Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Sampling, Analyzing and Calculation Methods
2.3. Statistics
3. Results and Discussion
4. Conclusions
- Manure application stabilizes yields in years with drought and heat stress: Grain yields of the treatment with nitrogen coming from manure only tended to increase over the years, with above average yields (for this treatment) in the Europe-wide, climatically most difficult harvest year in 2018. Contrary to this, grain yields tended to decrease in all treatments with mineral nitrogen fertilization during the investigated period.
- In light of changing environmental condition, the field trial is not in a steady-state condition regarding soil carbon contents even after multiple decades of experiment duration. Over the investigated 12-year period, SOC contents increased by 6% to 28%, with treatments receiving manure having both the highest overall SOC contents and the steepest increase over the investigation period.
- Reaching the 4‰ goal is achievable under the sandy soil conditions of the Thyrow site, even with soil tillage. Organic manuring can further enhance SOC contents.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johns, T.J.; Angove, M.J.; Wilkens, S. Measuring soil organic carbon: Which technique and where to from here? Soil Res. 2015, 53, 717–736. [Google Scholar] [CrossRef]
- Seiter, S.; Horwath, W.R. Strategies for Managing Soil Organic Matter to Supply Plant Nutrients. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food and Production; Food and Agriculture Organization of the United Nations: Roma, Italy, 2005; Volume FAO Soils Bulletin 80. [Google Scholar]
- Garratt, M.P.D.; Bommarco, R.; Kleijn, D.; Martin, E.; Mortimer, S.R.; Redlich, S.; Senapathi, D.; Steffan-Dewenter, I.; Świtek, S.; Takács, V.; et al. Enhancing Soil Organic Matter as a Route to the Ecological Intensification of European Arable Systems. Ecosystems 2018, 21, 1404–1415. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Poeplau, C.; Weiser, C.; Fahrion-Nitschke, A.; Don, A. Exports and inputs of organic carbon on agricultural soils in Germany. Nutr. Cycl. Agroecosyst. 2020, 118, 249–271. [Google Scholar] [CrossRef]
- Travnikova, L.S.; Titova, N.A.; Kogut, B.M.; Schulz, E.; Körschens, M. Evaluation of the different soil organic matter (SOM) pools stability in long-term field experiments of germany by physical fractionation. Arch. Agron. Soil Sci. 2002, 48, 565–576. [Google Scholar] [CrossRef]
- Chan, Y. Increasing soil organic carbon of agricultural land. PrimeFacts 2008, 735, 1–5. [Google Scholar]
- Hirte, J.; Walder, F.; Hess, J.; Büchi, L.; Colombi, T.; van der Heijden, M.G.; Mayer, J. Enhanced root carbon allocation through organic farming is restricted to topsoils. Sci. Total Environ. 2021, 755, 143551. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Poulton, P.R.; Macdonald, A.J.; Johnston, A.E.; White, R.P.; Goulding, K.W.T. 4 per mille—Is it feasible to sequester soil carbon at this rate annually in agricultural soils? In Proceedings of the IFS Agronomic Conference, Cambridge, UK, 6–7 December 2018.
- Poulton, P.; Johnston, J.; Macdonald, A.; White, R.; Powlson, D. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Chang. Biol. 2018, 24, 2563–2584. [Google Scholar] [CrossRef] [Green Version]
- Soja, G.; Mikula, K.; Pfeifer, C. Biochar as “negative emission technology” and as contribution to achieve the “4 per mille” objective in Austria. In Proceedings of the 21. Österreichischer Klimatag. Clash of Cultures? Klimaforschung Trifft Industrie! (21st Austrian Climate Day. Clash of Cultures? Climate Research Meets Industry!), Online, 12–13 April 2021. [Google Scholar]
- Riggers, C.; Poeplau, C.; Don, A.; Frühauf, C.; Dechow, R. How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? Plant Soil 2021, 460, 417–433. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L.; Vicente-Vicente, J.L. Assessing “4 per 1000” soil organic carbon storage rates under Mediterranean climate: A comprehensive data analysis. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 795–818. [Google Scholar] [CrossRef]
- Corbeels, M.; Cardinael, R.; Naudin, K.; Guibert, H.; Torquebiau, E. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil Tillage Res. 2019, 188, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. How long before a change in soil organic carbon can be detected? Glob. Chang. Biol. 2004, 10, 1878–1883. [Google Scholar] [CrossRef]
- Karhu, K.; Gärdenäs, A.I.; Heikkinen, J.; Vanhala, P.; Tuomi, M.; Liski, J. Impacts of organic amendments on carbon stocks of an agricultural soil—Comparison of model-simulations to measurements. Geoderma 2012, 189–190, 606–616. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.; Li, X.; Li, Y.; Yang, X.; Lin, Z.; Song, Z.; Cooper, J.M.; Zhao, B. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Tipping, E.; Davies, J.A.C.; Henrys, P.A.; Kirk, G.J.D.; Lilly, A.; Dragosits, U.; Carnell, E.J.; Dore, A.J.; Sutton, M.A.; Tomlinson, S.J. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci. Rep. 2017, 7, 1890. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R.; Boast, C.W. The Myth of Nitrogen Fertilization for Soil Carbon Sequestration. J. Environ. Qual. 2007, 36, 1821–1832. [Google Scholar] [CrossRef] [Green Version]
- Neff, J.C.; Townsend, A.R.; Gleixner, G.; Lehman, S.J.; Turnbull, J.; Bowman, W.D. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 2002, 419, 915–917. [Google Scholar] [CrossRef]
- DWD. (Deutscher Wetterdienst) Climate Data Center (CDC): Monatliche Raster der Summe der Realen Evapotranspiration über Gras für Deutschland (Monthly Grid of the Sum of Real Evapotranspiration over Grass for Germany), Version v19.3, Data Record-ID: urn:x-wmo:md:de.dwd.cdc::GRD_DEU_P1M_EVAPO-R. 2021. Available online: https://cdc.dwd.de/portal/202107291811/mapview (accessed on 1 December 2021).
- DIN ISO 10381-1:2003-08; Soil quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes (ISO 10381-1:2002). German title: DIN ISO 10381-1:2003-08 Bodenbeschaffenheit—Probenahme—Teil 1: Anleitung zur Aufstellung von Probenahmeprogrammen (ISO 10381-1:2002); Beuth-Verlag: Berlin, Germany, 2003. [CrossRef]
- DIN ISO 10694:1996-08; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis) (ISO 10694:1995). German title: DIN ISO 10694:1996-08 Bodenbeschaffenheit—Bestimmung von organischem Kohlenstoff und Gesamtkohlenstoff nach trockener Verbrennung (Elementaranalyse) (ISO 10694:1995); Beuth-Verlag: Berlin, Germany, 1996.
- DWD. (Deutscher Wetterdienst). Datensatzbeschreibung: Monatliche Raster der Summe der Realen Evapotranspiration über Gras für Deutschland (Data Set Description: Monthly Grid of the Sum of Real Evapotranspiration over Grass for Germany). 2020. Available online: https://cdc.dwd.de/sdi/pid/GRD_DEU_P1M_EVAPO-R/BESCHREIBUNG_GRD_DEU_P1M_EVAPO-R_de.pdf (accessed on 1 December 2021).
- DÜV. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln Nach den Grundsätzen der Guten Fachlichen Praxis beim Düngen (Düngeverordnung—DüV vom 26. Mai 2017 (BGBl. I S. 1305), Die Zuletzt Durch Artikel 97 des Gesetzes vom 10. August 2021 (BGBl. I S. 3436) Geändert Worden ist). (German Regulation on the Use of Fertilizers, Soil Additives, Growing Media and Plant Additives according to the Codes of Best Practice); German Federal Government: Berlin, Germany, 2021. [Google Scholar]
- BMEL. Ernte 2018—Mengen und Preise (Harvest 2018—Quantities and Prices); Bundesministerium für Ernährung und Landwirtschaft (Federal Ministry of Food and Agriculture): Berlin, Germany, 2018; Volume Bericht zur Erntelage (Stand: 22. August 2018), pp. 1–28. [Google Scholar]
- Nielsen, D.C.; Halvorson, A.D. Nitrogen Fertility Influence on Water Stress and Yield of Winter Wheat. Agron. J. 1991, 83, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.; Yan, B. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the Black Soil Region of Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Eller, B.H.; Janzen, H.H.; VandenBygaart, A.J.; Bremer, E. Measuring Change in Soil Organic Carbon Storage. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 41–61. [Google Scholar]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Börjesson, G.; Bolinder, M.A.; Kirchmann, H.; Kätterer, T. Organic carbon stocks in topsoil and subsoil in long-term ley and cereal monoculture rotations. Biol. Fertil. Soils 2018, 54, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.P.; Dimassi, B.; Dobarco, M.R.; Guenet, B.; Arrouays, D.; Angers, D.A.; Blache, F.; Huard, F.; Soussana, J.-F.; Pellerin, S. Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France. Glob. Chang. Biol. 2021, 27, 2458–2477. [Google Scholar] [CrossRef]
- Hu, T.; Sørensen, P.; Wahlström, E.M.; Chirinda, N.; Sharif, B.; Li, X.; Olesen, J.E. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agric. Ecosyst. Environ. 2018, 251, 141–148. [Google Scholar] [CrossRef]
- Bakhshandeh, S.; Corneo, P.E.; Yin, L.; Dijkstra, F.A. Drought and heat stress reduce yield and alter carbon rhizodeposition of different wheat genotypes. J. Agron. Crop Sci. 2019, 205, 157–167. [Google Scholar] [CrossRef]
- Hütsch, B.W.; Augustin, J.; Merbach, W. Plant rhizodeposition—An important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 2002, 165, 397–407. [Google Scholar] [CrossRef]
- Hirte, J.; Leifeld, J.; Abiven, S.; Oberholzer, H.-R.; Mayer, J. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agric. Ecosyst. Environ. 2018, 265, 556–566. [Google Scholar] [CrossRef]
- Semchenko, M.; Xue, P.; Leigh, T. Functional diversity and identity of plant genotypes regulate rhizodeposition and soil microbial activity. New Phytol. 2021, 232, 776–787. [Google Scholar] [CrossRef]
- Mwafulirwa, L.; Baggs, E.M.; Russell, J.; George, T.; Morley, N.; Sim, A.; de la Fuente Cantó, C.; Paterson, E. Barley genotype influences stabilization of rhizodeposition-derived C and soil organic matter mineralization. Soil Biol. Biochem. 2016, 95, 60–69. [Google Scholar] [CrossRef]
- Hirte, J.; Leifeld, J.; Abiven, S.; Mayer, J. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Res. 2018, 216, 197–208. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- McBratney, A.B.; Stockmann, U.; Angers, D.A.; Minasny, B.; Field, D.J. Challenges for Soil Organic Carbon Research. In Soil Carbon. Progress in Soil Science; Hartemink, A., McSweeney, K., Eds.; Springer: Cham, Switzerland, 2014; pp. 3–16. [Google Scholar] [CrossRef]
- Ren, F.; Misselbrook, T.H.; Sun, N.; Zhang, X.; Zhang, S.; Jiao, J.; Xu, M.; Wu, L. Spatial changes and driving variables of topsoil organic carbon stocks in Chinese croplands under different fertilization strategies. Sci. Total Environ. 2021, 767, 144350. [Google Scholar] [CrossRef] [PubMed]
- van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ. Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Mayer, S.; Burmeister, J.; Hübner, R.; Kögel-Knabner, I. Feasibility of the 4 per 1000 initiative in Bavaria: A reality check of agricultural soil management and carbon sequestration scenarios. Geoderma 2020, 369, 114333. [Google Scholar] [CrossRef]
- BGR. BGR-Geoviewer. Available online: https://geoviewer.bgr.de/mapapps4/resources/apps/geoviewer/index.html?lang=de (accessed on 13 November 2021).
- Körschens, M. Soil organic matter and environmental protection. Arch. Agron. Soil Sci. 2004, 50, 3–9. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
Parameter | Topsoil (0–30 cm) | Subsoil (30–60 cm) |
---|---|---|
Clay (%) | <5 | <5–20 |
Silt (%) | 10–14 | 10–27 |
Sand (%) | >80 | 50–80 |
Bulk Density (g cm−3) | ~1.6 | ~1.7 |
Corg (%) | 0.4–0.8 | <0.02 |
CEC 1 (cmolc kg−1) | <5 | <5–11 |
uFC 2 (mm) | 24 | 20–66 |
Designation | Fertilizer Amount per ha and Year | |||||
---|---|---|---|---|---|---|
N 1 (60 kg) | N 1 (120 kg) | P 2 (24 kg) | K 3 (100 kg) | CattleManure (150 dt) | Lime 4 | |
Control | - | - | - | - | - | - |
All | ✓ | - | ✓ | ✓ | - | ✓ |
All2Nmin | - | ✓ | ✓ | ✓ | - | ✓ |
All + Manure | ✓ | - | ✓ | ✓ | ✓ | ✓ |
NoNmin + Manure | - | - | ✓ | ✓ | ✓ | ✓ |
Dry Matter (DM) in% | N (% DM) | C (% DM) | Applied DM (dt ha−1 a−1) | Applied N (kg ha−1 a−1) | Applied C (dt ha−1 a−1) |
---|---|---|---|---|---|
36.4 ± 10.8 | 2.1 ± 0.4 | 31.9 ± 7.1 | 54.6 ± 16.1 | 106.9 ± 28.0 | 16.7 ± 6.6 |
Control | All | All2Nmin | All + Manure | NoNmin + Manure | |
---|---|---|---|---|---|
Grain Yield (dt ha−1) | |||||
mean | 11.5 ± 1.1 a | 40.6 ± 8.3 bc | 49.3 ± 11.6 c | 48.7 ± 9.5 c | 36.5 ± 6.3 b |
2007 | 10.8 ± 0.7 a | 34.1 ± 2.8 b | 43.9 ± 2.7 c | 44.3 ± 2.4 c | 32.2 ± 2.1 b |
2008 | 12.0 ± 1.4 a | 38.6 ± 1.1 c | 39.8 ± 1.1 c | 42.0 ± 2.3 c | 30.5 ± 1.9 b |
2009 | 14.4 ± 1.1 a | 60.5 ± 5.9 c | 80.5 ± 2.7 d | 75.3 ± 1.6 d | 43.1 ± 2.5 b |
2010 | 12.2 ± 0.9 a | 46.4 ± 0.2 d | 41.4 ± 1.7 c | 47.4 ± 2.5 d | 34.3 ± 0.6 b |
2011 | 10.5 ± 1.0 a | 29.8 ± 0.6 b | 45.9 ± 2.8 d | 41.1 ± 2.6 c | 26.6 ± 1.1 b |
2012 | 11.0 ± 0.9 a | 41.9 ± 4.7 b | 51.5 ± 0.9 c | 47.7 ± 4.2 bc | 43.0 ± 1.0 b |
2013 | 11.4 ± 1.2 a | 46.9 ± 5.4 c | 48.1 ± 3.6 c | 51.7 ± 2.9 c | 33.2 ± 1.2 b |
2014 | 11.9 ± 1.0 a | 44.4 ± 2.2 b | 56.7 ± 3.3 c | 55.4 ± 2.5 c | 44.4 ± 4.2 b |
2015 | 11.6 ± 0.6 a | 43.6 ± 2.0 b | 57.1 ± 2.9 c | 47.6 ± 4.9 b | 46.5 ± 4.0 b |
2016 | 10.7 ± 1.1 a | 38.5 ± 5.1 b | 47.1 ± 3.1 c | 48.7 ± 2.5 c | 34.7 ± 2.0 b |
2017 | 10.1 ± 0.4 a | 33.1 ± 3.1 b | 40.6 ± 2.6 c | 41.0 ± 5.7 c | 31.9 ± 1.4 b |
2018 | 11.1 ± 0.8 a | 32.1 ± 3.0 b | 38.9 ± 1.9 c | 42.7 ± 3.5 c | 37.8 ± 3.2 bc |
Straw Yield (dt ha−1) | |||||
mean | 14.0 ± 2.2 a | 52.8 ± 8.8 b | 63.4 ± 9.2 bc | 69.5 ± 11.6 c | 53.8 ± 12.0 b |
2007 | 15.6 ± 1.3 a | 46.0 ± 4.4 b | 58.5 ± 2.9 c | 58.6 ± 5.8 c | 56.5 ± 4.3 c |
2008 | 15.0 ± 1.6 a | 58.7 ± 5.8 c | 65.8 ± 4.2 cd | 72.9 ± 3.3 d | 48.1 ± 1.1 b |
2009 | 18.1 ± 2.5 a | 59.5 ± 4.9 b | 66.7 ± 4.2 bc | 72.1 ± 7.8 c | 56.3 ± 5.1 b |
2010 | 15.7 ± 2.3 a | 69.4 ± 6.9 c | 84.3 ± 4.7 d | 91.7 ± 6.3 d | 51.7 ± 4.3 b |
2011 | 10.1 ± 1.5 a | 39.6 ± 1.1 b | 50.6 ± 3.1 c | 47.4 ± 2.0 c | 33.4 ± 5.9 b |
2012 | 13.6 ± 1.2 a | 56.6 ± 5.1 b | 67.8 ± 1.4 c | 77.7 ± 3.8 d | 65.7 ± 2.4 c |
2013 | 14.5 ± 1.3 a | 52.1 ± 2.0 b | 61.1 ± 3.0 c | 67.8 ± 6.7 c | 47.6 ± 1.9 b |
2014 | 10.1 ± 0.5 a | 49.6 ± 1.5 c | 64.7 ± 2.1 d | 66.8 ± 3.0 d | 45.1 ± 1.4 b |
2015 | 13.6 ± 1.2 a | 57.1 ± 4.4 bc | 65.4 ± 3.8 cd | 65.7 ± 3.7 d | 56.0 ± 5.2 b |
2016 | 15.1 ± 3.3 a | 47.4 ± 4.3 b | 54.1 ± 5.0 b | 70.1 ± 3.2 c | 52.0 ± 3.8 b |
2017 | 10.5 ± 1.3 a | 42.8 ± 6.5 b | 55.6 ± 7.9 c | 60.9 ± 1.4 c | 37.5 ± 1.4 b |
2018 | 19.0 ± 2.6 a | 57.4 ± 6.0 b | 69.4 ± 4.5 c | 82.7 ± 6.3 d | 61.0 ± 3.8 bc |
Treatment | Measured (Difference between Period One (2007–2010) and Period Nine (2015–2018) | Calculated (Based on an Increase of 0.4% per Year from 2007 to 2018) | Calculated (Based on an Increase of 0.4% from Period One (2007–2010) to Period Nine (2015–2018)) |
---|---|---|---|
Control | 0.52 | 0.37 | 0.41 |
All | 1.52 | 0.39 | 0.78 |
All2Nmin | 3.21 | 0.44 | 0.50 |
All + Manure | 6.01 | 0.73 | 0.83 |
NoNmin + Manure | 5.15 | 0.69 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roß, C.-L.; Baumecker, M.; Ellmer, F.; Kautz, T. Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture 2022, 12, 170. https://doi.org/10.3390/agriculture12020170
Roß C-L, Baumecker M, Ellmer F, Kautz T. Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture. 2022; 12(2):170. https://doi.org/10.3390/agriculture12020170
Chicago/Turabian StyleRoß, Christina-Luise, Michael Baumecker, Frank Ellmer, and Timo Kautz. 2022. "Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2" Agriculture 12, no. 2: 170. https://doi.org/10.3390/agriculture12020170
APA StyleRoß, C.-L., Baumecker, M., Ellmer, F., & Kautz, T. (2022). Organic Manure Increases Carbon Sequestration Far beyond the “4 per 1000 Initiative” Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture, 12(2), 170. https://doi.org/10.3390/agriculture12020170