A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery
Abstract
:1. Introduction
- (1)
- Presenting a novel deep learning procedure for mapping rice types based on multi-stream CNN.
- (2)
- Introducing an informative channel attention module for rice mapping.
- (3)
- Utilizing point-wise and group dilated convolution layers for improving the deep feature extractor.
- (4)
- Assessing the performance of the advanced rice-type methods based on deep learning frameworks and machine learning-based algorithms.
2. Study Area and Datasets
2.1. Study Area
2.2. Sentinel Imagery
2.3. Reference Samples
3. Rice Type Classification
3.1. Data Preparation
3.2. Proposed Multi-Streams Framework
- (1)
- Utilizing a multi-streams framework that can consider high-level meaningful features from the original dataset and fuse them in different feature levels.
- (2)
- Introducing a channel attention module for informative feature extraction.
- (3)
- Using residual, point-wise, and group dilated convolution layers for deep feature extraction.
- (4)
- Employing the global average-pooling layer instead of a flattening layer reduces the model parameters.
3.2.1. Channel Attention Mechanism (CAM)
3.2.2. Convolution Layer
3.2.3. Comparison with Other Classification Methods
4. Experiment and Discussion
4.1. Parameter Setting
4.2. Classification Results
4.3. Ablation Analysis
4.4. Discussion
4.4.1. Accuracy Assessment and Comparison with Other Models
4.4.2. Variables Assessment
4.4.3. Feature Fusion Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairhurst, T.; Dobermann, A. Rice in the global food supply. World 2002, 5, 349–511, 675. [Google Scholar]
- He, G.; Liu, X.; Cui, Z. Achieving global food security by focusing on nitrogen efficiency potentials and local production. Glob. Food Secur. 2021, 29, 100536. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges—A review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Huang, Y.; Qin, Y.; Liu, S.; Shen, Q.; Pan, G.; Lu, Y.; Liu, Q. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Glob. Chang. Biol. 2009, 15, 229–242. [Google Scholar] [CrossRef]
- Saadat, M.; Hasanlou, M.; Homayouni, S. Rice Crop Mapping Using SENTINEL-1 Time Series Images (case Study: Mazandaran, Iran). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Jahan, A.; Islam, A.; Sarkar, M.I.U.; Iqbal, M.; Ahmed, M.N.; Islam, M.R. Nitrogen response of two high yielding rice varieties as influenced by nitrogen levels and growing seasons. Geol. Ecol. Landsc. 2022, 6, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Kharim, M.N.A.; Wayayok, A.; Abdullah, A.F.; Shariff, A.R.M. Effect of variable rate application on rice leaves burn and chlorosis in system of rice intensification. Malays. J. Sustain. Agric. (MJSA) 2020, 4, 66–70. [Google Scholar] [CrossRef]
- Lee, W.C.; Hoe, N.; Viswanathan, K.K.; Baharuddin, A.H. An economic analysis of anthropogenic climate change on rice production in Malaysia. Malays. J. Sustain. Agric. 2019, 4, 01–04. [Google Scholar] [CrossRef]
- Sharifi, A.; Hosseingholizadeh, M. Application of sentinel-1 data to estimate height and biomass of rice crop in Astaneh-ye Ashrafiyeh, Iran. J. Indian Soc. Remote Sens. 2020, 48, 11–19. [Google Scholar] [CrossRef]
- Wei, P.; Huang, R.; Lin, T.; Huang, J. Rice Mapping in Training Sample Shortage Regions Using a Deep Semantic Segmentation Model Trained on Pseudo-Labels. Remote Sens. 2022, 14, 328. [Google Scholar] [CrossRef]
- Soh, N.C.; Shah, R.M.; Giap, S.G.E.; Setiawan, B.I.; Minasny, B. High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine. Remote Sens. 2022, 14, 1875. [Google Scholar]
- Alexandridis, T.K.; Ovakoglou, G.; Cherif, I.; Gómez Giménez, M.; Laneve, G.; Kasampalis, D.; Moshou, D.; Kartsios, S.; Karypidou, M.C.; Katragkou, E. Designing AfriCultuReS services to support food security in Africa. Trans. GIS 2021, 25, 692–720. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Wang, P.-Y.; Xiong, X.-B.; Wang, Y.-B.; Zhou, R.; Tao, H.-Y.; Grace, U.A.; Wang, N.; Xiong, Y.-C. Environmental risk of multi-year polythene film mulching and its green solution in arid irrigation region. J. Hazard. Mater. 2022, 435, 128981. [Google Scholar] [CrossRef] [PubMed]
- Munyasya, A.N.; Koskei, K.; Zhou, R.; Liu, S.-T.; Indoshi, S.N.; Wang, W.; Zhang, X.-C.; Cheruiyot, W.K.; Mburu, D.M.; Nyende, A.B. Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change. Agric. Water Manag. 2022, 269, 107672. [Google Scholar]
- Zhan, P.; Zhu, W.; Li, N. An automated rice mapping method based on flooding signals in synthetic aperture radar time series. Remote Sens. Environ. 2021, 252, 112112. [Google Scholar] [CrossRef]
- Wei, P.; Chai, D.; Lin, T.; Tang, C.; Du, M.; Huang, J. Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model. ISPRS J. Photogramm. Remote Sens. 2021, 174, 198–214. [Google Scholar] [CrossRef]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series Sentinel-2 Imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Chang, Q.; Zwieback, S.; DeVries, B.; Berg, A. Application of L-band SAR for mapping tundra shrub biomass, leaf area index, and rainfall interception. Remote Sens. Environ. 2022, 268, 112747. [Google Scholar] [CrossRef]
- Gumma, M.K.; Kadiyala, M.; Panjala, P.; Ray, S.S.; Akuraju, V.R.; Dubey, S.; Smith, A.P.; Das, R.; Whitbread, A.M. Assimilation of remote sensing data into crop growth model for yield estimation: A case study from India. J. Indian Soc. Remote Sens. 2022, 50, 257–270. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V.; Fedotov, A.; Eremenko, D. Current State of Hyperspectral Remote Sensing for Early Plant Disease Detection: A Review. Sensors 2022, 22, 757. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H.; Wang, G.; Sun, H.; Fu, J. Mapping paddy rice using a convolutional neural network (CNN) with Landsat 8 datasets in the Dongting Lake Area, China. Remote Sens. 2018, 10, 1840. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Xin, L.; Li, X.; Tan, M.; Wang, R. Decreasing rice cropping intensity in southern China from 1990 to 2015. Remote Sens. 2018, 11, 35. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Clauss, K.; Ottinger, M.; Künzer, C. Mapping rice areas with Sentinel-1 time series and superpixel segmentation. Int. J. Remote Sens. 2018, 39, 1399–1420. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping paddy rice using Sentinel-1 SAR time series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. Int. J. Remote Sens. 2018, 39, 1042–1067. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Beltran, R.; Baidar, T.; Kang, J.; Pla, F. Rice-yield prediction with multi-temporal sentinel-2 data and 3D CNN: A case study in Nepal. Remote Sens. 2021, 13, 1391. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Ding, C.; Liu, S.; Wu, C.; Wu, L. Mapping rice paddies in complex landscapes with convolutional neural networks and phenological metrics. GISci. Remote Sens. 2020, 57, 37–48. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Chanussot, J. DSMNN-Net: A Deep Siamese Morphological Neural Network Model for Burned Area Mapping Using Multispectral Sentinel-2 and Hyperspectral PRISMA Images. Remote Sens. 2021, 13, 5138. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–13 September 2017; p. 1042704. [Google Scholar]
- Louis, J.; Pflug, B.; Main-Knorn, M.; Debaecker, V.; Mueller-Wilm, U.; Iannone, R.Q.; Cadau, E.G.; Boccia, V.; Gascon, F. Sentinel-2 global surface reflectance level-2A product generated with Sen2Cor. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8522–8525. [Google Scholar]
- Ma, W.; Zhao, J.; Zhu, H.; Shen, J.; Jiao, L.; Wu, Y.; Hou, B. A spatial-channel collaborative attention network for enhancement of multiresolution classification. Remote Sens. 2020, 13, 106. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Vrskova, R.; Hudec, R.; Kamencay, P.; Sykora, P. Human Activity Classification Using the 3DCNN Architecture. Appl. Sci. 2022, 12, 931. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multi-Scale Multi-Dimensional Residual CNN for Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Zhai, P.; Li, S.; He, Z.; Deng, Y.; Hu, Y. Collaborative mapping rice planting areas using multisource remote sensing data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5969–5972. [Google Scholar]
- Xu, X.; Ji, X.; Jiang, J.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q.; Yang, H.; Shi, Z. Evaluation of one-class support vector classification for mapping the paddy rice planting area in Jiangsu Province of China from Landsat 8 OLI imagery. Remote Sens. 2018, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Cai, X.; Tan, J.; Cui, Y.; Xie, H.; Liu, F.; Yang, L.; Luo, Y. Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system, Southern China, from 1988− 2017. Int. J. Remote Sens. 2021, 42, 1556–1576. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H. Object-based rice mapping using time-series and phenological data. Adv. Space Res. 2019, 63, 190–202. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, D.; Yang, W. An algorithm for early rice area mapping from satellite remote sensing data in southwestern Guangdong in China based on feature optimization and random Forest. Ecol. Inform. 2022, 92, 101853. [Google Scholar] [CrossRef]
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Justice, C. Mapping double and single crop paddy rice with Sentinel-1A at varying spatial scales and polarizations in Hanoi, Vietnam. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 498–512. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-date paddy rice extent at 10 m resolution in china through the integration of optical and synthetic aperture radar images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, H.; Wang, C.; Wei, S.; Zhang, B.; Wu, F.; Tang, Y. Paddy rice mapping in thailand using time-series sentinel-1 data and deep learning model. Remote Sens. 2021, 13, 3994. [Google Scholar] [CrossRef]
- Nuarsa, I.W.; Nishio, F.; Hongo, C.; Mahardika, I.G. Using variance analysis of multitemporal MODIS images for rice field mapping in Bali Province, Indonesia. Int. J. Remote Sens. 2012, 33, 5402–5417. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 2018, 55, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 2014, 91, 98–113. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, F.; Chen, J.; Yu, L.; Lu, M.; Yu, Q.; Liang, S.; Fan, L.; Sun, X.; Wu, S. A full resolution deep learning network for paddy rice mapping using Landsat data. ISPRS J. Photogramm. Remote Sens. 2022, 194, 91–107. [Google Scholar] [CrossRef]
ID | Crop Type | All Samples | Training (4.1%) | Validation (0.9%) | Test (95%) |
---|---|---|---|---|---|
1 | Non-Rice | 93,991 | 3854 | 846 | 89,291 |
2 | Tarom-Hashemi | 15,568 | 638 | 140 | 14,790 |
3 | Shirodi | 26,009 | 1066 | 235 | 24,708 |
Total | 135,568 | 5558 | 1221 | 128,789 |
Data | Description |
---|---|
RF | estimators = 105, features to split each node = 3 |
XGBoost | rounds = 500, subsample = 1, min-child-weight = 1, max-depth = 5. |
Deep Learning Models | Dropout-Rate = 0.1, Mini-Batch-Size = 150, Iterations = 500, Initial Learning = 10−4 |
Method | Class | UA | PA | CE | OE | OA | KC |
---|---|---|---|---|---|---|---|
RF | Non-Rice | 96.5 | 92.5 | 3.5 | 7.5 | 80.8 | 0.60 |
Tarom-Hashemi | 34.1 | 54.6 | 65.9 | 45.4 | |||
Shirodi | 68.4 | 53.9 | 31.5 | 46.1 | |||
XGBOOST | Non-Rice | 94.2 | 96.6 | 5.8 | 3.4 | 84.0 | 0.65 |
Tarom-Hashemi | 47.2 | 32.2 | 52.7 | 67.8 | |||
Shirodi | 63.6 | 69.7 | 36.4 | 30.3 | |||
2D-CNN | Non-Rice | 98.9 | 98.9 | 1.0 | 1.0 | 93.4 | 0.86 |
Tarom-Hashemi | 73.1 | 79.6 | 26.8 | 20.4 | |||
Shirodi | 86.1 | 81.5 | 13.8 | 18.4 | |||
3D-CNN | Non-Rice | 99.6 | 99.2 | 0.3 | 0.7 | 95.8 | 0.91 |
Tarom-Hashemi | 81.4 | 86.1 | 18.5 | 13.8 | |||
Shirodi | 90.8 | 89.2 | 9.1 | 10.7 | |||
Proposed | Non-Rice | 99.4 | 99.7 | 0.6 | 0.3 | 97.1 | 0.94 |
Tarom-Hashemi | 89.1 | 89.4 | 10.8 | 10.6 | |||
Shirodi | 93.7 | 92.5 | 6.2 | 7.5 |
Method | Class | UA | PA | CE | OE | OA | KC |
---|---|---|---|---|---|---|---|
S1 | Non-Rice | 99.2 | 99.4 | 0.7 | 0.5 | 95.5 | 0.90 |
Tarom-Hashemi | 81.3 | 85.1 | 18.6 | 14.8 | |||
Shirodi | 90.7 | 87.4 | 9.2 | 12.5 | |||
S2 | Non-Rice | 99.5 | 99.1 | 0.4 | 0.8 | 96.1 | 0.92 |
Tarom-Hashemi | 86.0 | 85.4 | 13.9 | 14.6 | |||
Shirodi | 90.0 | 91.6 | 9.9 | 8.3 | |||
S3 | Non-Rice | 99.5 | 99.6 | 0.4 | 0.3 | 96.3 | 0.92 |
Tarom-Hashemi | 86.1 | 85.0 | 13.8 | 15.0 | |||
Shirodi | 90.6 | 91.2 | 9.4 | 8.8 | |||
All Components | Non-Rice | 99.4 | 99.7 | 0.6 | 0.3 | 97.1 | 0.94 |
Tarom-Hashemi | 89.1 | 89.4 | 10.8 | 10.6 | |||
Shirodi | 93.7 | 92.5 | 6.2 | 7.5 |
Reference | Method | Dataset | OA (%) |
---|---|---|---|
Zhai et al. [39] | RF classifier | Sentinel-2, Radarsat-2 | 94 |
Xu et al. [40] | SVM classifier | Landsat-8 | 88 |
Cao et al. [41] | Decision tree classifier | Landsat-5/Landsat-8 | 85 |
Zhang and Lin [42] | Object-based | MODIS/Landsat | 92 |
Liu et al. [43] | RF | Sentinel-2 | 91 |
Lasko et al. [44] | RF classifier | Sentinel-1 | 93 |
Zhang et al. [45] | Object-based | Sentinel-1, Sentinel-2 | 90 |
Nguyen, Gruber and Wagner [24] | Decision tree classifier | Sentinel-1 | 87 |
Zhao, Liu, Ding, Liu, Wu and Wu [31] | Deep Learning | HJ-1 A/B | 93 |
Xu et al. [46] | Deep Learning | Sentinel-1 | 91 |
Wei et al. [16] | Deep Learning | Sentinel-1 | 91 |
Proposed Method | Deep Learning | Sentinel-1, Sentinel-2 | 97 |
Method | Class | UA | PA | CE | OE | OA | KC |
---|---|---|---|---|---|---|---|
S1 | Non-Rice | 99.0 | 97.4 | 1.0 | 90.7 | 0.81 | |
Tarom-Hashemi | 75.0 | 51.5 | 25.0 | ||||
Shirodi | 72.5 | 90.3 | 27.5 | ||||
S2 | Non-Rice | 99.3 | 97.4 | 0.7 | 2.6 | 89.5 | 0.78 |
Tarom-Hashemi | 61.6 | 56.3 | 38.4 | 43.7 | |||
Shirodi | 72.3 | 80.9 | 72.3 | 19.1 | |||
S3 | Non-Rice | 99.4 | 99.7 | 0.6 | 0.3 | 97.1 | 0.94 |
Tarom-Hashemi | 89.1 | 89.4 | 10.8 | 10.6 | |||
Shirodi | 93.7 | 92.5 | 6.2 | 7.5 |
Method | Class | UA | PA | CE | OE | OA | KC |
---|---|---|---|---|---|---|---|
First-layer | Non-Rice | 98.9 | 96.9 | 1.1 | 3.1 | 87.3 | 0.73 |
Tarom-Hashemi | 49.4 | 72.8 | 50.6 | 27.2 | |||
Shirodi | 77.6 | 61.3 | 22.4 | 38.7 | |||
Latest-layer | Non-Rice | 98.9 | 98.6 | 1.1 | 1.4 | 92.3 | 0.84 |
Tarom-Hashemi | 68.9 | 76.1 | 31.1 | 23.9 | |||
Shirodi | 83.7 | 79.3 | 16.3 | 20.7 | |||
All-layer | Non-Rice | 99.28 | 99.4 | 0.7 | 0.6 | 95.9 | 0.91 |
Tarom-Hashemi | 84.6 | 84.6 | 15.4 | 15.4 | |||
Shirodi | 90.4 | 89.8 | 9.6 | 10.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadat, M.; Seydi, S.T.; Hasanlou, M.; Homayouni, S. A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery. Agriculture 2022, 12, 2083. https://doi.org/10.3390/agriculture12122083
Saadat M, Seydi ST, Hasanlou M, Homayouni S. A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery. Agriculture. 2022; 12(12):2083. https://doi.org/10.3390/agriculture12122083
Chicago/Turabian StyleSaadat, Mohammad, Seyd Teymoor Seydi, Mahdi Hasanlou, and Saeid Homayouni. 2022. "A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery" Agriculture 12, no. 12: 2083. https://doi.org/10.3390/agriculture12122083
APA StyleSaadat, M., Seydi, S. T., Hasanlou, M., & Homayouni, S. (2022). A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery. Agriculture, 12(12), 2083. https://doi.org/10.3390/agriculture12122083