The Effect of Increasing Dietary Manganese from an Organic Source on the Reproductive Performance of Sows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sow Management
2.2. Piglet Handling and Care
2.3. Blood Collection and Storage
2.4. Prolactin and Progesterone Assays
2.5. Cytokine Analyses
2.6. Tissue Collection and Storage
2.7. MnSOD Analysis
2.8. Milk Collection and Component Analysis
2.9. Statistical Analysis
3. Results
3.1. Sow Performance
3.2. Litter Performance
3.3. Sow Immune Marker and Plasma Hormone Concentrations
3.4. Piglet Immune Marker Concentrations
3.5. Tissue MnSOD Activity and Mineral Composition in Piglets
3.6. Sow Milk Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriazakis, I.; Whittemore, C.T. Whittemore’s Science and Practice of Pig Production, 3rd ed.; Blackwell Publishing: Hoboken, NJ, USA, 2006. [Google Scholar]
- Schoknecht, P.A. Swine Nutrition: Nutrient Usage during Pregnancy and Early Postnatal Growth, An Introduction. J. Anim. Sci. 1997, 75, 2705–2707. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.V. Impact of Swine Reproductive Technologies on Pig and Global Food Production. In Advances in Experimental Medicine and Biology; Lamb, G.C., DiLorenzo, N., Eds.; Springer: New York, NY, USA, 2014; Volume 752, pp. 131–160. [Google Scholar]
- Knox, R.V.; Dziuk, P.; Hollis, G.R. The Changing Nature of Pig Reproduction Livestock Trail; The University of Illinois: Champaign, IL, USA, 2005; Available online: http://livestocktrail.illinois.edu/swinerepronet/paperDisplay.cfm?ContentID=7588 (accessed on 1 April 2020).
- Derouchey, J.M.; Hancock, J.D.; Hines, R.H.; Cummings, K.R.; Lee, D.J.; Maloney, C.A.; Dean, D.W.; Park, J.S.; Cao, H. Effects of dietary electrolyte balance on the chemistry of blood and urine in lactating sows and sow litter performance. J. Anim. Sci. 2003, 81, 3067–3074. [Google Scholar] [CrossRef] [PubMed]
- Berta, E.; Andrasofszky, E.; Bersenyu, A.; Glavits, R.; Gaspardy, A.; Fekete, S.G. Effect of Inorganic and Organic Manganese Supplementation on the Performance and Tissue Manganese Content of Broiler Chicks. Acta Vet. Hung. 2004, 52, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.L.; Spears, J.W.; Lloyd, K.E.; Whisnant, C.S. Feeding a Low Manganese Diet to Heifers During Gestation Impairs Fetal Growth and Development. J. Dairy Sci. 2006, 89, 4305–4311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier Science B. V.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Leach, R.M.; Muenster, A. Studies on the Role of Manganese in Bone Formation I. Effect upon the Mucopolysaccharide Content of Chick Bone. J. Nutr. 1962, 78, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Leibholz, J.M.; Speer, V.C.; Hays, V.W. Effect of Dietary Manganese on Baby Pig Performance and Tissue Manganese Levels. J. Anim. Sci. 1962, 21, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. Landmark Ed. 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [Green Version]
- Holley, A.K.; Bakthavatchalu, V.; Velez-Roman, J.M.; Clair, D.K.S. Manganese superoxide dismutase: Guardian of the powerhouse. Int. J. Mol. Sci. 2011, 12, 7114–7162. [Google Scholar] [CrossRef]
- Plumlee, M.P.; Thrasher, D.M.; Beeson, W.M.; Andrews, F.N.; Parker, H.E. The Effects of a Manganese Deficiency Upon the Growth, Development, and Reproduction of Swine. J. Anim. Sci. 1956, 15, 352–368. [Google Scholar] [CrossRef]
- Veum, T.L.; Carlson, M.S.; Wu, C.W.; Bollinger, D.W.; Ellersieck, M.R. Copper proteinate in weanling pig diets for enhancing growth performance and reducing fecal copper excretion when compared with copper sulfate. J. Anim. Sci. 2004, 82, 1062–1070. [Google Scholar] [CrossRef]
- Burkett, L.J.; Stalder, K.J.; Powers, W.J.; Bregendahl, K.; Pierce, J.L.; Bass, T.J.; Bailey, T.; Shafer, B.L. Effect of inorganic and organic trace mineral supplementation on the performance, carcass characteristics, and fecal mineral excretion of phase-fed, grow-finish swine. Asian Australas. J. Anim. Sci. 2009, 22, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Knauer, M.; Baitinger, D.J. The sow body condition caliper. Appl. Eng. Agric. 2015, 31, 175–178. [Google Scholar]
- Dove, C.R.; Alworth, L.C. Blood collection from the orbital sinus of swine. Lab Anim. 2015, 44, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.; De Passile, A.-M.B.; St-Pierre, N.; Pelletier, G.; Petitclerc, D.; Dubreuil, P.; Brazeau, P. Effect of the stress of injections on the serum concentration of cortisol, prolactin, and growth hormone in gilts and lactating sows. Can. J. Anim. Sci. 1989, 69, 663–672. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane, G.H. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, X.; Baidoo, S.K. Relationship between body weight of primiparous sows during late gestation and subsequent reproductive efficiency over six parities. Asian Australas. J. Anim. Sci. 2016, 29, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Close, W.H.; Noblet, J.; Heavens, R.P. The partition of body-weight gain in the pregnant sow. Livest. Prod. Sci. 1984, 11, 517–527. [Google Scholar] [CrossRef]
- Knauer, M.T.; Hostetler, C.E. US swine industry productivity analysis, 2005 to 2010. J. Swine Health Prod. 2013, 21, 248–252. [Google Scholar]
- Tsai, T.; Apgar, G.A.; Estienne, M.J.; Wilson, M.; Maxwell, C.V. A cooperative study assessing reproductive performance in sows fed diets supplemented with organic or inorganic sources of trace minerals. Transl. Anim. Sci. 2020, 4, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.C.; Mahan, D.C. Effects of dietary organic and inorganic trace mineral levels on sow reproductive performances and daily mineral intakes over six parities. J. Anim. Sci. 2008, 86, 2247–2260. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Bazer, F.W. Conceptus signals for establishing and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2004, 2, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, T.E.; Johnson, G.A.; Burghardt, R.C.; Bazer, F.W. Progesterone and placental hormone actions on the uterus: Insights from domestic animals. Biol. Reprod. 2004, 71, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Curran, G.L. Effect of Certain transition elements on cholsterol biosynthesis. J. Biol. Chem. 1961, 20, 109–111. [Google Scholar]
- Xie, J.; Tian, C.; Zhu, Y.; Zhang, L.; Lu, L.; Luo, X. Physiology, endocrinology, and reproduction:effects of inorganic and organic manganese supplementation on gonadotropin-releasing hormone-i and follicle-stimulating hormone expression and reproductive performance of broiler breeder hens. Poult. Sci. 2014, 93, 959–969. [Google Scholar] [CrossRef]
- Farmer, C. Altering prolactin concentrations in sows. Domest. Anim. Endocrinol. 2016, 56, S155–S164. [Google Scholar] [CrossRef]
- VanKlompenberg, M.K.; Manjarin, R.; Trott, J.F.; McMicking, H.F.; Hovey, R.C. Late gestational hyperprolactinemia accelerates mammary epithelial cell differentiation that leads to increased milk yield. J. Anim. Sci. 2013, 91, 1102–1111. [Google Scholar] [CrossRef]
- Farmer, C.; Palin, M.F. Hyperprolactinemia using domperidone in prepubertal gilts: Effects on hormonal status, mammary development and mammary and pituitary gene expression. Domest. Anim. Endocrinol. 2021, 76, 106630. [Google Scholar] [CrossRef]
- Santos, A.P.M.d.; Santos, M.; Batoreu, C.; Aschner, M. Prolactin is a peripheral marker of manganese neurotoxicity. Brain Res. 2011, 1382, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, Y.L.; Zhao, J.M.; Vazquez-Añón, M.; Stein, H.H. Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals. J. Anim. Sci. 2014, 92, 3407–3415. [Google Scholar] [CrossRef] [PubMed]
- Fix, J.S.; Cassady, J.P.; Holl, J.W.; Herring, W.O.; Culbertson, M.S.; See, M.T. Effect of piglet birth weight on survival and quality of commercial market swine. Livest. Sci. 2010, 132, 98–106. [Google Scholar] [CrossRef]
- Feldpausch, J.A.; Jourqin, J.; Bergstorm, J.R.; Bargen, J.L.; Bokenkroger, C.D.; Davis, D.L.; Gonzalez, J.M.; Nelssen, J.L.; Puls, C.L.; Trout, W.E.; et al. Birth weight threshold for identifying piglets at risk for preweaning mortality. Transl. Anim. Sci. 2019, 3, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, R.A.; Boyd, R.D.; Jungst, S.B.; Wilson, E.R.; Johnston, M.E.; Vignes, J.L.; Odle, J. Impact of lactation length and piglet weaning weight on long-term growth and viability of progeny. J. Anim. Sci. 2010, 88, 2265–2276. [Google Scholar] [CrossRef] [PubMed]
- Salmon, H.; Berri, M.; Gerdts, V.; Meurens, F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009, 33, 384–393. [Google Scholar] [CrossRef]
- Šinkora, M.; Butler, J.E. The ontogeny of the porcine immune system. Dev. Comp. Immunol. 2009, 33, 273–283. [Google Scholar] [CrossRef]
- Sinkora, J.; Rehakova, Z.; Sinkora, M.; Cukrowska, B.; Tlaskalova-Hogenova, H. Early development of immune system in pigs. Vet. Immunol. Immunopathol. 2002, 87, 301–306. [Google Scholar] [CrossRef]
- Brigadirov, Y.N.; Kotsarev, V.N.; Shaposhnikov, I.T.; Volkova, I.V.; Lobanov, A.E.; Falkova, Y.O. Cytokine Profile of Sows under Effects of Inflammatory Processes in Reproductive Organs. Russ. Agric. Sci. 2018, 44, 365–368. [Google Scholar] [CrossRef]
- Haase, H. Innate Immune Cells Speak Manganese. Immunity 2018, 48, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-M.; An, J. Cytokines, Inflammation, and Pain. Int. Anesth. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, M.; Jacobson, M.; Andersen, P.H.; Bækbo, P.; Ceron, J.J.; Dahl, J.; Escribano, D.; Jacobsen, S. Inflammatory markers before and after farrowing in healthy sows and in sows affected with postpartum dysgalactia syndrome. BMC Vet. Res. 2018, 14, 83. [Google Scholar]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning Is Associated with an Upregulation of Expression of Inflamatory Cytokines in the Intestine of Piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.T.; Wang, C.C.; Wu, H.; Zhang, Q.H.; Jiao, L.F.; Hu, C.H. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J. Anim. Sci. 2018, 96, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.E.; Mahan, D.C.; Hill, G.M.; Link, J.E.; Jolliff, J.S. Effect of dietary organic microminerals on starter pig performance, tissue mineral concentrations, and liver and plasma enzyme activities. J. Anim. Sci. 2011, 89, 1042–1055. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Lindemann, M.D.; Webb, S.F.; Rentfrow, G. Evaluation of trace mineral source and preharvest deletion of trace minerals from finishing diets on tissue mineral status in pigs. Asian Australas. J. Anim. Sci. 2018, 31, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, G.A.; Maes, D.G.D.; Janssens, G.P.J. Mineral accretion in nursing piglets in relation to sow performance and mineral source. Vet. Med. 2009, 54, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, C.; Ebner, K.M.; Furtner, F.; Duller, S.; Wetscherek, W.; Wernert, W.; Kandler, W.; Schedle, K. Influence of high inorganic selenium and manganese diets for fattening pigs on oxidative stability and pork quality parameters. Animal 2017, 11, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Pallauf, J.; Kauer, C.; Most, E.; Habicht, S.D.; Moch, J. Impact of dietary manganese concentration on status criteria to determine manganese requirement in piglets. J. Anim. Physiol. Anim. Nutr. 2012, 96, 993–1002. [Google Scholar] [CrossRef]
- Edmunds, C.E.; Seidel, D.S.; Welch, C.B.; Lee, E.A.; Azain, M.J.; Callaway, T.R.; Dove, C.R. The effect of varying dietary manganese and selenium levels on the growth performance and manganese-superoxide dismutase activity in nursery pigs. Livest. Sci. 2022, 265, 105100. [Google Scholar] [CrossRef]
- Kim, S.W.; Osaka, I.; Hurley, W.L.; Easter, R.A. Litter Size Affects Mammary Gland Growth in Lactating Sows; Department of Animal Sciences, University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1998. [Google Scholar]
- Farmer, C. The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015. [Google Scholar]
- Hu, P.; Yang, H.; Lv, B.; Zhao, D.; Wang, J.; Zhu, W. Dynamic changes of fatty acids and minerals in sow milk during lactation. J. Anim. Physiol. Anim. Nutr. 2018, 103, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Csapó, J.; Martin, T.G.; Csapó-Kiss, Z.S.; Házas, Z. Protein, fats, vitamin and mineral concentrations in porcine colostrum and milk from parturition to 60 days. Int. Dairy J. 1996, 6, 881–902. [Google Scholar] [CrossRef]
Dietary Treatment | Gestation | Lactation | |||
---|---|---|---|---|---|
Low Mn | High Mn | CON | PRO20 | PRO40 | |
Ingredient, % | |||||
Corn | 54.370 | 54.160 | 54.410 | 54.400 | 54.380 |
Corn DDGS | 40.000 | 40.000 | 20.000 | 20.000 | 20.000 |
Soybean meal, 47.5% | 1.700 | 1.700 | 21.620 | 21.620 | 21.620 |
L-Lysine | 0.210 | 0.210 | 0.220 | 0.220 | 0.220 |
Dicalcium phosphate | 0.870 | 0.870 | 1.260 | 1.260 | 1.260 |
Limestone | 1.600 | 1.600 | 1.240 | 1.240 | 1.240 |
Salt | 0.250 | 0.250 | 0.250 | 0.250 | 0.250 |
Vitamin premix 1 | 0.250 | 0.250 | 0.250 | 0.250 | 0.250 |
Sow Add Pack- Vit 2 | 0.250 | 0.250 | 0.250 | 0.250 | 0.250 |
Mineral premix 3 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |
ProPath® Mn 4 | 0.000 | 0.210 | 0.000 | 0.014 | 0.027 |
Analysis 5 | |||||
ME 6,7, Mcal/kg | 3303.000 | 3303.000 | 3297.000 | 3297.000 | 3297.000 |
Crude protein, % | 18.400 | 17.600 | 20.000 | 19.900 | 19.900 |
Lysine 6, % | 0.520 | 0.520 | 0.970 | 0.970 | 0.970 |
Crude fat, % | 3.700 | 3.600 | 3.800 | 4.100 | 3.800 |
Ash, % | 5.900 | 5.900 | 5.500 | 5.600 | 6.000 |
Crude fiber, % | 5.400 | 5.100 | 3.700 | 4.000 | 3.900 |
Phosphorus (total), % | 0.600 | 0.600 | 0.700 | 0.700 | 0.700 |
Phosphorus (avail) 6, % | 0.400 | 0.420 | 0.390 | 0.390 | 0.390 |
Calcium, % | 1.000 | 0.900 | 0.900 | 0.900 | 0.900 |
Potassium, % | 0.800 | 0.740 | 0.920 | 0.940 | 0.920 |
Magnesium, % | 0.210 | 0.180 | 0.190 | 0.210 | 0.210 |
Sulfur, % | 0.070 | 0.080 | 0.080 | 0.080 | 0.080 |
Manganese, ppm | 42.000 | 310.000 | 42.000 | 73.000 | 81.000 |
Iron, ppm | 243.000 | 176.000 | 464.000 | 576.000 | 479.000 |
Copper, ppm | 34.000 | 30.000 | 48.000 | 40.000 | 35.000 |
Zinc, ppm | 181.000 | 113.000 | 225.000 | 255.000 | 251.000 |
Parity 1 1 | Parity 2 1 | p–Values 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dietary Treatment | CON | PRO20 | PRO40 | CON | PRO20 | PRO40 | SEM | Mn | Lin Mn | Mn (Parity) |
Sow body weight, kg (N) | 13 | 13 | 13 | 11 | 11 | 13 | ||||
d 110 ± 1 Gestation | 233.0 | 226.4 | 233.1 | 222.0 | 225.4 | 233.5 | 8.0 | 0.588 | 0.450 | 0.807 |
d 1 ± 1 Lactation | 224.6 | 217.7 | 224.4 | 216.9 | 221.9 | 222.9 | 10.9 | 0.879 | 0.707 | 0.907 |
d 21 ± 1 Lactation | 233.4 | 223.6 | 230.6 | 230.2 | 228.8 | 236.5 | 9.3 | 0.612 | 0.822 | 0.918 |
Relative weight change, kg | ||||||||||
d 110–d 1 Lactation | −15.3 a | −11.0 a | −8.9 ab | −7.2 ab | −3.6 b | −16.2 a | 3.6 | 0.118 | 0.689 | 0.024 |
d 1 Lactation–d 21 Lact | 11.2 | 7.0 | 6.3 | 16.8 | 6.6 | 15.6 | 3.9 | 0.148 | 0.376 | 0.260 |
d 110–d 21 Lact | −4.2 | −0.3 | 0.3 | 8.7 | 2.2 | 1.6 | 4.5 | 0.932 | 0.748 | 0.273 |
Gestation length, d | 114.7 | 115.2 | 114.8 | 115.3 | 115.1 | 115.0 | 0.5 | 0.878 | 0.899 | 0.695 |
Feed intake, kg/sow/day (N) | 13 | 13 | 13 | 11 | 11 | 13 | ||||
Week 1 | 5.15 b | 6.26a | 5.72 ab | 5.63 b | 6.68 a | 6.20 ab | 0.43 | 0.012 | 0.128 | 0.726 |
Week 2 | 6.38 c | 7.73a | 6.38 c | 7.87 ab | 8.01 ab | 7.50 ab | 0.38 | 0.039 | 0.621 | 0.003 |
Week 3 | 6.36 bc | 6.58bc | 6.04 cd | 7.63 a | 8.16 a | 6.41 b | 0.56 | 0.025 | 0.060 | 0.131 |
ADFI | 5.92 d | 7.05a | 6.04 bd | 6.96 abc | 7.52 a | 6.73 bc | 0.35 | 0.006 | 0.848 | 0.150 |
Lactation length, d | 18.5 | 16.1 | 18.8 | 17.9 | 17.9 | 18.8 | 3.0 | |||
Litter performance (N) | 13 | 13 | 13 | 11 | 11 | 13 | ||||
Total number born | 16.2 a | 12.9 b | 15.2 ab | 15.2 ab | 13.3b | 14.6 ab | 0.9 | 0.021 | 0.396 | 0.817 |
Total live born | 13.6 a | 12.0 ab | 13.2 a | 12.6 ab | 10.6 b | 12.4 ab | 0.7 | 0.035 | 0.713 | 0.524 |
Stillborn | 1.7 | 0.5 | 1.3 | 2.3 | 2.3 | 2.1 | 0.6 | 0.541 | 0.594 | 0.083 |
Mummies | 0.9 | 0.6 | 0.6 | 0.2 | 0.4 | 0.1 | 0.3 | 0.750 | 0.466 | 0.348 |
Total number weaned | 10.7 | 10.0 | 10.5 | 9.8 | 9.2 | 9.3 | 0.7 | 0.686 | 0.652 | 0.355 |
Survival, % | 79.8 | 82.3 | 82.3 | 78.9 | 88.4 | 77.0 | 4.3 | 0.282 | 0.937 | 0.592 |
Avg piglet birthweight, kg3 | 1.23 c | 1.59 a | 1.35b | 1.22 c | 1.55 a | 1.45 b | 0.04 | 0.001 | 0.001 | 0.150 |
Avg piglet weaning wt, kg3 | 5.18 b | 5.44 ab | 5.74a | 5.11 b | 5.82 a | 5.24 b | 0.26 | 0.001 | 0.010 | 0.023 |
Avg litter weaning wt, kg | 52.58 ab | 59.08 a | 58.09ab | 51.66 ab | 58.54 ab | 51.40 b | 2.7 | 0.049 | 0.310 | 0.318 |
ADG, g/pig/day3 | 216 b | 232 ab | 236a | 211 b | 241 a | 204b | 11 | 0.001 | 0.298 | 0.014 |
Parity 1 | Parity 2 | p–Values 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dietary Treatment | CON | PRO20 | PRO40 | CON | PRO20 | PRO40 | SEM | Mn | Lin Mn | Mn (Parity) |
Log10Conc, pg/mL (N) | 13 | 13 | 13 | 11 | 11 | 13 | ||||
GM-CSF | 2.38 | 2.57 | 2.37 | 2.33 | 2.57 | 2.47 | 0.15 | 0.24 | 0.61 | 0.94 |
IFN-γ | 2.94 | 3.35 | 3.29 | 3.01 | 3.22 | 3.09 | 0.30 | 0.38 | 0.30 | 0.86 |
IL-1α | 2.03 ab | 1.95 ab | 1.89b | 2.32 a | 2.08 ab | 1.82b | 0.15 | 0.05 | 0.01 | 0.45 |
IL-1β | 3.10 ab | 2.96 ab | 2.94 ab | 3.38 a | 3.18 ab | 2.90b | 0.18 | 0.08 | 0.02 | 0.52 |
IL-1rα | 3.00 | 3.12 | 3.03 | 3.37 | 3.15 | 2.99 | 0.14 | 0.26 | 0.12 | 0.24 |
IL-2 | 3.03 abc | 2.96 abc | 2.86 bc | 3.33 a | 3.11 b | 2.72 c | 0.17 | 0.02 | 0.01 | 0.38 |
IL-4 | 3.53 ab | 3.36 ab | 3.30 b | 3.84 a | 3.48 ab | 3.21 b | 0.19 | 0.03 | 0.01 | 0.61 |
IL-6 | 2.43 ab | 2.41 ab | 2.31 b | 2.79 a | 2.55 ab | 2.34b | 0.17 | 0.11 | 0.04 | 0.45 |
IL-8 | 1.47 | 1.04 | 1.52 | 1.25 | 1.30 | 1.17 | 0.18 | 0.50 | 0.93 | 0.24 |
IL-10 | 3.29 ab | 3.31 ab | 3.07 b | 3.62 a | 3.35 ab | 2.95 b | 0.19 | 0.01 | 0.01 | 0.52 |
IL-12 | 2.89 ab | 2.90 ab | 2.83 b | 3.07 a | 2.96 ab | 2.76 b | 0.09 | 0.04 | 0.02 | 0.38 |
IL-18 | 3.51 ab | 3.52 ab | 3.35b | 3.82 a | 3.62 a | 3.25 b | 0.16 | 0.01 | 0.01 | 0.43 |
TNF-α | 2.51 | 1.81 | 2.21 | 2.43 | 2.09 | 1.96 | 0.28 | 0.20 | 0.10 | 0.69 |
Prolactin2, ng/mL | 30.95 | 28.88 | 30.52 | 32.03 | 30.28 | 28.23 | 3.55 | 0.75 | 0.47 | 0.91 |
(N) | 13 | 13 | 13 | 11 | 11 | 13 | ||||
Progesterone3, ng/mL | 25.83 | 26.86 | 23.04 | 21.56 | 25.45 | 21.12 | 2.40 | 0.09 | 0.36 | 0.60 |
(N) | 13 | 13 | 13 | 11 | 11 | 13 |
Parity 1 | Parity 2 | p–Values 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dietary Treatment | CON | PRO20 | PRO40 | CON | PRO20 | PRO40 | SEM | Mn | Lin Mn | Mn (Parity) |
Log10Conc2, pg/mL (N) | 13 | 13 | 13 | 11 | 11 | 13 | ||||
GM-CSF | 1.21 | 0.97 | 1.35 | 1.36 | 1.67 | 0.88 | 0.24 | 0.57 | 0.42 | 0.06 |
IFN-γ | 2.18 | 2.40 | 2.13 | 2.03 | 2.24 | 2.34 | 0.20 | 0.50 | 0.45 | 0.68 |
IL-1α | 0.80 | 0.62 | 0.96 | 0.86 | 0.89 | 0.79 | 0.23 | 0.83 | 0.80 | 0.72 |
IL-1β | 2.38 | 2.31 | 2.42 | 2.31 | 2.38 | 2.30 | 0.14 | 0.99 | 0.91 | 0.87 |
IL-1rα | 3.17 | 3.02 | 3.15 | 3.24 | 3.18 | 3.17 | 0.12 | 0.58 | 0.64 | 0.76 |
IL-2 | 1.80 | 1.76 | 1.89 | 1.64 | 1.87 | 1.81 | 0.24 | 0.78 | 0.51 | 0.90 |
IL-4 | 2.25 | 1.81 | 2.04 | 2.17 | 2.06 | 2.12 | 0.20 | 0.28 | 0.41 | 0.76 |
IL-6 | 1.57 | 1.33 | 1.52 | 1.57 | 1.44 | 1.49 | 0.12 | 0.13 | 0.50 | 0.87 |
IL-8 | 1.46 | 1.30 | 1.38 | 1.78 | 1.42 | 1.66 | 0.17 | 0.12 | 0.44 | 0.44 |
IL-10 | 2.30 | 2.17 | 2.13 | 2.27 | 2.42 | 2.13 | 0.14 | 0.23 | 0.14 | 0.57 |
IL-12 | 3.19 | 3.15 | 3.13 | 3.13 | 3.18 | 3.17 | 0.06 | 0.97 | 0.88 | 0.71 |
IL-18 | 2.93 | 2.83 | 2.92 | 2.89 | 3.07 | 2.85 | 0.12 | 0.69 | 0.70 | 0.17 |
TNF-α | 1.74 | 1.84 | 1.82 | 1.85 | 1.63 | 1.49 | 0.15 | 0.51 | 0.25 | 0.16 |
MnSOD 3,4, IU/mg (N) | 11 | 11 | 13 | |||||||
Ileum | . | . | . | 6.95 | 6.36 | 6.89 | 0.81 | 0.67 | 0.93 | |
Heart | . | . | . | 8.79 | 5.73 | 6.77 | 1.25 | 0.21 | 0.23 | |
Liver | . | . | . | 10.02 a | 7.46 b | 7.87 ab | 0.71 | 0.03 | 0.03 |
Dietary Treatment | CON | PRO20 | PRO40 | SEM | p-Value | |
---|---|---|---|---|---|---|
Mineral Concentration 1,2 | N | 11 | 11 | 13 | Mn | |
Ileum | ||||||
Phosphorus, % | 1.385 | 1.320 | 1.427 | 0.060 | 0.249 | |
Calcium, % | 0.041 | 0.046 | 0.051 | 0.004 | 0.114 | |
Manganese, ppm | 5.316 | 5.000 | 5.556 | 0.235 | 0.227 | |
Iron, ppm | 116.000 | 114.000 | 118.000 | 11.000 | 0.937 | |
Copper, ppm | 6.000 | 15.000 | 6.000 | 5.000 | 0.364 | |
Zinc, ppm | 124.000 | 118.000 | 119.000 | 5.000 | 0.728 | |
Heart | ||||||
Phosphorus, % | 1.015 | 0.970 | 1.013 | 0.010 | 0.117 | |
Calcium, % | 0.023 | 0.024 | 0.031 | 0.004 | 0.226 | |
Manganese, ppm | 5.704 | 5.410 | 5.670 | 0.190 | 0.479 | |
Iron, ppm | 238.000 | 222.000 | 219.000 | 16.000 | 0.589 | |
Copper, ppm | 7.000 | 7.000 | 16.000 | 4.000 | 0.215 | |
Zinc, ppm | 89.000 | 87.000 | 91.000 | 2.000 | 0.091 | |
Liver | ||||||
Phosphorus, % | 0.908 | 0.912 | 0.922 | 0.060 | 0.970 | |
Calcium, % | 0.022 | 0.023 | 0.023 | 0.002 | 0.692 | |
Manganese, ppm | 6.023 | 6.441 | 5.907 | 0.446 | 0.591 | |
Iron, ppm | 845.000 | 1152.000 | 863.000 | 204.000 | 0.478 | |
Copper, ppm | 172.000 | 159.000 | 148.000 | 27.000 | 0.662 | |
Zinc, ppm | 262.000 | 265.000 | 199.000 | 24.000 | 0.077 |
Dietary Treatment | CON | PRO20 | PRO40 | p–Values | |
---|---|---|---|---|---|
Milk composition (as-received) | Mn | Col v. Milk | |||
Protein1, % | |||||
Colostrum (N) | 15.4 (19) | 16.0 (18) | 13.5 (21) | 0.39 | 0.01 |
Milk 2 (N) | 9.2 (16) | 8.7 (15) | 7.7 (20) | 0.08 | |
Fat 1, % | |||||
Colostrum (N) | 5.9 ab (19) | 6.2 a (18) | 4.4 b (17) | 0.05 | 0.02 |
Milk 2 (N) | 7.8 a (15) | 5.5 b (12) | 6.1 b (16) | 0.01 | |
Mineral Concentration 1,3 (as-received) | |||||
Colostrum (N) | 19 | 17 | 17 | ||
Milk 2 (N) | 15 | 11 | 15 | ||
Phosphorus, % | |||||
Colostrum | 0.11 | 0.12 | 0.12 | 0.21 | 0.85 |
Milk 2 | 0.12 | 0.12 | 0.12 | 0.20 | |
Calcium, % | |||||
Colostrum | 0.09 | 0.11 | 0.12 | 0.22 | 0.01 |
Milk 2 | 0.16 | 0.17 | 0.17 | 0.71 | |
Manganese, ppm | |||||
Colostrum | 0.25 | 0.25 | 0.26 | 0.32 | 0.13 |
Milk 2 | 0.26 | 0.25 | 0.30 | 0.12 | |
Iron, ppm | |||||
Colostrum | 1.69 | 1.90 | 1.53 | 0.68 | 0.52 |
Milk 2 | 1.68 | 1.84 | 2.17 | 0.63 | |
Copper, ppm | |||||
Colostrum | 2.59 | 2.60 | 2.21 | 0.52 | 0.01 |
Milk 2 | 1.29 | 1.03 | 1.10 | 0.30 | |
Zinc, ppm | |||||
Colostrum | 9.05 | 10.34 | 8.66 | 0.48 | 0.01 |
Milk 2 | 5.34 | 5.74 | 5.58 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edmunds, C.E.; Cornelison, A.S.; Farmer, C.; Rapp, C.; Ryman, V.E.; Schweer, W.P.; Wilson, M.E.; Dove, C.R. The Effect of Increasing Dietary Manganese from an Organic Source on the Reproductive Performance of Sows. Agriculture 2022, 12, 2168. https://doi.org/10.3390/agriculture12122168
Edmunds CE, Cornelison AS, Farmer C, Rapp C, Ryman VE, Schweer WP, Wilson ME, Dove CR. The Effect of Increasing Dietary Manganese from an Organic Source on the Reproductive Performance of Sows. Agriculture. 2022; 12(12):2168. https://doi.org/10.3390/agriculture12122168
Chicago/Turabian StyleEdmunds, Clint E., Alyssa S. Cornelison, Chantale Farmer, Christof Rapp, Valerie E. Ryman, Wes P. Schweer, Mark E. Wilson, and C. Robert Dove. 2022. "The Effect of Increasing Dietary Manganese from an Organic Source on the Reproductive Performance of Sows" Agriculture 12, no. 12: 2168. https://doi.org/10.3390/agriculture12122168
APA StyleEdmunds, C. E., Cornelison, A. S., Farmer, C., Rapp, C., Ryman, V. E., Schweer, W. P., Wilson, M. E., & Dove, C. R. (2022). The Effect of Increasing Dietary Manganese from an Organic Source on the Reproductive Performance of Sows. Agriculture, 12(12), 2168. https://doi.org/10.3390/agriculture12122168