Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Agriculture Carbon Sinks and Carbon Emissions and Non-Point Source Pollution
2.1.1. Measurement of Agriculture Carbon Sinks
2.1.2. Measurement of Agriculture Carbon Emissions
2.1.3. Measurement of Agriculture Carbon Non-Point Source Pollution
2.2. SBM-DEA Model
2.3. Spatial Effect Model
2.3.1. Method of Spatial Autocorrelation
2.3.2. Method of Spatial Convergence Analysis
2.4. Variable Selection and Data Source
3. Results and Analysis
3.1. Calculation Results of Agricultural Net Carbon Emissions
3.2. Empirical Results and Analysis of China’s AGTFP
3.3. Spatial Effect Analysis
3.3.1. Empirical Results and Analysis of Spatial Autocorrelation
3.3.2. Empirical Results and Analysis of Spatial Convergence
3.3.3. Empirical Results and Analysis of SDM Model
4. Discussion
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Carbon Source | Carbon Emission Coefficient | Reference Source |
---|---|---|
Fertilizer | 0.8965 | West and Marland (2002) [63] |
Pesticide | 4.9341 | West and Marland (2002) [63] |
Agricultural Film | Wang and Zhang (2016) [64] | |
Diesel Fuel | 0.5927 | IPCC (2007) [65] |
Plowing | Wu and Li (2007) [66] | |
Agricultural Irrigation | 25 | Dubey and Lal (2009) [67] |
Area | Early Rice (Single Cropping Rice) | Mid-Season Rice (Single Cropping Late Rice, Winter Paddy Field and Wheat Stubble Rice) | Double-Cropping Late Rice |
---|---|---|---|
Beijing | 0 | 901.96 | 0 |
Tianjin | 0 | 773.11 | 0 |
Hebei | 0 | 1045.12 | 0 |
Shanxi | 0 | 451.32 | 0 |
Inner Mongolia | 0 | 608.80 | 0 |
Liaoning | 0 | 629.94 | 0 |
Jilin | 0 | 379.74 | 0 |
Heilongjiang | 0 | 566.54 | 0 |
Shanghai | 846.05 | 3672.59 | 1874.81 |
Jiangsu | 1095.57 | 3650.70 | 1881.63 |
Zhejiang | 979.68 | 3951.42 | 2352.04 |
Anhui | 1141.93 | 3493.29 | 1881.63 |
Fujian | 527.68 | 2963.57 | 3586.01 |
Jiangxi | 1054.67 | 4460.01 | 3122.42 |
Shandong | 0 | 1431.68 | 0 |
Henan | 0 | 1216.92 | 0 |
Hubei | 1193.74 | 3065.74 | 2658.83 |
Hunan | 1002.85 | 3836.89 | 2324.77 |
Guangdong | 1026.03 | 3887.34 | 3517.83 |
Guangxi | 846.05 | 3257.40 | 3347.39 |
Hainan | 915.59 | 3564.87 | 3367.85 |
Sichuan | 446.54 | 1754.14 | 1261.24 |
Chongqing | 446.54 | 1754.14 | 1261.24 |
Guizhou | 347.70 | 1503.26 | 1431.68 |
Yunnan | 162.26 | 494.27 | 518.13 |
Shanxi | 0 | 852.87 | 0 |
Gansu | 0 | 465.6 | 0 |
Qinghai | 0 | 0 | 0 |
Ningxia | 0 | 501.08 | 0 |
Xinjiang | 0 | 715.83 | 0 |
Livestock and Poultry Breeds | CH4 Emission Coefficient | N2O Emission Coefficient | C Emission Coefficient | |
---|---|---|---|---|
Gastrointestinal Fermentation | Fecal Discharge | Fecal Discharge | ||
Cows | 68 | 16 | 1 | 653.9346 |
Cattle | 47.8 | 1 | 1.39 | 445.9218 |
Buffalo | 55 | 2 | 1.34 | 497.4921 |
Sheep | 5 | 0.16 | 0.33 | 61.9956 |
Pig | 1 | 3.5 | 0.53 | 43.4790 |
Horse | 18 | 1.64 | 1.39 | 246.8535 |
Donkey | 10 | 0.9 | 1.39 | 187.2686 |
Mule | 10 | 0.9 | 1.39 | 187.2686 |
Camel | 46 | 1.92 | 1.39 | 439.6524 |
Rabbit | 0.254 | 0.08 | 0.02 | 3.9023 |
Birds | - | 0.02 | 0.02 | 1.7616 |
Crop | EFSB-D | EFSB-ATD | CH4 |
---|---|---|---|
Rice | 0.0008 | 0.0023 | 0.0025 |
Wheat | 0.0003 | 0.0021 | 0.0025 |
Maize | 0.0004 | 0.0022 | 0.0025 |
Beans | 0.0007 | 0.0027 | 0.0025 |
Potato | 0.0007 | 0.0027 | 0.0025 |
Rape seed | 0.0007 | 0.0027 | 0.0025 |
Vegetables | 0.0007 | 0.0027 | 0.0025 |
Fruits | - | - | - |
Crop | RSY | Straw and Root N Concentration | PSB (%) | |
---|---|---|---|---|
(%) | 2001–2005 | 2012–2018 | ||
Rice | 1.1 | 0.91 | 41.9 | 11.9 |
Wheat | 0.9 | 0.65 | 30.6 | 12.0 |
Maize | 0.8 | 0.92 | 44.1 | 30.2 |
Beans | 1.0 | 1.81 | 33.9 | 16.3 |
Potato | 2.0 | 2.37 | 15.7 | 19.7 |
Rape seed | 0.4 | 0.87 | 41.3 | 42.3 |
Vegetables | 5.9 | 2.98 | 28.9 | 18.2 |
Fruits | - | 2.6 | - | - |
References
- Liu, Y.; Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resour. Conserv. Recycl. 2019, 147, 201–213. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Coomes, O.T.; Barham, B.L.; MacDonald, G.K.; Ramankutty, N.; Chavas, J.P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2019, 1, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhang, Y.; Wang, C.; Yu, K. Does FDI Promote or Inhibit the High-Quality Development of Agriculture in China? An Agricultural GTFP Perspective. Sustainability 2019, 11, 4620. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I. The impact of high-end climate change on agricultural welfare. Sci. Adv. 2016, 2, e1501452. [Google Scholar] [CrossRef] [Green Version]
- Moore, F.C.; Baldos, U.L.C.; Hertel, T. Economic impacts of climate change on agriculture: A comparison of process-based and statistical yield models. Environ. Res. Lett. 2017, 12, 065008. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Yu, Z.H.; Mao, S.P.; Lin, Q.N. Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity? Agriculture 2022, 19, 1444. [Google Scholar] [CrossRef]
- McMillan, J.; Whalley, J.; Zhu, L. The Impact of China’s Economic Reforms on Agricultural Productivity Growth. J. Political Econ. 1989, 97, 781–807. [Google Scholar] [CrossRef]
- Eroğlu, N.A.; Bozoğlu, M. Impacts of the support policies on agricultural efficiency and total factor productivity in Turkey. Anadolu J. Agric. Sci. 2017, 32, 35. [Google Scholar] [CrossRef] [Green Version]
- Po-Chi, C.H.E.N.; Ming-Miin, Y.U.; Chang, C.C.; Shih-Hsun, H.S.U. Total factor productivity growth in China’s agricultural sector. China Econ. Rev. 2008, 19, 580–593. [Google Scholar]
- Fan, S. Effects of Technological Change and Institutional Reform on Production Growth in Chinese Agriculture. Am. J. Agric. Econ. 1991, 73, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.J. Total Factor Productivity Change in China’s Farming Sector: 1952–1989. Econ. Dev. Cult. Chang. 1993, 42, 1–41. [Google Scholar] [CrossRef]
- Gong, B. Agricultural productivity convergence in China. China Econ. Rev. 2020, 60, 101423. [Google Scholar] [CrossRef]
- Coelli, T.; Rahman, S.; Thirtle, C. A stochastic frontier approach to total factor productivity measurement in Bangladesh crop agriculture, 1961–1992. J. Int. Dev. 2003, 15, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Shen, Z.; Baležentis, T.; Chen, X.; Valdmanis, V. Green growth and structural change in Chinese agricultural sector during 1997–2014. China Econ. Rev. 2018, 51, 83–96. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Crawford-Brown, D.; Zhang, Q.; He, K.; Liu, J. Energy policy: A low-carbon road map for China. Nature 2013, 500, 143. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Chen, H. Research on the Change of Green Total Factor Productivity in China’s Agriculture:1992-2010. Econ. Rev. 2012, 5, 24–33. (In Chinese) [Google Scholar]
- Emrouznejad, A.; Yang, G.-L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Toma, P.; Miglietta, P.P.; Zurlini, G.; Valente, D.; Petrosillo, I. A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecol. Indic. 2017, 83, 132–143. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; He, X.; Li, J. Efficiency change in North-East China agricultural sector: A DEA approach. Agric. Econ. 2016, 61, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Diao, P.; Zhang, Z.; Jin, Z. Dynamic and static analysis of agricultural productivity in China. China Agric. Econ. Rev. 2018, 10, 293–312. [Google Scholar] [CrossRef]
- Li, J.; Lin, Q. Can the Adjustment of China’s Grain Purchase and Storage Policy Improve Its Green Productivity? Int. J. Environ. Res. Public Health 2022, 19, 6310. [Google Scholar] [CrossRef]
- Dong, G.; Wang, Z.; Mao, X. Production efficiency and GHG emissions reduction potential evaluation in the crop production system based on emergy synthesis and nonseparable undesirable output DEA: A case study in Zhejiang Province, China. PLoS ONE 2018, 13, e0206680. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Lin, Y.; Niu, K. Low-carbon driven green transformation of agriculture: Characteristics of China’s agricultural carbon emissions and its emission reduction path. Reform 2021, 5, 29–37. (In Chinese) [Google Scholar]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 29, 4126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.; Yan, M.; Nayak, D.; Pan, G.X.; Smith, P.; Zheng, J.F. Carbon footprint of crop production in China: An analysis of National Statistics data. J. Agric. Sci. 2015, 153, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Lin, B. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total Environ. 2018, 655, 219. [Google Scholar] [CrossRef]
- Zhang, A.; Deng, R. Spatial-temporal evolution and influencing factors of net carbon sink efficiency in Chinese cities under the background of carbon neutrality. J. Clean. Prod. 2022, 365, 132547. [Google Scholar] [CrossRef]
- Chen, X.; Ma, C.; Zhou, H.; Liu, Y.; Huang, X.; Wang, M.; Cai, Y.; Su, D.; Muneer, M.A.; Guo, M.; et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001–2018. Resour. Conserv. Recycl. 2021, 172, 105661. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Han, H.; Jiang, Z. Is farmers’ agricultural production a carbon sink or source?—Variable system boundary and household survey data. J. Clean. Prod. 2020, 266, 122108. [Google Scholar] [CrossRef]
- Altarhouni, A.; Danju, D.; Samour, A. Insurance Market Development, Energy Consumption, and Turkey’s CO2 Emissions. New Perspectives from a Bootstrap ARDL Test. Energies 2021, 14, 7830. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, B.; Jin, S. A Study on Construction and Regional Comparison of Agricultural Green Development Index in China. Issues Agric. Econ. 2018, 11, 11–20. [Google Scholar]
- Li, Y.S. Study Under the Condition of Field Grown Tea Tree Biomass and Nutrient Distribution and the Characteristics of Root Growth; College of Agriculture. Sichuan Agricultural University: Ya’an, China, 2012. [Google Scholar]
- Lv, J.L. Study on Biomass and Carbon Absorption of Apple Economic Forest in the Residual Gully Area of Shanxi Province; College of Forestry. Inner Mongolia Agricultural University: Hohhot, China, 2019. [Google Scholar]
- Elhorst, J.P. Dynamic Spatial Panels: Models, Methods, and Inferences. J. Geogr. Syst. 2012, 14, 5–28. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Barro, R.; Sala-I-Martin, X. Economic Growth; Mc Graw Hill: New York, NY, USA, 1995. [Google Scholar]
- Yu, J.; Lee, L.-F. CONVERGENCE: A SPATIAL DYNAMIC PANEL DATA APPROACH. Glob. J. Econ. 2012, 1, 1250006. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.R. Promoting Agriculture Green Development to Realize the Great Rejuvenation of the Chinese Nation. Front. Agric. Sci. Eng. 2020, 7, 11233–12113. [Google Scholar]
- Chi, Y.; Xu, Y.; Wang, X.; Jin, F.; Li, J. A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis. Sustainability 2021, 13, 8278. [Google Scholar] [CrossRef]
- Reza, M.; Amene, A.P. Energy consumption and total factor productivity growth in Iranian agriculture. Energy Rep. 2016, 2, 218–220. [Google Scholar]
- Kumar, P.; Mittal, S.; Hossain, M. Agricultural Growth Accounting and Total Factor Productivity in South Asia: A Review and Policy Implications. Agric. Econ. Res. Rev. 2008, 21, 145–172. [Google Scholar]
- Nwaiwu, I.O.U.; Asiabaka, C.C.; Ohajianya, D.O. Green Economy-A Panacea for the Devastating Effects of Climate Change on Agricultural Productivity in Southeast Nigeria. Agric. Econ. Res. Rev. 2015, 4, 204226. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, H.; Wu, G. Agricultural Green Total Factor Productivity under the Distortion of the Factor Market in China. Sustainability 2022, 14, 9309. [Google Scholar] [CrossRef]
- You, X.Q. Requirement on Nutrient and Accumulation on Biomass by Up-Ground Parts of Tea Plants under Field Conditions, Tea Research Institute; Chinese Academy of Agricultural Sciences: Beijing, China, 2008. [Google Scholar]
- Wu, Z.D.; Wang, Y.X.; Cai, Z.J.; You, Z.M.; Zhang, W.J.; Weng, B.Q. Amount and decomposition characteristics of litters in citrus orchard in Fuzhou, China. J. Ecol. Rural Environ. 2010, 26, 231–234. [Google Scholar]
- Wang, Y.; Hu, N.; Xu, M.; Li, Z.; Lou, Y.; Chen, Y.; Wu, C.; Wang, Z.-L. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol. Fertil. Soils 2015, 51, 583–591. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Sun, Y.N.; Yang, M.N. A Study of Club Convergence and Sources of Regional Gaps in Green Total Factor Productivity in China. Quant. Econ. Tech. Econ. Res. 2020, 6, 47–68. (In Chinese) [Google Scholar]
- Guo, H.H.; Liu, X.M. Green Total Factor Productivity in Chinese Agriculture Spatial and Temporal Divergence and Convergence. Quant. Econ. Tech. Econ. Res. 2021, 10, 65–84. (In Chinese) [Google Scholar]
- Chen, H.; Zhu, S.; Sun, J.; Zhong, K.; Shen, M.; Wang, X. A Study of the Spatial Structure and Regional Interaction of Agricultural Green Total Factor Productivity in China Based on SNA and VAR Methods. Sustainability 2022, 14, 7508. [Google Scholar] [CrossRef]
- Xu, P.; Jin, Z.; Ye, X.; Wang, C. Efficiency Measurement and Spatial Spillover Effect of Green Agricultural Development in China. Front. Environ. Sci. 2022, 10, 909321. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W. Study on the measurement of agricultural eco-efficiency and spatial and temporal differences in China. China Popul. Resour. Environ. 2016, 26, 11–19. (In Chinese) [Google Scholar] [CrossRef]
- United Nations Intergovernmental Panel on Climate Change (IPCC). Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Wu, F.; Li, L.; Zhang, H. Effects of conservation tillage on net carbon release from farmland ecosystems. J. Ecol. 2007, 26, 2035–2039. (In Chinese) [Google Scholar]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Min, J.; Hu, H. Measurement of greenhouse gas emissions from agricultural production in China. China Popul. Resour. Environ. 2012, 22, 21–27. (In Chinese) [Google Scholar]
- United Nations Intergovernmental Panel on Climate Change (IPCC). N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
Assessment Indicators | Indicators’ Explanation | Unit | Source | Reference | |
---|---|---|---|---|---|
Input | Land | the total sown area of crops | 104 hectares | “China Agricultural Statistics” and “China Rural Statistical Yearbook” | Gong (2020) [17] Chen et al. (2021) [19] |
Labor | employees in the primary industry | 104 People | “China Statistical Yearbook” | Gong (2020) [17] Chen et al. (2021) [19] | |
Machinery | the total power of agricultural machinery | 104 Tons | “China Agricultural Statistics” and “China Rural Statistical Yearbook” | Gong (2020) [17] Chen et al. (2021) [19] | |
Fertilizer | the amount of chemical fertilizer actually used in agricultural production calculated by the pure method | 104 kilowatts | “China Agricultural Statistics” and “China Rural Statistical Yearbook” | Gong (2020) [17] Chen et al. (2021) [19] | |
Output | GVAO (Expected output) | the total output value of agriculture, forestry, animal husbandry and fishery at constant prices in 2000 | 108 CNY | “China Agricultural Statis-tics” and “China Rural Statistical Yearbook” | Gong (2020) [17] Chen et al. (2021) [19] |
NP (Non-expected output) | the pollution of chemical oxygen demand, total nitrogen and total phosphorus caused by pollutants entering the water body through surface runoff and farmland drainage | 104 Tons | Calculated results | Yu et al. (2022) [11] Shen et al. (2018) [20] | |
NCE (Non-expected output) | the value that uses agricultural carbon emissions minus agricultural carbon sinks | 104 Tons | Calculated results | Yu et al. (2022) [11] | |
control variables | GDP | GDP per capita | 104 CNY | China Statistical Yearbook | Liu et al. (2021) [5] |
AIR | the total output value of planting industry/total agricultural output value | - | “China Agricultural Statistics” and “China Rural Statistical Yearbook” | Yu et al. (2022) [11] Liu et al. (2021) [5] | |
AID | number of road miles/administrative area | - | China Regional Economic Statistics Yearbook | Wang et al. (2021) [22] | |
EC | rural electricity consumption | 108 kW/h | China Agricultural Statistics | Reza et al. (2016) [49] | |
EI | the effective irrigated area/total sown area of crops | - | “China Agricultural Statistics” and “China Rural Statistical Yearbook” | Kumar et al. (2008) [50] | |
DOR | agricultural disaster area/total sown area of crops | - | “China Agricultural Statistics” and “China Rural Statistical Yearbook” | Nwaiwu et al. (2015) [51] | |
FS | local financial expenditure on agriculture, forestry and water affairs | 108 CNY | National Bureau of Statistics | Gong (2020) [17] | |
MGP | MGP is a dummy variable, if a province belongs to the major grain producing area, MGP = 1, otherwise MGP = 0 | - | Ministry of Agriculture and Rural Affairs of the People’s Republic of China | Li et al. (2022) [28] |
Area | CELU | CERF | CELP | INE | TCE | CSTA | CSSR | CSMA | CSNT | TCS | NCE |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 29.737 | 0.150 | 56.694 | 5.983 | 92.563 | 62.515 | 3.599 | 0.006 | 4.723 × 10−5 | 66.120 | 28.168 |
Tianjin | 49.472 | 1.539 | 64.482 | 22.896 | 138.389 | 32.452 | 1.872 | 0.005 | 1.821 × 10−5 | 34.329 | 104.060 |
Hebei | 829.965 | 9.111 | 738.539 | 43.523 | 1621.138 | 898.696 | 51.783 | 0.061 | 2.701 × 10−5 | 950.540 | 670.598 |
Shanxi | 263.153 | 0.084 | 190.409 | 28.587 | 482.233 | 291.346 | 16.791 | 0.014 | 5.127 × 10−6 | 308.150 | 174.083 |
Inner Mongolia | 447.113 | 5.962 | 750.333 | 29.127 | 1232.535 | 58.209 | 3.382 | 0.046 | 1.271 × 10−5 | 61.636 | 1170.898 |
Liaoning | 368.994 | 34.822 | 484.129 | 44.610 | 932.554 | 327.118 | 18.826 | 0.046 | 3.960 × 10−6 | 345.990 | 586.564 |
Jilin | 407.043 | 26.695 | 405.600 | 35.111 | 874.449 | 59.334 | 3.449 | 0.031 | 6.423 × 10−6 | 62.814 | 811.634 |
Heilongjiang | 688.669 | 159.465 | 462.716 | 16.086 | 1326.936 | 34.033 | 2.079 | 0.029 | 3.008 × 10−6 | 36.141 | 1290.794 |
Shanghai | 45.449 | 43.035 | 35.679 | 5.859 | 130.021 | 17.327 | 1.000 | 0.004 | 1.545 × 10−6 | 18.330 | 111.691 |
Jiangsu | 686.999 | 794.893 | 375.799 | 32.792 | 1890.483 | 195.794 | 11.862 | 0.043 | 8.459 × 10−6 | 207.700 | 1682.784 |
Zhejiang | 332.842 | 291.746 | 165.505 | 26.156 | 816.249 | 377.078 | 24.871 | 0.018 | 2.616 × 10−7 | 401.967 | 414.282 |
Anhui | 691.652 | 696.298 | 444.793 | 34.173 | 1866.916 | 179.744 | 12.967 | 0.045 | 7.065 × 10−6 | 192.756 | 1674.160 |
Fujian | 280.960 | 215.281 | 218.843 | 29.939 | 745.022 | 563.643 | 35.886 | 0.024 | 3.186 × 10−9 | 599.553 | 145.469 |
Jiangxi | 368.187 | 834.582 | 378.977 | 50.660 | 1632.405 | 359.088 | 21.829 | 0.035 | 5.401 × 10−7 | 380.952 | 1251.453 |
Shandong | 1095.156 | 18.440 | 1054.839 | 92.867 | 2261.302 | 621.067 | 36.179 | 0.100 | 2.606 × 10−5 | 657.347 | 1603.955 |
Henan | 1177.588 | 69.285 | 1096.862 | 70.658 | 2414.393 | 433.098 | 26.304 | 0.088 | 1.539 × 10−5 | 459.490 | 1954.902 |
Hubei | 643.983 | 726.931 | 459.902 | 55.751 | 1886.568 | 421.412 | 28.265 | 0.045 | 7.556 × 10−7 | 449.722 | 1436.845 |
Hunan | 573.306 | 915.444 | 665.073 | 62.096 | 2215.920 | 497.848 | 30.605 | 0.061 | 2.155 × 10−7 | 528.514 | 1687.405 |
Guangdong | 463.018 | 463.049 | 496.962 | 58.187 | 1481.216 | 976.971 | 57.046 | 0.058 | 1.100 × 10−8 | 1034.076 | 447.140 |
Guangxi | 475.255 | 459.621 | 510.989 | 36.565 | 1482.430 | 937.841 | 54.912 | 0.050 | 1.725 × 10−6 | 992.803 | 496.453 |
Hainan | 97.717 | 68.554 | 97.052 | 11.756 | 275.080 | 155.198 | 8.960 | 0.009 | 4.078 × 10−8 | 164.167 | 110.913 |
Sichuan | 224.263 | 121.680 | 238.992 | 55.059 | 639.993 | 230.944 | 13.879 | 0.022 | 1.147 × 10−8 | 244.846 | 395.147 |
Chongqing | 622.403 | 350.763 | 1081.456 | 86.247 | 2140.868 | 623.061 | 39.998 | 0.088 | 2.333 × 10−7 | 663.147 | 1477.722 |
Guizhou | 265.837 | 105.476 | 384.729 | 45.753 | 801.795 | 316.310 | 22.073 | 0.026 | 4.982 × 10−8 | 338.410 | 488.322 |
Yunnan | 466.099 | 48.739 | 651.605 | 51.209 | 1217.651 | 505.417 | 35.133 | 0.046 | 4.325 × 10−8 | 540.596 | 677.054 |
Shanxi | 14.300 | 10.571 | 272.830 | 26.585 | 662.767 | 953.935 | 56.480 | 0.016 | 1.201 × 10−5 | 101.043 | 561.724 |
Gansu | 363.115 | 0.237 | 222.148 | 26.094 | 554.953 | 347.576 | 20.155 | 0.022 | 1.779 × 10−6 | 36.775 | 518.178 |
Qinghai | 306.711 | 0.000 | 359.654 | 14.022 | 414.105 | 5.399 | 0.311 | 0.014 | 3.715 × 10−6 | 5.724 | 408.381 |
Ningxia | 36.622 | 3.808 | 306.409 | 17.780 | 422.686 | 80.036 | 4.608 | 0.005 | 2.265 × 10−6 | 84.649 | 338.037 |
Xinjiang | 93.364 | 5.134 | 98.497 | 1.756 | 527.076 | 657.896 | 37.864 | 0.031 | 1.765 × 10−6 | 69.579 | 457.497 |
Province | MI | EC | TC | Province | MI | EC | TC |
---|---|---|---|---|---|---|---|
Beijing | 2.068 | 3.517 | 3.030 | Henan | 0.183 | 0.010 | 0.173 |
Tianjin | 0.613 | 0.341 | −0.271 | Hubei | 0.147 | 0.129 | 0.276 |
Hebei | 0.045 | 0.538 | 0.586 | Hunan | 0.347 | 0.102 | 0.245 |
Shanxi | 0.201 | −0.119 | 0.082 | Guangdong | 1.066 | 0.125 | 0.941 |
Inner Mongolia | 0.183 | −0.046 | 0.229 | Guangxi | 0.188 | −0.195 | 0.384 |
Liaoning | 0.168 | 0.003 | 0.171 | Hainan | 0.397 | 0.866 | 0.466 |
Jilin | 0.368 | −0.110 | 0.258 | Sichuan | 0.380 | 0.068 | 0.311 |
Heilongjiang | −0.094 | −0.143 | 0.049 | Chongqing | 1.844 | 0.977 | 0.858 |
Shanghai | 0.006 | 5.363 | −0.085 | Guizhou | 0.157 | −0.273 | 0.431 |
Jiangsu | 0.500 | −0.045 | 0.545 | Yunnan | 0.366 | 0.215 | 0.150 |
Zhejiang | 0.639 | −0.060 | 0.699 | Shanxi | 0.214 | 0.102 | 0.316 |
Anhui | 0.127 | 0.043 | 0.170 | Gansu | 0.456 | 0.109 | 0.347 |
Fujian | 0.723 | −0.162 | 0.561 | Qinghai | 0.578 | 0.683 | −0.104 |
Jiangxi | 0.275 | 0.046 | 0.229 | Ningxia | −0.035 | −0.233 | 0.269 |
Shandong | 0.390 | −0.060 | 0.450 | Xinjiang | 0.149 | −0.027 | 0.176 |
Year | AGTFP | ||
---|---|---|---|
Moran’I | Z Value | p Value | |
2000 | 0.103 | 0.305 | 0.000 *** |
2001 | 0.024 | 0.576 | 0.038 ** |
2002 | 0.126 | 0.888 | 0.028 ** |
2003 | 0.215 | 2.223 | 0.018 ** |
2004 | 0.057 | 0.828 | 0.013 ** |
2005 | 0.123 | 0.809 | 0.020 ** |
2006 | 0.064 | 0.879 | 0.021 ** |
2007 | 0.114 | 1.358 | 0.019 ** |
2008 | 0.182 | 2.287 | 0.087 * |
2009 | 0.118 | 1.382 | 0.011 ** |
2010 | 0.143 | 0.967 | 0.084 * |
2011 | 0.094 | 1.139 | 0.016 ** |
2012 | 0.085 | 0.383 | 0.012 ** |
2013 | 0.033 | 0.020 | 0.035 ** |
2014 | 0.216 | 2.042 | 0.049 ** |
2015 | 0.091 | 1.208 | 0.021 ** |
2016 | 0.234 | 1.842 | 0.083 * |
2017 | 0.181 | 2.453 | 0.033 ** |
2018 | 0.150 | 0.154 | 0.001 *** |
2019 | 0.153 | 0.305 | 0.044 ** |
Factor | Sub-Region | Sub-Time | ||||||
---|---|---|---|---|---|---|---|---|
Nationwide | East | Central | West | 2000–2004 | 2005–2009 | 2010–2014 | 2014–2019 | |
−0.941 *** (0.043) | −0.904 *** (0.069) | −0.989 *** (0.084) | −0.911 *** (0.075) | −1.313 *** (0.097) | 1.100 *** (0.124) | 1.126 *** (0.098) | 1.171 *** (0.083) | |
0.958 *** (0.044) | 0.922 *** (0.071) | 1.008 *** (0.083) | 0.927 *** (0.077) | 1.331 *** (0.099) | 1.127 *** (0.127) | 1.142 *** (0.099) | 1.093 *** (0.085) | |
0.471 | 0.487 | 0.478 | 0.450 | 0.646 | 0.469 | 0.467 | 0.576 |
Factor | Sub-Region | Sub-Time | ||||||
---|---|---|---|---|---|---|---|---|
Nationwide | East | Central | West | 2000–2004 | 2005–2009 | 2010–2014 | 2014–2019 | |
−0.911 *** (0.042) | −0.887 *** (0.068) | −0.961 *** (0.081) | −0.905 ** (0.076) | −1.093 *** (0.091) | −0.882 *** (0.108) | −0.891 *** (0.086) | −0.984 *** (0.072) | |
0.930 *** (0.044) | 0.895 *** (0.078) | 0.917 *** (0.107) | 0.916 *** (0.089) | 1.028 *** (0.099) | 0.956 *** (0.130) | 0.896 *** (0.088) | 1.081 *** (0.087) | |
GDP | 0.001 *** (0.001) | 0.002 *** (0.002) | 0.003 *** (0.006) | 0.004 *** (0.004) | 0.007 *** (0.007) | 0.005 *** (0.006) | 0.001 *** (0.002) | 0.001 *** (0.00) |
AIR | 0.001 (0.032) | 0.007 (0.066) | 0.100 (0.118) | −0.009 (0.68) | 0.068 (0.078) | −0.029 (0.101) | 0.013 (0.049) | −0.053 (0.055) |
AID | 0.002 (0.001) | 0.001 (0.002) | 0.032 (0.022) | −0.001 (0.002) | 0.005 (0.004) | −0.003 (0.006) | −0.004 ** (0.001) | 0.003 * (0.02) |
EC | −0.001 (0.001) | −0.001 (0.001) | −0.022 (0.015) | 0.003 (0.014) | 0.00 (0.004) | 0.004 (0.003) | −0.002 (0.001) | 0.001 (0.001) |
EI | −0.005 (0.007) | 0.002 (0.038) | 0.042 (0.101) | −0.007 (0.012) | 0.009 (0.018) | 0.006 (0.026) | 0.008 (0.011) | −0.022 ** (0.01) |
DOR | 0.001 (0.0019) | 0.051 (0.031) | −0.049 (0.044) | −0.012 (0.036) | 0.035 (0.045) | −0.017 (0.049) | 0.002 (0.034) | 0.018 * (0.034) |
FS | −0.001 (0.001) | −0.00 (0.002) | −0.003 (0.005) | −0.004 (0.003) | 00.046 (0.044) | −0.024 (0.015) | 0.001 (0.003) | −0.006 *** (0.002) |
MGP | −0.004 (0.005) | −0.015 (0.011) | −0.011 (0.023) | 0.014 (0.014) | −0.001 (0.012) | −0.009 (0.016) | 0.010 (0.008) | −0.013 (0.009) |
0.474 | 0.503 | 0.492 | 0.460 | 0.661 | 0.469 | 0.510 | 0.634 |
Statistic | p Value | ||
---|---|---|---|
LM | Spatial error | 14.236 | 0.000 *** |
Spatial lag | 33.587 | 0.000 *** | |
Hausman | - | 20.040 | 0.000 *** |
LR | SDM-SAR | 43.254 | 0.000 *** |
SDM-SEM | 13.187 | 0.001 *** | |
Wald | SDM-SAR | 12.041 | 0.004 *** |
SDM-SEM | 14.012 | 0.001 *** |
Variable | SDM | Variable | SDM |
---|---|---|---|
−0.942 *** (0.042) | DOR | 0.002 *** (0.021) | |
0.604 (0.109) | FS | 0.002 ** (0.00) | |
GDP | 0.003 *** (0.002) | MGP | 0.002 (0.049) |
AID | −0.001 (0.003) | 15.009 ** (1.015) | |
AIR | 0.018 (0.081) | 0.003 *** (0.001) | |
EC | 0.001 (0.002) | 0.466 | |
EI | 0.0139 *** (0.044) | Log-likelihood | 816.547 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Lin, Q.; Huang, C. Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture 2022, 12, 2025. https://doi.org/10.3390/agriculture12122025
Yu Z, Lin Q, Huang C. Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture. 2022; 12(12):2025. https://doi.org/10.3390/agriculture12122025
Chicago/Turabian StyleYu, Zhuohui, Qingning Lin, and Changli Huang. 2022. "Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective" Agriculture 12, no. 12: 2025. https://doi.org/10.3390/agriculture12122025
APA StyleYu, Z., Lin, Q., & Huang, C. (2022). Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture, 12(12), 2025. https://doi.org/10.3390/agriculture12122025