Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Layout
2.3. Field Management
2.4. Grain and Biomass Yield Sampling
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil and Key Weather Parameters during the Study Period
3.2. Effect of Irrigation Level, N Rate, and Plant Density on Grain Yield (kg ha−1) of Maize
3.3. Effect of Irrigation Level, N Rate, and Plant Density on Biomass Yield (kg ha−1) of Maize
3.4. Effect of Irrigation Level, Nitrogen Rate, and Plant Density on WUE of Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.; Chen, D. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Diaz, C.; Saliba-Colombani, V.; Loudet, O.; Belluomo, P.; Moreau, L.; Daniel-Vedele, F.; Morot-Gaudry, J.F.; Masclaux-Daubresse, C. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant. Cell Physiol. 2006, 47, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Wang, K.; Jiang, G.; Biswas, D.; Xu, H.; Li, L.; Li, Y. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann. Bot. 2005, 96, 925–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Effects of salinity and nitrogen on cotton growth in arid environment. Plant. Soil. 2010, 326, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Mao, S. Cotton Farming in China Shanghai; Shanghai Scientific and Technical Press: Shanghai, China, 2013. [Google Scholar]
- Clawson, E.L.; Cothren, J.T.; Blouin, D.C.; Satterwhite, J.L. Timing of maturity inultra-narrow and conventional row cotton as affected by nitrogen fertilizer rate. Agron. J. 2008, 100, 421–431. [Google Scholar] [CrossRef]
- Janat, M. Response of cotton to irrigation methods and nitrogen fertilization: Yield components water-use efficiency, nitrogen uptake, and recovery. Commun. Soil Sci. Plan. 2008, 39, 2282–2302. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.L.; Li, Q.; Zeng, X.P.; Liu, Y.; Li, Y.R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 1–20. [Google Scholar] [CrossRef]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Li, J.Y.; Xu, R.K.; Qian, W. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 2019, 234, 43–51. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Li, Z.; Yang, X.; Qi, R. Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis. Agric. Water Manag. 2019, 225, 105741. [Google Scholar] [CrossRef]
- Pan, X.Y.; Baquy, M.A.A.; Guan, P.; Yan, J.; Wang, R.H.; Xu, R.K.; Xie, L. Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols. J. Soils Sediments 2020, 20, 1435–1445. [Google Scholar] [CrossRef]
- Wang, X.; Deng, X.; Pu, T.; Song, C.; Yong, T.; Yang, F.; Sun, X.; Liu, W.; Yan, Y.; Du, J. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Res. 2017, 204, 12–22. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, Z. Regional nitrogen budgets for China and its major watersheds. Biogeochemistry 2002, 57, 405–427. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Liang, Y.L.; Hu, X.T.; Cai, H.J.; Gu, B.J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the loess plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Fabeiro, C.; Martin de Santa Olalla, F.; de Juan, J.A. Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agric. Water Manag. 2002, 54, 93–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Fu, W.; Wen, H. Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet. J. Plant. Nutr. Fertil. 2014, 20, 1119–1126. [Google Scholar]
- Zhang, H.; Oweis, T. Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agric. Water. Manag. 1999, 38, 195–211. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; You, M.; Liu, C. Water-yield relations and water use efficiency of winter wheat in the north China Plain. Irrigation Sci. 1999, 19, 37–45. [Google Scholar] [CrossRef]
- Lamm, F.R.; Aiken, R.M.; Kheira, A.A. Corn yield and water use characteristics as affected by tillage, plant density, and irrigation. Trans. ASABE 2009, 52, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.M.; Yin, X. Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency. Agron. J. 2003, 95, 1475–1482. [Google Scholar] [CrossRef] [Green Version]
- Franco, H.C.; Trivelin, P.C.; Eduardo, F.C.; Vitti, A.C.; Otto, R. Stalk yield and technological attributes of planted cane as related to nitrogen fertilization. Sci. Agric. 2010, 67, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Rossetto, R.; Dias, F.; Landell, M.; Cantarella, H.; Tavares, S.; Vitti, A.; Perecin, D. N and K fertilisation of sugarcane ratoons harvested without burning. Proc. Int. Soc. Sugar Cane Technol. 2010, 27, 1–8. [Google Scholar]
- Muchow, R.; Robertson, M. Relating crop nitrogen uptake to sugarcane yield. Proc. Int. Soc. Sugar Cane Technol. 1994, 16, 122–130. [Google Scholar]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.; Zheng, X.; Cui, F.; Yao, Z.; Zhou, Z.; Deng, J.; Xu, Y. Two-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third. Agr. Ecosyst. Environ. 2013, 178, 39–50. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.; Zhao, Q.; Dai, J.; Tian, L.; Dong, H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Rochester, I.; Ceeney, S.; Maas, S.; Gordon, R.; Hanna, L.; Hill, J. Monitoring nitrogen use efficiency in cotton crops. Austral. Cottongrow 2009, 30, 42. [Google Scholar]
- Dong, H.; Kong, X.; Li, W.; Tang, W.; Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 2010, 119, 106–113. [Google Scholar] [CrossRef]
- Kumbhar, A.M.; Buriro, U.A.; Junejo, S.; Oad, F.C.; Jamro, G.H.; Kumbhar, B.A.; Kumbhar, S.A. Impact of different nitrogen levels on cotton growth, yield and N uptake planted in legume rotation. Pak. J. Bot. 2008, 40, 767–778. [Google Scholar]
- Ciampitti, I.A.; Vyn, T.J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res. 2011, 121, 2–18. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Tahir, M.M.; Sadiq, A.; Iqbal, M.; Zafar, M. Yield and nitrogen use efficiency of rainfed maize response to splitting and nitrogen rates in Kashmir, Pakistan. Agron. J. 2012, 104, 48–457. [Google Scholar] [CrossRef]
- Yang, J.S.; Chen, X.B.; Hu, S.J.; Liu, C.Q.; Li, H.; Liu, G.M. Analysis of soil-salt balance and its control in oasis irrigation area. J. Agro-Environ. Sci. 2007, 26, 1438–1443. [Google Scholar]
- Selassie, Y.G.; Anemut, F.; Addisu, S. The effects of land use types, management practices and slope classes on selected soil physicochemical properties in Zikre watershed, North-Western Ethiopia. Environ. Syst. Res. 2015, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhang, H.; Shi, T.; Chen, Y.; Jiang, Q.; Linderman, M. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma 2019, 337, 32–41. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Sun, J.S.; Duan, A.W.; Wang, J.L.; Shen, X.J.; Liu, X.F. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric. Water Manag. 2007, 92, 41–47. [Google Scholar] [CrossRef]
- Kuo, S.F.; Ho, S.S.; Liu, C.W. Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan. Agric. Water Manag. 2006, 82, 433–451. [Google Scholar] [CrossRef]
- ShrEStha, J.; YaDav, D.N.; Amgain, L.P.; SharMa, J.P. Effects of nitrogen and plant density on maize (Zea mays L.) phenology and grain yield. Curr. Agric. Res. J. 2018, 6, 175. [Google Scholar] [CrossRef]
- Biswas, D.K.; Ma, B. Effect of nitrogen rate and fertilizer nitrogen source on physiology, yield, grain quality, and nitrogen use efficiency in corn. Can. J. Plant Sci. 2016, 96, 392–403. [Google Scholar] [CrossRef] [Green Version]
- SHI, D.Y.; Li, Y.H.; Zhang, J.W.; Peng, L.I.U.; Bin, Z.; Dong, S.T. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize. J. Integr. Agric. 2016, 15, 2515–2528. [Google Scholar] [CrossRef] [Green Version]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agric. Food Sec. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ahmad, A.; Abbas, F.; Farhad, W. Optimizing water and nitrogen use for maize production under semi-arid conditions. Turk. J. Agric. For. 2012, 36, 519–532. [Google Scholar]
- Adebayo, A.R.; Sebetha, E.T. Data on influence of different nitrogen fertilizer rates and plant density on grain yield and yield components of Water Efficient Maize (WEMA) variety. Data Br. 2020, 30, 105582. [Google Scholar] [CrossRef] [PubMed]
- Campelo, D.H.; Teixeira, A.S.; Moreira, L.C.J.; Lacerda, C.F.D. Growth, production and water and nitrogen use efficiency of maize under water depths and nitrogen fertilization. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 747–753. [Google Scholar] [CrossRef]
- Dong-liang, Q.I.; Tian-tian, H.U.; Xue, S. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial root-zone irrigation. J. Integr. Agric. 2020, 19, 2792–2806. [Google Scholar]
- Li, Y.; Cui, S.; Zha, Z.; Zhuang, K.; Wang, Z. Determining effects of water and nitrogen input on maize (Zea mays L.) yield, water- and nitrogen-use efficiency: A global synthesis. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Su, W.; Ahmad, S.; Ahmad, I.; Han, Q. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ 2020, 8, e10291. [Google Scholar] [CrossRef]
- Ogola, J.B.O.; Wheeler, T.R.; Harris, P.M. Water use of maize in response to planting density and irrigation. South. Afr. J. Tydskr Plant. Grond. 2005, 22, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ming, B.; Shen, D.; Xie, R.; Hou, P.; Xue, J.; Li, S. Optimizing grain yield and water use efficiency based on the relationship between leaf area index and evapotranspiration. Agriculture 2021, 11, 313. [Google Scholar] [CrossRef]
- Jiang, X.; Tong, L.; Kang, S.; Li, F.; Li, D.; Qin, Y.; Li, J. Planting density affected biomass and grain yield of maize for seed production in an arid region of Northwest China. J. Arid Land 2018, 10, 292–303. [Google Scholar] [CrossRef] [Green Version]
2018 | 2019 | |||||||
---|---|---|---|---|---|---|---|---|
Soil Depth (cm) | NH4+-N | NO3−-N | TN | Bulk Density | NH4+-N | NO3−-N | TN | Bulk Density |
mg kg−1 | g kg−1 | g cm−3 | mg kg−1 | g kg−1 | g cm−3 | |||
0–30 | 11.085 | 3.665 | 1.550 | 1.259 | 15.913 | 4.242 | 1.600 | 1.251 |
30–60 | 11.023 | 3.747 | 1.500 | 1.240 | 15.707 | 4.993 | 1.710 | 1.243 |
60–90 | 11.000 | 3.575 | 1.000 | 1.180 | 16.077 | 5.567 | 1.500 | 1.184 |
90–120 | 11.945 | 3.558 | 1.400 | 1.210 | 15.560 | 4.820 | 1.420 | 1.200 |
120–150 | 11.354 | 3.232 | 1.240 | 1.160 | 11.875 | 3.773 | 1.210 | 1.170 |
Irrigation Level | N Rate | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|
2018 | 2019 | ||||||
N0 | 6596 ± 287 b | 22,637 ± 4427 a | 0.019 ± 0.00 a | 6225 ± 677 a | 24,450 ± 3559 a | 0.017 ± 0.00 a | |
W1 | N1 | 14,919 ± 298 a | 39,000 ± 3419 a | 0.008 ± 0.00 c | 12,196 ± 632 a | 37,632 ± 3110 a | 0.007 ± 0.00 e |
N2 | 15,501 ± 431 a | 32,415 ± 2277 a | 0.009 ± 0.00 c | 13,143 ± 535 a | 52,663 ± 6781 a | 0.010 ± 0.00 c | |
N0 | 7786 ± 281 b | 22,768 ± 1307 a | 0.012 ± 0.00 b | 8332 ± 242 a | 33,269 ± 3659 a | 0.011 ± 0.00 b | |
W2 | N1 | 14,728 ± 447 a | 34,413 ± 2970 a | 0.007 ± 0.00 c | 13,231 ± 521 a | 32,970 ± 3487 a | 0.009 ± 0.00 d |
N2 | 15,037 ± 489 a | 31,383 ± 2298 a | 0.009 ± 0.00 c | 15,768 ± 787 a | 38,378 ± 2831 a | 0.009 ± 0.00 c,d | |
p-value | 0.043 | 0.674 | <0.001 | 0.402 | 0.055 | <0.001 |
Irrigation Level | Plant Density | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|
2018 | 2019 | ||||||
D1 | 11,979 ± 1458 a | 26,735 ± 2692 a | 0.013 ± 0.00 a,b | 9721 ± 1176 a | 38,034 ± 7095 a | 0.012 ± 0.00 b | |
W1 | D2 | 12,636 ± 1588 a | 29,853 ± 4163 a | 0.015 ± 0.00 a | 10,490 ± 1125 a | 40,781 ± 5882 a | 0.013 ± 0.00 a |
D3 | 12,401 ± 1374 a | 37,464 ± 4603 a | 0.009 ± 0.00 c,d | 11,352 ± 1359 a | 35,930 ± 5631 a | 0.009 ± 0.00 e | |
D1 | 11,680 ± 1043 a | 25,040 ± 1445 a | 0.011 ± 0.00 b,c | 12,015 ± 1094 a | 36,643 ± 2346 a | 0.011 ± 0.00 c | |
W2 | D2 | 13,265 ± 1414 a | 30,441 ± 2779 a | 0.010 ± 0.00 c,d | 11,902 ± 1064 a | 34,527 ± 3055 a | 0.010 ± 0.00 d |
D3 | 12,606 ± 1215 a | 33,083 ± 3305 a | 0.008 ± 0.00 d | 13,415 ± 1419 a | 33,447 ± 4514 a | 0.007 ± 0.00 f | |
p-value | 0.398 | 0.667 | 0.015 | 0.745 | 0.859 | <0.001 |
N Rate | Plant Density | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|
2018 | 2019 | ||||||
D1 | 6906 ± 354 a | 20,152 ± 1680 a | 0.017 ± 0.00 a | 6976 ± 889 a | 29,550 ± 3633 a | 0.015 ± 0.00 b | |
N0 | D2 | 7099 ± 560 a | 19,328 ± 2236 a | 0.020 ± 0.00 a | 7380 ± 583 a | 29,942 ± 5552 a | 0.018 ± 0.00 a |
D3 | 7569 ± 339 a | 28,627 ± 5712 a | 0.010 ± 0.00 b | 7479 ± 867 a | 27,086 ± 5404 a | 0.009 ± 0.00 d | |
D1 | 13,882 ± 379 a | 30,344 ± 2497 a | 0.009 ± 0.00 b,c | 12,083 ± 701 a | 38,269 ± 3548 a | 0.009 ± 0.00 d | |
N1 | D2 | 15,426 ± 437 a | 36,499 ± 3763 a | 0.008 ± 0.00 b,c | 12,480 ± 786 a | 36,492 ± 3195 a | 0.008 ± 0.00 d |
D3 | 15,162 ± 305 a | 43,276 ± 3905 a | 0.006 ± 0.00 c | 13,578 ± 648 a | 31,143 ± 5230 a | 0.006 ± 0.00 e | |
D1 | 14,700 ± 340 a | 27,166 ± 1703 a | 0.010 ± 0.00 b | 13,544 ± 969 a | 44,197 ± 9318 a | 0.011 ± 0.00 c | |
N2 | D2 | 16,327 ± 224 a | 34,613 ± 2358 a | 0.009 ± 0.00 b,c | 13,727 ± 757 a | 46,528 ± 6509 a | 0.009 ± 0.00 d |
D3 | 14,779 ± 741 a | 33,917 ± 3171 a | 0.009 ± 0.00 b,c | 16,094 ± 941 a | 45,835 ± 5516 a | 0.009 ± 0.00 d | |
p-value | 0.116 | 0.511 | <0.001 | 0.569 | 0.962 | <0.001 |
Irrigation Level | N Rate | Plant Density | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) | Grain Yield (kg/ha) | Biomass Yield (kg/ha) | WUE (kg/m3) |
---|---|---|---|---|---|---|---|---|
2018 | 2019 | |||||||
D1 | 6229 ± 302 a | 17,974 ± 1481 a | 0.020 ± 0.00 a | 5539 ± 1325 a | 26,330 ± 7432 a | 0.018 ± 0.00 b | ||
N0 | D2 | 6440 ± 732 a | 16,195 ± 2418 a | 0.026 ± 0.00 a | 6487 ± 608 a | 24,947 ± 7515 a | 0.023 ± 0.00 a | |
D3 | 7121 ± 382 a | 33,743 ± 11549 a | 0.011 ± 0.00 b,c | 6648 ± 1738 a | 22,072 ± 5964 a | 0.010 ± 0.00 e,f,g | ||
D1 | 14,334 ± 462 a | 33,151 ± 4143 a | 0.008 ± 0.00 b,c | 11,377 ± 981 a | 39,764 ± 5268 a | 0.008 ± 0.00 g,h,I,j | ||
W1 | N1 | D2 | 14,884 ± 423 a | 39,702 ± 6818 a | 0.009 ± 0.00 b,c | 12,523 ± 1544 a | 39,630 ± 5795 a | 0.007 ± 0.00 j,k |
D3 | 15,538 ± 558 a | 44,146 ± 6785 a | 0.006 ± 0.00 c | 12,688 ± 965 a | 33,503 ± 6475 a | 0.007 ± 0.00 j,k | ||
D1 | 15,375 ± 342 a | 29,079 ± 2430 a | 0.010 ± 0.00 b,c | 12,247 ± 749 a | 48,008 ± 20034 a | 0.011 ± 0.00 d,e,f | ||
N2 | D2 | 16,584 ± 159 a | 33,662 ± 2582 a | 0.009 ± 0.00 b,c | 12,459 ± 643 a | 57,765 ± 7411 a | 0.010 ± 0.00 e,f,g,h | |
D3 | 14,544 ± 1017 a | 34,504 ± 6414 a | 0.009 ± 0.00 b,c | 14,722 ± 761 a | 52,215 ± 8452 a | 0.010 ± 0.00 f,g,h,i | ||
D1 | 7584 ± 274 a | 22,330 ± 2679 a | 0.014 ± 0.00 b | 8414 ± 354 a | 32,769 ± 630 a | 0.012 ± 0.00 c,d | ||
N0 | D2 | 7758 ± 774 a | 22,462 ± 3055 a | 0.014 ± 0.00 b | 8274 ± 727 a | 34,937 ± 8526 a | 0.013 ± 0.00 c | |
D3 | 8017 ± 478 a | 23,512 ± 1889 a | 0.009 ± 0.00 b,c | 8310 ± 203 a | 32,100 ± 9238 a | 0.008 ± 0.00 I,j | ||
D1 | 13,430 ± 547 a | 27,537 ± 2476 a | 0.009 ± 0.00 b,c | 12,789 ± 1000 a | 36,773 ± 5741 a | 0.010 ± 0.00 e,f,g | ||
W2 | N1 | D2 | 15,968 ± 693 a | 33,296 ± 3751 a | 0.008 ± 0.00 c | 12,436 ± 837 a | 33,354 ± 2756 a | 0.010 ± 0.00 f,g,h,i |
D3 | 14,787 ± 107 a | 42,406 ± 5425 a | 0.006 ± 0.00 c | 14,469 ± 612 a | 28,784 ± 9450 a | 0.006 ± 0.00 k | ||
D1 | 14,026 ± 73 a | 25,253 ± 2220 a | 0.010 ± 0.00 b,c | 14,842 ± 1566 a | 40,387 ± 4265 a | 0.012 ± 0.00 c,d,e | ||
N2 | D2 | 16,070 ± 400 a | 35,565 ± 4499 a | 0.008 ± 0.00 b,c | 14,996 ± 919 a | 35,291 ± 5533 a | 0.008 ± 0.00 h,I,j | |
D3 | 15,014 ± 1287 a | 33,330 ± 2298 a | 0.009 ± 0.00 b,c | 17,467 ± 1403 a | 39,456 ± 6324 a | 0.008 ± 0.00 I,j | ||
p-value | 0.384 | 0.502 | 0.023 | 0.941 | 0.951 | <0.001 |
Grain Yield | Biomass Yield | WUE | |
---|---|---|---|
Grain yield | 1 | 0.611 ** | −0.685 ** |
Biomass Yield | 0.611 ** | 1 | −0.511 ** |
WUE | −0.685 ** | −0.511 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asibi, A.E.; Hu, F.; Fan, Z.; Chai, Q. Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China. Agriculture 2022, 12, 234. https://doi.org/10.3390/agriculture12020234
Asibi AE, Hu F, Fan Z, Chai Q. Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China. Agriculture. 2022; 12(2):234. https://doi.org/10.3390/agriculture12020234
Chicago/Turabian StyleAsibi, Aziiba Emmanuel, Falong Hu, Zhilong Fan, and Qiang Chai. 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China" Agriculture 12, no. 2: 234. https://doi.org/10.3390/agriculture12020234
APA StyleAsibi, A. E., Hu, F., Fan, Z., & Chai, Q. (2022). Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China. Agriculture, 12(2), 234. https://doi.org/10.3390/agriculture12020234