1113 | 2918 | 4185 | 8280 |
LacriWhit-4 | 1420 | 5838 | 5077 | 1361 | ||
0.75 | Gemmiza-10 | 1117 | 3058 | 2016 | 4614 | |
LacriWhit-4 | 1019 | 4546 | 5367 | 2056 | ||
1.13 | Gemmiza-10 | 1153 | 2939 | 3286 | 7779 | |
LacriWhit-4 | 923 | 4191 | 5161 | 1882 | ||
1.5 | Gemmiza-10 | 1470 | 3001 | 3551 | 4431 | |
LacriWhit-4 | 1491 | 3630 | 5244 | 3824 | ||
75% compost + 25% nitrogen fertilization | Control | Gemmiza-10 | 2198 | 3041 | 2340 | 4511 |
LacriWhit-4 | 2132 | 2989 | 5865 | 3824 | ||
0.75 | Gemmiza-10 | 1266 | 3306 | 2591 | 4105 | |
LacriWhit-4 | 1269 | 2883 | 5582 | 3430 | ||
1.13 | Gemmiza-10 | 896 | 3330 | 2161 | 3032 | |
LacriWhit-4 | 1266 | 2697 | 5263 | 3305 | ||
1.5 | Gemmiza-10 | 1012 | 3183 | 2179 | 3893 | |
LacriWhit-4 | 1390 | 2529 | 5892 | 3883 | ||
50% compost + 50% nitrogen fertilization | Control | Gemmiza-10 | 1088 | 3132 | 3046 | 2816 |
LacriWhit-4 | 1097 | 3185 | 5290 | 4318 | ||
0.75 | Gemmiza-10 | 1511 | 3226 | 2332 | 2522 | |
LacriWhit-4 | 1352 | 2967 | 6155 | 3890 | ||
1.13 | Gemmiza-10 | 1023 | 2895 | 3358 | 2471 | |
LacriWhit-4 | 1141 | 3364 | 4530 | 3603 | ||
1.5 | Gemmiza-10 | 1051 | 3556 | 4962 | 2935 | |
LacriWhit-4 | 1442 | 3023 | 6634 | 2988 | ||
LSD p = 0.05 | 107.7 | 152.2 | 506.0 | 364.3 |
Treatments | VIUSID® (L ha−1) | Genotypes | Fe | Mg | Mn | Na | Cu | Zn |
---|---|---|---|---|---|---|---|---|
100% nitrogen fertilization | Control | Gemmiza-10 | 17.43 | 1385 | 39.24 | 2297 | 11.79 | 43.16 |
LacriWhit-4 | 46.78 | 2455 | 17.18 | 2348 | 11.63 | 46.14 | ||
0.75 | Gemmiza-10 | 13.84 | 1287 | 28.00 | 1833 | 13.85 | 42.22 | |
LacriWhit-4 | 38.77 | 2299 | 13.85 | 5948 | 7.85 | 33.53 | ||
1.13 | Gemmiza-10 | 19.29 | 1737 | 43.11 | 1669 | 10.55 | 43.87 | |
LacriWhit-4 | 37.90 | 2486 | 23.53 | 1486 | 10.89 | 59.11 | ||
1.5 | Gemmiza-10 | 18.08 | 1623 | 41.22 | 2277 | 18.26 | 104.50 | |
LacriWhit-4 | 31.22 | 2455 | 20.12 | 3096 | 13.54 | 57.68 | ||
100% compost | Control | Gemmiza-10 | 21.79 | 2422 | 90.68 | 3048 | 16.83 | 72.94 |
LacriWhit-4 | 23.06 | 2243 | 24.57 | 2657 | 11.01 | 55.24 | ||
0.75 | Gemmiza-10 | 19.83 | 1742 | 47.59 | 1517 | 14.57 | 83.54 | |
LacriWhit-4 | 32.34 | 2556 | 36.61 | 2384 | 10.65 | 45.72 | ||
1.13 | Gemmiza-10 | 19.15 | 1813 | 46.95 | 1730 | 14.39 | 45.08 | |
LacriWhit-4 | 30.04 | 2596 | 28.41 | 2212 | 10.14 | 42.39 | ||
1.5 | Gemmiza-10 | 17.68 | 1768 | 34.41 | 2118 | 14.79 | 41.24 | |
LacriWhit-4 | 72.65 | 1630 | 29.35 | 2029 | 9.13 | 44.68 | ||
75% compost + 25% nitrogen fertilization | Control | Gemmiza-10 | 19.51 | 1721 | 30.29 | 1864 | 11.02 | 48.74 |
LacriWhit-4 | 79.49 | 1532 | 21.96 | 1678 | 9.19 | 51.85 | ||
0.75 | Gemmiza-10 | 20.74 | 1830 | 41.20 | 2048 | 11.25 | 42.94 | |
LacriWhit-4 | 68.20 | 1746 | 23.45 | 1877 | 10.66 | 51.20 | ||
1.13 | Gemmiza-10 | 21.80 | 1947 | 33.61 | 2056 | 13.89 | 46.47 | |
LacriWhit-4 | 83.95 | 1850 | 22.91 | 2033 | 11.69 | 55.31 | ||
1.5 | Gemmiza-10 | 18.33 | 1706 | 21.97 | 2178 | 10.39 | 46.24 | |
LacriWhit-4 | 75.63 | 1930 | 31.55 | 1778 | 10.51 | 50.27 | ||
50% compost + 50% nitrogen fertilization | Control | Gemmiza-10 | 20.66 | 1782 | 27.38 | 1741 | 12.80 | 48.08 |
LacriWhit-4 | 63.73 | 1716 | 17.16 | 1979 | 13.54 | 48.02 | ||
0.75 | Gemmiza-10 | 19.59 | 1896 | 17.31 | 1455 | 11.42 | 44.50 | |
LacriWhit-4 | 57.83 | 1890 | 30.22 | 2096 | 12.51 | 44.10 | ||
1.13 | Gemmiza-10 | 14.89 | 1499 | 19.36 | 1888 | 9.68 | 38.27 | |
LacriWhit-4 | 78.31 | 1797 | 36.24 | 2224 | 12.12 | 57.67 | ||
1.5 | Gemmiza-10 | 19.31 | 1935 | 24.93 | 2369 | 9.51 | 43.13 | |
LacriWhit-4 | 69.53 | 1762 | 28.07 | 1993 | 12.07 | 53.02 | ||
LSD p = 0.05 | 2.08 | 159.7 | 4.51 | 106.7 | 2.44 | 5.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Abdel-Lattif, H.; Badawy, R.; Abd El-Wahab, M.; Shahba, M. Compost and Biostimulants versus Mineral Nitrogen on Productivity and Grain Quality of Two Wheat Cultivars. Agriculture 2022, 12, 699. https://doi.org/10.3390/agriculture12050699
Abbas M, Abdel-Lattif H, Badawy R, Abd El-Wahab M, Shahba M. Compost and Biostimulants versus Mineral Nitrogen on Productivity and Grain Quality of Two Wheat Cultivars. Agriculture. 2022; 12(5):699. https://doi.org/10.3390/agriculture12050699
Chicago/Turabian StyleAbbas, Mohamed, Hashim Abdel-Lattif, Ramadan Badawy, Mustafa Abd El-Wahab, and Mohamed Shahba. 2022. "Compost and Biostimulants versus Mineral Nitrogen on Productivity and Grain Quality of Two Wheat Cultivars" Agriculture 12, no. 5: 699. https://doi.org/10.3390/agriculture12050699