Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Image Acquisition
2.1.2. Training Environment
2.2. Methods
2.2.1. Dataset Production
2.2.2. Instance Segmentation Model Training
2.2.3. Camera Calibration
2.2.4. Extraction and Classification of Soil Block Size
2.2.5. Evaluation Metrics
3. Model Training Result Analysis
4. Experimental Results and Analysis
4.1. Extraction and Verification of Soil Block Particle Size
4.2. The Influence of Different Heights on the Prediction of Soil Block Particle Size
4.3. Large-Scale Soil Block Particle Size Detection in the Field
4.4. Soil Block Classification
5. Discussion
5.1. Influence of Soil Block Boundary Determination Method on Soil Block Distribution
5.2. Relationship between Mass of Soil Blocks and Maximum Particle Size
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajdadi, F.R.; Gilandeh, Y.A.; Mollazade, K.; Hasanzadeh, R.P. Application of Machine Vision for Classification of Soil Aggregate Size. Soil Tillage Res. 2016, 162, 8–17. [Google Scholar] [CrossRef]
- Nasr, H.M.; Selles, F. Seedling Emergence as Influenced by Aggregate Size, Bulk Density, and Penetration Resistance of the Seedbed. Soil Tillage Res. 1995, 34, 61–76. [Google Scholar] [CrossRef]
- Alirezazadeh, P.; Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y.; Landwehr, N.; Tavakoli, H. Improved Digital Image-Based Assessment of Soil Aggregate Size by Applying Convolutional Neural Networks. Comput. Electron. Agric. 2021, 191, 106499. [Google Scholar] [CrossRef]
- Liao, J.; Wang, Y.; Zhu, D.; Zou, Y.; Zhang, S.; Zhou, H. Automatic Segmentation of Crop/Background Based on Luminance Partition Correction and Adaptive Threshold. IEEE Access 2020, 8, 202611–202622. [Google Scholar] [CrossRef]
- Liu, L.; Mei, T.; Niu, R.; Wang, J.; Liu, Y.; Chu, S. RBF-Based Monocular Vision Navigation for Small Vehicles in Narrow Space below Maize Canopy. Appl. Sci. 2016, 6, 182. [Google Scholar] [CrossRef] [Green Version]
- Bogrekci, I.; Godwin, R.J. Development of an Image-Processing Technique for Soil Tilth Sensing. Biosyst. Eng. 2007, 97, 323–331. [Google Scholar] [CrossRef]
- Vannier, E.; Taconet, O.; Dusséaux, R.; Darboux, F. A Study of Clod Evolution in Simulated Rain on the Basis of Digital Elevation Models. Catena 2018, 160, 212–221. [Google Scholar] [CrossRef]
- Vannier, E.; Dusséaux, R.; Taconet, O.; Darboux, F. Wavelet-Based Clod Segmentation on Digital Elevation Models of a Soil Surface with or without Furrows. Geoderma 2019, 356, 113933. [Google Scholar] [CrossRef]
- Chimi-Chiadjeu, O.; Le Hégarat-Mascle, S.; Vannier, E.; Taconet, O.; Dusséaux, R. Automatic Clod Detection and Boundary Estimation from Digital Elevation Model Images Using Different Approaches. Catena 2014, 118, 73–83. [Google Scholar] [CrossRef]
- Taconet, O.; Vannier, E.; Le Hégarat-Mascle, S. A Contour-Based Approach for Clods Identification and Characterization on a Soil Surface. Soil Tillage Res. 2010, 109, 123–132. [Google Scholar] [CrossRef]
- Bosilj, P.; Gould, I.; Duckett, T.; Cielniak, G. Pattern Spectra from Different Component Trees for Estimating Soil Size Distribution. In Proceedings of the Mathematical Morphology and Its Applications to Signal and Image Processing, Saarbrücken, Germany, 8–10 July 2019; Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 415–427. [Google Scholar]
- Bosilj, P.; Gould, I.; Duckett, T.; Cielniak, G. Estimating Soil Aggregate Size Distribution from Images Using Pattern Spectra. Biosyst. Eng. 2020, 198, 63–77. [Google Scholar] [CrossRef]
- Bai, Z.; Bi, D.; Wu, J.; Wang, M.; Zheng, Q.; Chen, L. Intelligent Driving Vehicle Object Detection Based on Improved AVOD Algorithm for the Fusion of LiDAR and Visual Information. Actuators 2022, 11, 272. [Google Scholar] [CrossRef]
- Xie, D.; Chen, L.; Liu, L.; Chen, L.; Wang, H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines 2022, 10, 913. [Google Scholar] [CrossRef]
- He, Z.; Wu, H.; Wu, G. Spectral-Spatial Classification of Hyperspectral Images Using Label Dependence. IEEE Access 2021, 9, 119219–119231. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, D.; Wei, Y.; Guo, J.; Zhang, X. Review on Computer Aided Weld Defect Detection from Radiography Images. Appl. Sci. 2020, 10, 1878. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Li, Z.; Zhang, Z.; Li, J.; Chen, L. Path Tracking Control of Field Information-Collecting Robot Based on Improved Convolutional Neural Network Algorithm. Sensors 2020, 20, 797. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.R.; Sohel, F. Deep Network with Score Level Fusion and Inference-Based Transfer Learning to Recognize Leaf Blight and Fruit Rot Diseases of Eggplant. Agriculture 2022, 12, 1160. [Google Scholar] [CrossRef]
- Cui, Q.; Yang, B.; Liu, B.; Li, Y.; Ning, J. Tea Category Identification Using Wavelet Signal Reconstruction of Hyperspectral Imagery and Machine Learning. Agriculture 2022, 12, 1085. [Google Scholar] [CrossRef]
- Lateef, F.; Ruichek, Y. Survey on Semantic Segmentation Using Deep Learning Techniques. Neurocomputing 2019, 338, 321–348. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Azizi, A.; Gilandeh, Y.A.; Mesri-Gundoshmian, T.; Saleh-Bigdeli, A.A.; Moghaddam, H.A. Classification of Soil Aggregates: A Novel Approach Based on Deep Learning. Soil Tillage Res. 2020, 199, 104586. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Yang, Z.; Zhang, M.; Wang, R.; Cui, L. Detection Method of Clods and Stones from Impurified Potatoes Based on Improved YOLO v4 Algorithm. Trans. Chin. Soc. Agric. Eng. 2021, 52, 241–247. [Google Scholar]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Chen, X.; Song, X.; Cheng, L.; Ran, Z.; Wang, Y.; Liang, W.; Wang, Y. Flexible Calibration Method of Electronically Focus-Tunable Lenses. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Song, X.; Wu, J.; Xiao, Y.; Wang, Y.; Wang, Y. Camera Calibration with Global LBP-Coded Phase-Shifting Wedge Grating Arrays. Opt. Lasers Eng. 2021, 136, 106314. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Song, X.; Liang, W.; Wang, Y. Calibration of Stereo Cameras with a Marked-Crossed Fringe Pattern. Opt. Lasers Eng. 2021, 147, 106733. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
Class | Division Ratio | Training Set | Validation Set | Test Set | Total |
---|---|---|---|---|---|
Individual soil blocks | 16: 4: 5 | 506 | 126 | 158 | 790 |
Cohesive soil blocks | 16: 4: 5 | 246 | 62 | 77 | 385 |
Reference objects | 16: 4: 5 | 38 | 10 | 12 | 60 |
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 |
---|---|---|---|---|
0 < D 21.20 | 21.20 < D 39.50 | 39.50 < D 65.00 | 65.00 < D 93.50 | D > 93.50 |
Training Parameters | AP(%) | R(%) | F1 |
---|---|---|---|
LR = 1 × 10−3 | × | × | × |
LR = 1 × 10−4 | 62.03 | 78.91 | 0.69 |
LR = 1 × 10−5 | 83.52 | 85.64 | 0.85 |
ALR | 85.00 | 84.43 | 0.85 |
ALR+SENet | 87.32 | 87.83 | 0.88 |
Class | Site I | Site II | |
---|---|---|---|
The proportion of the number of soil blocks and the identified total number of soil blocks at different levels | C1 | 0.08 | 0.08 |
C2 | 0.36 | 0.39 | |
C3 | 0.32 | 0.37 | |
C4 | 0.22 | 0.13 | |
C5 | 0.02 | 0.03 | |
The proportion of the area of soil blocks and image frame at different levels | C1 | 0.01 | 0.01 |
C2 | 0.09 | 0.12 | |
C3 | 0.23 | 0.26 | |
C4 | 0.37 | 0.22 | |
C5 | 0.07 | 0.09 | |
The proportion of the area of soil blocks and the total area of identified soil blocks at different levels | C1 | 0.01 | 0.01 |
C2 | 0.12 | 0.17 | |
C3 | 0.31 | 0.37 | |
C4 | 0.48 | 0.32 | |
C5 | 0.09 | 0.13 |
Class | Site I | Site II | |
---|---|---|---|
The proportion of the number of soil blocks and the identified total number of soil blocks at different levels | C1 | 0.01 | 0.10 |
C2 | 0.38 | 0.40 | |
C3 | 0.30 | 0.35 | |
C4 | 0.20 | 0.12 | |
C5 | 0.02 | 0.04 | |
The proportion of the area of soil blocks and image frame at different levels | C1 | 0.01 | 0.01 |
C2 | 0.09 | 0.12 | |
C3 | 0.21 | 0.25 | |
C4 | 0.34 | 0.20 | |
C5 | 0.08 | 0.10 | |
The proportion of the area of soil blocks and the total area of identified soil blocks at different levels | C1 | 0.01 | 0.02 |
C2 | 0.13 | 0.17 | |
C3 | 0.29 | 0.36 | |
C4 | 0.47 | 0.30 | |
C5 | 0.10 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Bi, Q.; Liang, J.; Li, Z.; Wang, W.; Zheng, Q. Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning. Agriculture 2022, 12, 2038. https://doi.org/10.3390/agriculture12122038
Liu L, Bi Q, Liang J, Li Z, Wang W, Zheng Q. Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning. Agriculture. 2022; 12(12):2038. https://doi.org/10.3390/agriculture12122038
Chicago/Turabian StyleLiu, Lichao, Quanpeng Bi, Jing Liang, Zhaodong Li, Weiwei Wang, and Quan Zheng. 2022. "Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning" Agriculture 12, no. 12: 2038. https://doi.org/10.3390/agriculture12122038
APA StyleLiu, L., Bi, Q., Liang, J., Li, Z., Wang, W., & Zheng, Q. (2022). Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning. Agriculture, 12(12), 2038. https://doi.org/10.3390/agriculture12122038