Associations of Lameness with Indicators of Nitrogen Metabolism and Excretion in Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Animals
2.2. Sample Collection and Measurements
- Dry matter intake (DMI) was estimated for each animal using total fecal output (FO) and the organic matter digestibility coefficient (DOMcoeff) obtained from AIA according to the following formulas [28]:
- Milk production was individually recorded by electronic software in the milking parlour (Afimilk, Israel). Milk samples were collected at each milking (3 samples daily per animal) in 100 mL plastic sampling pots that contained a Broad Spectrum Microtabs II pill and stored at a temperature of 4–5 °C and were analysed for fat, protein and milk urea nitrogen (MUN) by Fourier transform infrared spectroscopy (FTIR) with a CombiFoss FT + device (Foss, Hillerød/Denmark) [29].
- Energy-corrected milk (ECM) was calculated using the formula [30]:
- Milk N was calculated using the formula [31]:
- Urine samples for urea and creatinine analysis were collected individually at 6 h intervals (4 samples daily per animal) by manually stimulating the vulva and collecting midstream into a 1 L volume plastic measuring jug and then transferring to 60 mL plastic urine sampling pots. Lee et al., (2019) showed that, when there are no dietary changes, 4 daily samples are sufficient to determine average urinary creatinine concentration (CU) required for urine volume (UV) estimation [32]. After collection, the urine samples were immediately acidified with 3 mL of 6N hydrochloric acid for 60 mL of urine, transferred to 11 mL plastic conical tubes and stored at 4–5 °C until analysis. Urine samples were processed and analyzed for urea and creatinine by spectrophotometric methods using commercial kits specific to the Cobas Integra 400 plus analyser (Hoffmann-La Roche AG, Basel, Switzerland) [33,34]. Daily urine volume was calculated using the formula:
- Urinary N excretion (UN) was determined by the regression equation described by Spek (2013) [36]:
- Total collection of feces was performed on an individual basis for each animal. The fecal samples were collected immediately in 60 L containers, directly from the floor avoiding bedding (straw) contamination and stored at 4–5 °C until analysis. The total amount of feces was weighed and recorded daily for each animal. The fecal samples contaminated with urine were weighed and noted but not stored into containers to avoid urine N contamination of fecal samples. Two types of fecal samples were taken: a daily sample representing 24 h collection of feces necessary for N analysis and a pooled sample, consisting of two samples taken over a 24 h period (at intervals of 12 h) for determination of AIA. The collection of pooled samples was performed very carefully to avoid contamination with soil or sand. According to the literature, daily variation in AIA is negligible, meaning that the use of two samples in a 24 h period is sufficient [37]. Samples were stored in zip-lock plastic bags at 4–5 °C prior to being analysed. N analysis was carried out on oven-dried feces using the Kjeldahl method [25]. Acid Insoluble Ash was determined by ashing the sample and treating the crude ash with 2% hydrochloric acid followed by drying and weighing the insoluble residue [25,27].
- Data were statistically analyzed by Analysis of Variance and the Student T-test with IBM SPPS 22 software (IBM, New York, NY, USA).
3. Results
3.1. Dry Matter Intake, FO and DOMcoeff
3.2. Milk Yield and Constituents
3.3. Urinary Volume and Constituents
3.4. Nitrogen Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Uwizeye, A.; de Boer, I.J.M.; Opio, C.I.; Schulte, R.P.O.; Falcucci, A.; Tempio, G.; Teillard, F.; Casu, F.; Rulli, M.; Galloway, J.N.; et al. Nitrogen emissions along global livestock supply chains. Nat. Food 2020, 1, 437–446. [Google Scholar] [CrossRef]
- Powell, J.M.; Jackson-Smith, D.B.; McCrory, D.F.; Saam, H.; Mariola, M. Validation of Feed and Manure Data Collected on Wisconsin Dairy Farms. J. Dairy Sci. 2006, 89, 2268–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourley, C.J.P.; Aarons, S.R.; Powell, J.M. Nitrogen use efficiency and manure management practices in contrasting dairy production systems. Agric. Ecosyst. Environ. 2012, 147, 73–81. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spek, J.W.; Dijkstra, J.; Van Duinkerken, G.; Bannink, A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Necula, D.C.; Balta, I.; Corcionivoschi, N.; Stef, L. Nutritional and genetical factors influencing Nitrogen metabolism and excretion in dairy cows: A review. Sci. Pap. Anim. Sci. Biotechnol. 2021, 54, 31–38. [Google Scholar]
- Fraser, D. Understanding animal welfare. Acta Vet. Scand. 2008, 50, S1. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, M.B.; Ramanoon, S.Z.; Shaik Mossadeq, W.M.; Mansor, R.; Syed-Hussain, S.S. Association between Lameness and Indicators of Dairy Cow Welfare Based on Locomotion Scoring, Body and Hock Condition, Leg Hygiene and Lying Behavior. Animals 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.H.; Shearer, J.K.; De Vries, A. Seasonal incidence of lameness and risk factors associated with thin soles, white line disease, ulcers, and sole punctures in dairy cattle. J. Dairy Sci. 2009, 92, 3165–3174. [Google Scholar] [CrossRef] [Green Version]
- National Animal Health Monitoring System. Dairy 2007: Reference of Dairy Cattle Health and Management Practices in the United States, 2007; U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, National Animal Health Monitoring System: Fort Collins, CO, USA, 2009.
- Winckler, C. On-farm animal welfare assessment and welfare improvement in dairy cattle. AgroLife Sci. J. 2014, 3, 163–168. [Google Scholar]
- Huxley, J.N. Impact of lameness and claw lesions in cows on health and production. Livest. Sci. 2013, 156, 64–70. [Google Scholar] [CrossRef]
- Solano, L.; Barkema, H.W.; Pajor, E.A.; Mason, S.; LeBlanc, S.J.; Zaffino Heyerhoff, J.C.; Nash, C.G.R.; Haley, D.B.; Vasseur, E.; Pellerin, D.; et al. Prevalence of lameness and associated risk factors in Canadian Holstein-Friesian cows housed in freestall barns. J. Dairy Sci. 2015, 98, 6978–6991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjöström, K.; Fall, N.; Blanco-Penedo, I.; Duval, J.E.; Krieger, M.; Emanuelson, U. Lameness prevalence and risk factors in organic dairy herds in four European countries. Livest. Sci. 2018, 208, 44–50. [Google Scholar] [CrossRef]
- Gomez, A.; Cook, N.B. Time budgets of lactating dairy cattle in commercial freestall herds. J. Dairy Sci. 2010, 93, 5772–5781. [Google Scholar] [CrossRef] [Green Version]
- Norring, M.; Häggman, J.; Simojoki, H.; Tamminen, P.; Winckler, C.; Pastell, M. Short communication: Lameness impairs feeding behavior of dairy cows. J. Dairy Sci. 2014, 97, 4317–4321. [Google Scholar] [CrossRef]
- Miguel-Pacheco, G.G.; Kaler, J.; Remnant, J.; Cheyne, L.; Abbott, C.; French, A.P.; Pridmore, T.P.; Huxley, J.N. Behavioural changes in dairy cows with lameness in an automatic milking system. Appl. Anim. Behav. Sci. 2014, 150, 1–8. [Google Scholar] [CrossRef]
- Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.B. Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 2018, 101, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed. Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Bristow, D.J.; Holmes, D.S. Cortisol levels and anxiety-related behaviors in cattle. Physiol. Behav. 2007, 90, 626–628. [Google Scholar] [CrossRef]
- Almeida, P.E.; Weber, P.S.D.; Burton, J.L.; Zanella, A.J. Depressed DHEA and increased sickness response behaviors in lame dairy cows with inflammatory foot lesions. Domest. Anim. Endocrinol. 2008, 34, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.G.; Detmann, E.; Mantovani, H.C.; Valadares Filho, S.C.; Bento, C.B.P.; Marcondes, M.I.; Assunção, A.S. Evaluation of the length of adaptation period for changeover and crossover nutritional experiments with cattle fed tropical forage-based diets. Anim. Feed. Sci. Technol. 2016, 222, 132–148. [Google Scholar] [CrossRef]
- Rodica Diana Criste, V.H.; Grossu, D.V.; Olteanu, M.; Dragomir, C.; Bercaru, A. Metode Analitice Specifice Studiului Nutreturilor Vol. I; Colectia—Cartile Centrului de excelenta „Nutritia si alimentatia animalelor”; Institutul de Biologie si Nutritie Animala IBNA: Balotești, Romania, 2003. [Google Scholar]
- Şara, A.; Odagiu, A. Controlul Calităţii Nutreţurilor; Academic Press: Cambridge, MA, USA; Editura AcademicPress: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Van Keulen, J.; Young, B.A. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Pepeta, B.N.; Moyo, M.; Hassen, A.; Nsahlai, I.V. Stocking Rate Has No Confounding Effect on the Use of Internal and Inert Markers to Predict Botanical Composition, Diet Quality, Degradability and Passage Rate Kinetics in Sheep. Animals 2020, 10, 2232. [Google Scholar] [CrossRef]
- Van De Voort, F.R.; Sedman, J.; Emo, G.; Ismail, A.A. Assessment of Fourier transform infrared analysis of milk. J. AOAC Int. 1992, 75, 780–785. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Dupont, D.; Croguennec, T.; Brodkorb, A.; Kouaouci, R. Quantitation of Proteins in Milk and Milk Products. In Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th ed.; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: Boston, MA, USA, 2013; pp. 87–134. [Google Scholar] [CrossRef]
- Lee, C.; Morris, D.L.; Dieter, P.A. Validating and optimizing spot sampling of urine to estimate urine output with creatinine as a marker in dairy cows. J. Dairy Sci. 2019, 102, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, T.O.; Jansen, J.M.; Burtis, C.A.; Overton, J.B.; Scott, C.D. Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyzer. Clin. Chem. 1972, 18, 829–840. [Google Scholar] [CrossRef]
- Talke, H.; Schubert, G.E. Enzymatische Harnstoffbestimmung in Blut und Serum im optischen Test nachWarburg. Klin. Wochenschr. 1965, 43, 174–175. [Google Scholar] [CrossRef]
- Broderick, G.A.; Faciola, A.P.; Armentano, L.E. Replacing dietary soybean meal with canola meal improves production and efficiency of lactating dairy cows. J. Dairy Sci. 2015, 98, 5672–5687. [Google Scholar] [CrossRef] [PubMed]
- Spek, J.W. Variation of Milk Urea in Dairy Cattle: A Study on Factors That Affect the Relationship between Urea Concentration in Milk and Urea Excretion in Urine. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2013. [Google Scholar]
- Sales, J.; Janssens, G.P.J. Acid-insoluble ash as a marker in digestibility studies: A review. J. Anim. Feed Sci. 2003, 12, 383–401. [Google Scholar] [CrossRef]
- Weiss, B. Optimizing and Evaluating Dry Matter Intake of Dairy Cows. WCDS Adv. Dairy Technol. 2015, 27, 189–200. [Google Scholar]
- Bareille, N.; Beaudeau, F.; Billon, S.; Robert, A.; Faverdin, P. Effects of health disorders on feed intake and milk production in dairy cows. Livest. Prod. Sci. 2003, 83, 53–62. [Google Scholar] [CrossRef]
- Thorup, V.M.; Nielsen, B.L.; Robert, P.-E.; Giger-Reverdin, S.; Konka, J.; Michie, C.; Friggens, N.C. Lameness Affects Cow Feeding But Not Rumination Behavior as Characterized from Sensor Data. Front. Vet. Sci. 2016, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Coulon, J.B.; Lescourret, F.; Fonty, A. Effect of Foot Lesions on Milk Production by Dairy Cows1. J. Dairy Sci. 1996, 79, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, R.C.; Warnick, L.D.; Guard, C.L. Strategies to Analyze Milk Losses Caused by Diseases with Potential Incidence Throughout the Lactation: A Lameness Example. J. Dairy Sci. 2008, 91, 2653–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, S.C.; Green, M.J.; Huxley, J.N. Association between milk yield and serial locomotion score assessments in UK dairy cows. J. Dairy Sci. 2010, 93, 4045–4053. [Google Scholar] [CrossRef] [Green Version]
- Amory, J.R.; Barker, Z.E.; Wright, J.L.; Mason, S.A.; Blowey, R.W.; Green, L.E. Associations between sole ulcer, white line disease and digital dermatitis and the milk yield of 1824 dairy cows on 30 dairy cow farms in England and Wales from February 2003–November 2004. Prev. Vet. Med. 2008, 83, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Reader, J.D.; Green, M.J.; Kaler, J.; Mason, S.A.; Green, L.E. Effect of mobility score on milk yield and activity in dairy cattle. J. Dairy Sci. 2011, 94, 5045–5052. [Google Scholar] [CrossRef]
- Thomsen, P.T.; Fogsgaard, K.K.; Jensen, M.B.; Raundal, P.; Herskin, M.S. Better recovery from lameness among dairy cows housed in hospital pens. J. Dairy Sci. 2019, 102, 11291–11297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hailemariam, D.; Dervishi, E.; Deng, Q.; Goldansaz, S.A.; Dunn, S.M.; Ametaj, B.N. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness. Animals 2015, 5, 717–747. [Google Scholar] [CrossRef] [PubMed]
- Juarez, S.T.; Robinson, P.H.; DePeters, E.J.; Price, E.O. Impact of lameness on behavior and productivity of lactating Holstein cows. Appl. Anim. Behav. Sci. 2003, 83, 1–14. [Google Scholar] [CrossRef]
- Zwierzchowski, G.; Zhang, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Milk Metabotyping Identifies Metabolite Alterations in the Whole Raw Milk of Dairy Cows with Lameness. J. Agric. Food Chem. 2020, 68, 4507–4514. [Google Scholar] [CrossRef]
- Nousiainen, J.; Shingfield, K.J.; Huhtanen, P. Evaluation of Milk Urea Nitrogen as a Diagnostic of Protein Feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef] [PubMed]
- Aafjes, J.H.; de Groot, T. Creatine in the Urine of the Dairy Cow. Br. Vet. J. 1961, 117, 201–215. [Google Scholar] [CrossRef]
- Boeniger, M.F.; Lowry, L.K.; Rosenberg, J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: A review. Am. Ind. Hyg. Assoc. J. 1993, 54, 615–627. [Google Scholar] [CrossRef]
- Løvendahl, P.; Sehested, J. Short communication: Individual cow variation in urinary excretion of phosphorus. J. Dairy Sci. 2016, 99, 4580–4585. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.B.M.; Görs, S.; Derno, M.; Tuchscherer, A.; Wimmers, K.; Zeyner, A.; Kuhla, B. Differences between Holstein dairy cows in renal clearance rate of urea affect milk urea concentration and the relationship between milk urea and urinary nitrogen excretion. Sci. Total Environ. 2021, 755, 143198. [Google Scholar] [CrossRef]
- Cozzi, G.; Ravarotto, L.; Gottardo, F.; Stefani, A.L.; Contiero, B.; Moro, L.; Brscic, M.; Dalvit, P. Short communication: Reference values for blood parameters in Holstein dairy cows: Effects of parity, stage of lactation, and season of production. J. Dairy Sci. 2011, 94, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Lee, S.J.; Park, D.S.; Kim, D.H.; Gu, B.-H.; Park, Y.J.; Rim, C.Y.; Kim, M.; Kim, E.T. Changes in Blood Metabolites and Immune Cells in Holstein and Jersey Dairy Cows by Heat Stress. Animals 2021, 11, 974. [Google Scholar] [CrossRef] [PubMed]
- Juozaitienė, V.; Antanaitis, R.; Urbonavičius, G.; Urbutis, M.; Tušas, S.; Baumgartner, W. Can Milk Flow Traits Act as Biomarkers of Lameness in Dairy Cows? Agriculture 2021, 11, 227. [Google Scholar] [CrossRef]
- Cotrut, M.; Constatin, N.; Şonea, A. Fiziologia Animalelor Domestice; Editura Coral Sanivet: Bucureşti, Romania, 1998; Volume 1. [Google Scholar]
- Pineda, M.H.; Dooley, M.P. McDonald’s Veterinary Endocrinology and Reproduction; Iowa State Press: Ames, IA, USA; Wiley-Blackwell: New York, NY, USA, 2003. [Google Scholar]
- Exton, J.H. Regulation of gluconeogenesis by glucocorticoids. Monogr. Endocrinol. 1979, 12, 535–546. [Google Scholar] [CrossRef]
- Parker, A.J.; Hamlin, G.P.; Coleman, C.J.; Fitzpatrick, L.A. Dehydration in stressed ruminants may be the result of acortisol-induced diuresis1. J. Anim. Sci. 2003, 81, 512–519. [Google Scholar] [CrossRef]
- Guerrini, V.H.; Bertchinger, H. Effect of Ambient Temperature and Humidity on Plasma Cortisol in Sheep. Br. Vet. J. 1982, 138, 175–182. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7 (Suppl. 2), 292–302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Dervishi, E.; Zwierzchowski, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Urinary Metabolomics around Parturition Identifies Metabolite Alterations in Dairy Cows Affected Postpartum by Lameness: Preliminary Study. Dairy 2020, 1, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, G.P.; Jonker, A.; Lowe, K.A.; Taylor, P.S.; Pacheco, D. Diurnal variation in urine nitrogen and creatinine concentrations from lactating cows grazing ryegrass-dominant pasture in autumn and late spring–summer. Anim. Prod. Sci. 2017, 57, 1297–1304. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ohta, Y.; Hasegawa, E.; Hashida, S.; Kaneko, Y.; Mizutani, S.; Ong, B.H.E.; Naganobu, K.; Torisu, S. Usefulness of Urinary Creatinine/Urea Nitrogen Ratio as Indicator of Body Protein Catabolism in Dogs Fed Low Protein Diets. Front. Vet. Sci. 2019, 6, 449. [Google Scholar] [CrossRef]
- The National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2021; p. 502. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Valadares Filho, S.D.C.; Valadares, R.F.D.; Chizzotti, F.H.M.; Tedeschi, L.O. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livest. Sci. 2008, 113, 218–225. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Urbonavičius, G.; Malašauskienė, D.; Televičius, M.; Urbutis, M.; Baumgartner, W. Impact of Lameness on Attributes of Feeding Registered with Noseband Sensor in Fresh Dairy Cows. Agriculture 2021, 11, 851. [Google Scholar] [CrossRef]
Composition | Dry Matter (DM) (Kg/Head/Day) |
---|---|
Corn silage | 9.30 |
Alfalfa hay | 1.06 |
Brewer’s grain | 1.32 |
Corn | 4.94 |
Barley | 3.72 |
Soybean meal bypass | 0.99 |
Soybean meal | 0.97 |
Rapeseed meal | 0.90 |
Molasses | 0.68 |
Full-fat soy bypass | 0.71 |
Calcium salts fat | 0.23 |
Hydrogenated fat 99% | 0.13 |
Calcium carbonate | 0.10 |
Salt | 0.08 |
Premix 1 | 0.05 |
Zeolite | 0.05 |
Crude protein (g/kg DM) | 154 ± 2.3 |
Crude fibre (g/kg DM) | 167 ± 2.5 |
Crude fat (g/kg DM) | 41 ± 1.7 |
Crude ash (g/kg DM) | 58 ± 7.4 |
Acid insoluble ash (AIA) (g/kg DM) | 9 ± 0.7 |
Variable or Item | CG | EG | p Value | ||
---|---|---|---|---|---|
Mean | SEM | Mean | SEM | ||
DMI (kg/day) | 24.09 | 0.73 | 25.17 | 0.58 | 0.25 |
FO (kg DM/day) | 7.52 | 0.16 | 7.86 | 0.13 | 0.12 |
DOMcoeff | 0.65 | 0.01 | 0.66 | 0.01 | 0.49 |
Variable or Item | CG | EG | p Value | ||
---|---|---|---|---|---|
Mean | SEM | Mean | SEM | ||
Milk Yield (kg/day) | 39.72 | 0.85 | 43.58 | 1.19 | 0.01 |
ECM 1 (kg/day) | 43.19 | 1.25 | 48.27 | 1.02 | 0.003 |
Fat (%) | 3.90 | 0.15 | 4.08 | 0.09 | 0.32 |
Protein (%) | 3.34 | 0.04 | 3.38 | 0.04 | 0.45 |
Fat (kg/day) | 1.55 | 0.07 | 1.76 | 0.03 | 0.009 |
Protein (kg/day) | 1.33 | 0.19 | 1.47 | 0.20 | 0.008 |
MUN (mg/dL) | 17.70 | 1.13 | 15.02 | 0.74 | 0.05 |
Variable or Item | CG | EG | p Value | ||
---|---|---|---|---|---|
Mean | SEM | Mean | SEM | ||
Body weight (kg) | 643.00 | 27.06 | 609.78 | 18.58 | 0.336 |
Urine volume (kg) | 30.24 | 1.35 | 24.96 | 1.33 | 0.008 |
Urine creatinine (mg/dL) | 64.87 | 3.01 | 74.03 | 2.66 | 0.028 |
Urine urea (mg/dL) | 1187.05 | 46.31 | 1105.66 | 36.92 | 0.181 |
Creatinine/Urea ratio | 0.05 | 0.001 | 0.07 | 0.001 | <0.001 |
Item | CG | EG | p Value | ||
---|---|---|---|---|---|
Mean | SEM | Mean | SEM | ||
N intake (g/day) | 594.33 | 17.72 | 620.96 | 14.16 | 0.252 |
N milk (g/day) | 208.17 | 5.39 | 230.67 | 6.14 | 0.008 |
N urine (g/day) | 209.77 | 3.85 | 178.07 | 2.61 | <0.001 |
N feces (g/day) | 189.50 | 4.36 | 200.89 | 4.33 | 0.070 |
N retention (g/day) | −13.13 | 1.59 | 11.41 | 1.35 | 0.229 |
NUE 1 | 0.356 | 0.011 | 0.373 | 0.019 | 0.267 |
N partitioning | |||||
N urine (%N intake) | 35.96 | 0.58 | 28.97 | 0.40 | <0.001 |
N feces (%N intake) | 32.28 | 0.46 | 32.67 | 0.54 | 0.743 |
N milk (%N intake) | 35.60 | 0.68 | 37.30 | 0.59 | 0.254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Necula, D.-C.; Warren, H.E.; Taylor-Pickard, J.; Simiz, E.; Stef, L. Associations of Lameness with Indicators of Nitrogen Metabolism and Excretion in Dairy Cows. Agriculture 2022, 12, 2109. https://doi.org/10.3390/agriculture12122109
Necula D-C, Warren HE, Taylor-Pickard J, Simiz E, Stef L. Associations of Lameness with Indicators of Nitrogen Metabolism and Excretion in Dairy Cows. Agriculture. 2022; 12(12):2109. https://doi.org/10.3390/agriculture12122109
Chicago/Turabian StyleNecula, Daniel-Catalin, Helen Elizabeth Warren, Jules Taylor-Pickard, Eliza Simiz, and Lavinia Stef. 2022. "Associations of Lameness with Indicators of Nitrogen Metabolism and Excretion in Dairy Cows" Agriculture 12, no. 12: 2109. https://doi.org/10.3390/agriculture12122109
APA StyleNecula, D.-C., Warren, H. E., Taylor-Pickard, J., Simiz, E., & Stef, L. (2022). Associations of Lameness with Indicators of Nitrogen Metabolism and Excretion in Dairy Cows. Agriculture, 12(12), 2109. https://doi.org/10.3390/agriculture12122109