Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. General Description of the CERES-Wheat Model
2.3. Modification of KCS in CERES-Wheat
2.4. Model Calibration and Verification
2.5. Statistical Method
3. Results
3.1. Calibration and Validation of the Original CERES-Wheat Model
3.2. Evaluation of Modified CERES-Wheat Model
3.2.1. Performance of the Modified Crop Coefficient in the CERES-Wheat Model
3.2.2. Comparisons of Summary Output Variables Using Modified CERES-Wheat Model
3.2.3. Comparisons of Time-Series Output Variables Using Modified CERES-Wheat Model
3.3. Validation of Modified CERES-Wheat Model
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. World Food Situation. 2020. Available online: http://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 11 September 2022).
- Hammer, G.; Cooper, M.; Tardieu, F.; Welch, S.; Walsh, B.; van Eeuwijk, F.; Chapman, S.; Podlich, D. Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci. 2006, 11, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; Lopez-Lozano, R.; Van Der Velde, M.; Baruth, B. Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Zhao, G.; de Ruiter, J.; Brown, H.; Ausseil, A.G.; Meenken, E.; Ewert, F. The interactions between genotype, management and environment in regional crop modelling. Eur. J. Agron. 2017, 88, 106–115. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Koehler, A.K.; Challinor, A.J. Assessing uncertainty and complexity in regional-scale crop model simulations. Eur. J. Agron. 2017, 88, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Porwollik, V.; Muller, C.; Elliott, J.; Chryssanthacopoulos, J.; Iizumi, T.; Raye, D.K.; Ruane, A.C.; Arneth, A.; Balkovic, J.; Ciais, P.; et al. Spatial and temporal uncertainty of crop yield aggregations. Eur. J. Agron. 2017, 88, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Seidel, S.J.; Palosuo, T.; Thorburn, P.; Wallach, D. Towards improved calibration of crop models—Where are we now and where should we go? Eur. J. Agron. 2018, 94, 25–35. [Google Scholar] [CrossRef]
- Ritchie, J.R.; Otter, S. Description and performance of CERES-Wheat: A user-oriented wheat yield model. US Depart. Agric. 1985, 38, 159–175. [Google Scholar]
- Keulen, H.V.; Seligman, N.G. Simulation of Water Use, Nitrogen Nutrition and Growth of a Spring Wheat Crop. J. Agric. Sci. 1988, 27, 317–318. [Google Scholar]
- Van Laar, H.H.; Goudriaan, J.; van Keulen, H. Simulation of Crop Growth for Potential and Water; Simulation Reports CABO-TT, 27; CABO-DLO; TPE-WAU: Wageningen, The Netherlands, 1992. [Google Scholar]
- Porter, J.R.; Jamieson, P.D.; Wilson, D.R. Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat, and SWHEAT for non-limiting conditions of crop growth. Field Crop. Res. 1993, 33, 131–157. [Google Scholar] [CrossRef]
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 1998, 18, 311–346. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, P.D.; Semenov, M.A.; Brooking, I.R.; Francis, G.S. Sirius: A mechanistic model of wheat response to environmental variation. Eur. J. Agron. 1998, 8, 161–179. [Google Scholar] [CrossRef]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takac, J.; et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Dettori, M.; Cesaraccio, C.; Motroni, A.; Spano, D.; Duce, P. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crop. Res. 2011, 120, 179–188. [Google Scholar] [CrossRef]
- Zhou, L.L.; Liao, S.H.; Wang, Z.M.; Wang, P.; Yan, H.J.; Zhang, Y.H.; Zhang, L.; Zhao, X.; Lin, S.; Zhou, S.L. Simulation of soil water content for irrigation management based on-field and CERES-Wheat simulated data in winter wheat in the North China Plain. Irrig. Drain. 2019, 68, 753–764. [Google Scholar] [CrossRef]
- Dar, E.A.; Brar, A.S.; Dar, S.A.; Aljuaid, B.S.; El-Shehawi, A.M.; Rashid, R.; Shah, Z.A.; Yousuf, A.; Bhat, M.A.; Ahmed, M.; et al. Quantitative response of wheat to sowing dates and irrigation regimes using CERES-Wheat model. Saudi J. Biol. Sci. 2021, 28, 6198–6208. [Google Scholar] [CrossRef]
- Si, Z.Y.; Zain, M.; Li, S.; Liu, J.M.; Liang, Y.P.; Gao, Y.; Duan, A.W. Optimizing nitrogen application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model. Agric. Water Manag. 2021, 244, 10. [Google Scholar] [CrossRef]
- Khan, G.R.; Alkharabsheh, H.M.; Akmal, M.; Al-Huqail, A.A.; Ali, N.; Alhammad, B.A.; Anjum, M.M.; Goher, R.; Wahid, F.; Seleiman, M.F.; et al. Split Nitrogen Application Rates for Wheat (Triticum aestivum L.) Yield and Grain N Using the CSM-CERES-Wheat Model. Agronomy 2022, 12, 1766. [Google Scholar] [CrossRef]
- Cui, J.T.; Ding, J.H.; Deng, S.; Shao, G.C.; Wang, W.G.; Wang, X.J.; Nebi, Y. Wheat Breeding Strategies under Climate Change based on CERES-Wheat Model. CMC Comput. Mat. Contin. 2022, 72, 6107–6118. [Google Scholar] [CrossRef]
- Liu, J.C. Risk assessment of possible impacts of climate change and irrigation on wheat yield and quality with a modified CERES-Wheat model. J. Water Clim. Change 2021, 12, 2444–2459. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, H.J.; Wang, Z.K.; Wang, X.K. Simulation of Climate Change Impacts on Phenology and Production of Winter Wheat in Northwestern China Using CERES-Wheat Model. Atmosphere 2020, 11, 681. [Google Scholar] [CrossRef]
- Long, X.X.; Ju, H.; Wang, J.D.; Gong, S.H.; Li, G.Y. Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8.5 during 2020–2050. Adv. Clim. Change Res. 2022, 13, 397–407. [Google Scholar] [CrossRef]
- He, J.Q.; Cai, H.J.; Bai, J.P. Irrigation scheduling based on CERES-Wheat model for spring wheat production in the Minqin Oasis in Northwest China. Agric. Water Manag. 2013, 128, 19–31. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Liu, Q.; Zhang, S.; Chen, X.; Ji, Y.; Liu, F.; Pulatov, A.; Feng, P. Response of wheat and maize growth-yields to meteorological and agricultural droughts based on standardized precipitation evapotranspiration indexes and soil moisture deficit indexes. Agric. Water Manag. 2022, 266, 107566. [Google Scholar] [CrossRef]
- Hafiza, B.S.; Ishaque, W.; Osman, R.; Aziz, M.; Ata-Ul-Karim, S.T. Simulation of wheat yield using CERES-Wheat under rainfed and supplemental irrigation conditions in a semi-arid environment. Agric. Water Manag. 2022, 264, 13. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, K.; Ilyas, A.; Habib-ur-Rahman, M.; Shakil, Q.; Hoogenboom, G. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture 2021, 11, 1166. [Google Scholar] [CrossRef]
- Alejo, L.A. Assessing the impacts of climate change on aerobic rice production using the DSSAT-CERES-Rice model. J. Water Clim. Change 2021, 12, 696–708. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Geethalakshmi, V.; Tamilmounika, R.; Sudarmanian, N.S.; Kaliaperumal, R.; Ramalingam, K.; Sivamurugan, A.P.; Mrunalini, K.; Yadav, M.K.; Quicho, E.D. Spatial Rice Yield Estimation Using Multiple Linear Regression Analysis, Semi-Physical Approach and Assimilating SAR Satellite Derived Products with DSSAT Crop Simulation Model. Agronomy 2022, 12, 2008. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, S.F.; Sun, H.Y.; Chen, S.Y.; Shao, L.W.; Liu, X.W. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Eur. J. Agron. 2013, 50, 52–59. [Google Scholar] [CrossRef]
- Yan, L.; Jin, J.M.; Wu, P.T. Impact of parameter uncertainty and water stress parameterization on wheat growth simulations using CERES-Wheat with GLUE. Agric. Syst. 2020, 181, 13. [Google Scholar] [CrossRef]
- Jiang, T.C.; Dou, Z.H.; Liu, J.; Gao, Y.J.; Malone, R.W.; Chen, S.; Feng, H.; Yu, Q.; Xue, G.N.; He, J.Q. Simulating the Influences of Soil Water Stress on Leaf Expansion and Senescence of Winter Wheat. Agric. For. Meteorol. 2020, 291, 14. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Goudriaan, J.; Ritchie, J.T.; van Keulen, H.; Stol, W. A comparison of the models AFRCWHEAT2, CERES-wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crop. Res. 1998, 55, 23–44. [Google Scholar] [CrossRef]
- Xiong, W.; Conway, D.; Holman, I.; Lin, E. Evaluation of CERES-Wheat simulation of Wheat Production in China. Agron. J. 2008, 100, 1720–1728. [Google Scholar] [CrossRef]
- Tian, Z.; Zhong, H.L.; Shi, R.H.; Sun, L.X.; Fischer, G.; Liang, Z.R. Estimating potential yield of wheat production in China based on cross-scale data-model fusion. Front. Earth Sci. 2012, 6, 364–372. [Google Scholar] [CrossRef]
- Yao, N.; Zhou, Y.; Song, L.; Liu, J.; Li, Y.; Wu, S.; Feng, H.; He, J. Parameter estimation and verification of DSSAT-CERES-Wheat model for simulation of growth and development of winter wheat under water stresses at different growth stages. Trans. Chin. Soc. Agric. Eng. 2015, 31, 138–150, (In Chinse with English Abstract). [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Li, N.; Yang, D.Q.; Ayantobo, O.O. Bias correction of precipitation data and its effects on aridity and drought assessment in China over 1961–2015. Sci. Total Environ. 2018, 639, 1015–1027. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Andales, A.A.; Ascough, J.C.I.; Hansen, N.C. Modeling of Full and Limited Irrigation Scenarios for Corn in a Semiarid Environment. Trans. ASABE 2011, 54, 481–492. [Google Scholar] [CrossRef]
- Soldevilla-Martinez, M.; López-Urrea, R.; Martínez-Molina, L.; Quemada, M.; Lizaso, J.I. Improving Simulation of Soil Water Balance Using Lysimeter Observations in a Semiarid Climate. Proced. Environ. Sci. 2013, 19, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Kheir, A.M.S.; Alrajhi, A.A.; Ghoneim, A.M.; Ali, E.F.; Magrashi, A.; Zoghdan, M.G.; Abdelkhalik, S.A.M.; Fahmy, A.E.; Elnashar, A. Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric. Water Manag. 2021, 256, 10. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Shelia, V.; Boote, K.J.; Singh, U.; White, J.W.; Hunt, L.A.; Ogoshi, R.; Lizaso, J.I.; Koo, J.; et al. Decision Support System for Agrotechnology Transfer (DSSAT); Version 4.7; DSSAT Foundation: Gainesville, FL, USA, 2017; Available online: https://DSSAT.net (accessed on 11 September 2022).
- Zhang, D.; Wang, H.G.; Li, D.X.; Li, H.R.; Ju, H.; Li, R.Q.; Batchelor, W.D.; Li, Y.M. DSSAT-CERES-Wheat model to optimize plant density and nitrogen best management practices. Nutr. Cycl. Agroecosyst. 2019, 114, 19–32. [Google Scholar] [CrossRef]
- Liu, J.C.; Feng, H.; He, J.Q.; Chen, H.X.; Ding, D.Y.; Luo, X.Q.; Dong, Q.G. Modeling wheat nutritional quality with a modified CERES-wheat model. Eur. J. Agron. 2019, 109, 9. [Google Scholar] [CrossRef]
- Ding, Z.L.; Ali, E.F.; Elmahdy, A.M.; Ragab, K.E.; Seleiman, M.F.; Kheir, A.M.S. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric. Water Manag. 2021, 244, 12. [Google Scholar] [CrossRef]
- Gunawat, A.; Sharma, D.; Sharma, A.; Dubey, S.K. Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment. Nat. Hazards 2022, 111, 2077–2096. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Ahuja, L.R.; Ma, L.; Timlin, D.J.; Stockle, C.O.; Boote, K.J.; Hoogenboom, G. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L.R., Reddy, V.R., Saseendran, S.A., Yu, Q., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2008; pp. 1–38. [Google Scholar]
- Ritchie, J.T.; Singh, U.; Godwin, D.C.; Bowen, W.T. Cereal growth, development and yield. In Understanding Options for Agricultural Production; Tsuji, Y.G., Hoogenboom, G., Thornton, P.K., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Thorp, K.R.; Hunsaker, D.J.; French, A.N.; White, J.W.; Clarke, T.R.; Pinter, P.J. Evaluation of the CSM-Cropsim-Ceres-Wheat Model as a Tool for Crop Water Management. Trans. Asabe 2010, 53, 87–102. [Google Scholar] [CrossRef]
- Sau, F.; Boote, K.J.; Bostick, W.M.; Jones, J.W.; Minguez, M.I. Testing and improving evapotranspiration and soil water balance of the DSSAT crop models. Agron. J. 2004, 96, 1243–1257. [Google Scholar] [CrossRef]
- Kang, S.Z.; Gu, B.J.; Du, T.S.; Zhang, J.H. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 2003, 59, 239–254. [Google Scholar] [CrossRef]
- He, J. Best Management Practice Development with the CERES-Maize Model for Sweet Corn Production in North Florida; University of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Li, Z.H.; He, J.Q.; Xu, X.G.; Jin, X.L.; Huang, W.J.; Clark, B.; Yang, G.J.; Li, Z.H. Estimating genetic parameters of DSSAT-CERES model with the GLUE method for winter wheat (Triticum aestivum L.) production. Comput. Electron. Agric. 2018, 154, 213–221. [Google Scholar] [CrossRef] [Green Version]
- He, J.Q.; Jones, J.W.; Graham, W.D.; Dukes, M.D. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agric. Syst. 2010, 103, 256–264. [Google Scholar] [CrossRef]
- Langensiepen, M.; Hanus, H.; Schoop, P.; Grasle, W. Validating CERES-wheat under North-German environmental conditions. Agric. Syst. 2008, 97, 34–47. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Dong, Q.G.; Li, L.C.; Peng, L.L.; Feng, H. Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China. Land Degrad. Dev. 2020, 31, 266–282. [Google Scholar] [CrossRef]
- Ben Nouna, B.; Katerji, N.; Mastrorilli, M. Using the CERES-Maize model in a semi-arid Mediterranean environment. New modelling of leaf area and water stress functions. Eur. J. Agron. 2003, 19, 115–123. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Xu, F.; Liu, J.; Chen, S.; Ma, H.J.; Chau, H.W.; Liu, D.; Li, M.; Feng, H.; et al. Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions. Agric. Water Manag. 2020, 229, 15. [Google Scholar] [CrossRef]
- Kang, S.; Payne, W.A.; Evett, S.R.; Robinson, C.A.; Stewart, B.A. Simulation of winter wheat evapotranspiration in Texas and Henan using three models of differing complexity. Agric. Water Manag. 2009, 96, 167–178. [Google Scholar] [CrossRef]
Cultivar | Sowing date | Treatment | Irrigation Amount (mm) | Harvest Date | Reference | Aim | ||||
---|---|---|---|---|---|---|---|---|---|---|
XiaoYan 22 (China) | 15/October/2012 15/October/2013 | Date | 12/15 | 3/15 | 4/15 | 5/1 | 5/15 | 2/June/2013 7/June/2014 | Yao et al. [37] | Modification |
I1D1 | - | - | 40 | 40 | 40 | |||||
I1D2 | 40 | - | - | 40 | 40 | |||||
I1D3 | 40 | 40 | - | - | 40 | |||||
I1D4 | 40 | 40 | 40 | - | - | |||||
I2D1 | - | - | 80 | 80 | 80 | |||||
I2D2 | 80 | - | - | 80 | 80 | |||||
I2D3 | 80 | 80 | - | - | 80 | |||||
I2D4 | 80 | 80 | 80 | - | - | |||||
CK | 80 | 80 | 80 | 80 | 80 | |||||
NEWTON (USA) | 16/October/1981 | Date | 4/6 | 4/20 | 4/27 | 23/6/1982 | DSSAT databases | Calibration | ||
T1 | - | - | - | - | - | |||||
T2 | - | - | - | - | - | |||||
T3 | - | - | - | - | - | |||||
T4 | 65 | 78 | 70 | - | - | |||||
T5 | 65 | 78 | 70 | - | - | |||||
T6 | 65 | 78 | 70 | - | - | |||||
MARIS FUNDIN (England) | 6/November/1974 | T1–T8 | - | - | - | - | - | 1/8/1975 | DSSAT databases | Calibration |
Parameter | Definition | Value | ||
---|---|---|---|---|
XiaoYan 22 | NEWTON | MARIS FUNDIN | ||
P1V | Days at the optimum vernalizing temperature required to complete vernalization (d) | 41 | 45 | 30 |
P1D | Photoperiod response (% reduction in rate/10 h drop in pp, %) | 93 | 75 | 83 |
P5 | Grain filling (excluding lag) phase duration (°C d) | 621 | 500 | 515 |
G1 | Kernel number per unit canopy weight at anthesis (# g−1) | 22 | 25 | 15 |
G2 | Standard kernel size under optimum conditions (mg) | 41.7 | 30.0 | 44.0 |
G3 | Standard, non-stressed mature tiller wt (incl grain) (g) | 1.0 | 2.0 | 3.2 |
PHINT | The interval between successive leaf tip appearances (°C d) | 130 | 95 | 100 |
Scheme | RMAE (%) | RRMSE (%) | ||||||
---|---|---|---|---|---|---|---|---|
HWUM | CWAM | HWAM | ET | HWUM | CWAM | HWAM | ET | |
KCDefault | 19.4 | 23.7 | 24.0 | 20.1 | 21.5 | 27.0 | 29.2 | 26.2 |
PT KCKang | 18.3 | 11.5 | 16.3 | 19.8 | 20.9 | 13.6 | 18.5 | 26.7 |
PT KCD | 18.1 | 10.0 | 15.1 | 20.3 | 20.8 | 12.2 | 17.4 | 27.1 |
PM KCKang | 18.5 | 8.6 | 17.5 | 21.5 | 21.2 | 9.8 | 21.0 | 30.7 |
PM KCD | 18.5 | 8.5 | 17.2 | 21.8 | 21.2 | 9.8 | 21.0 | 30.9 |
Scheme | RMAE (%) | RRMSE (%) |
---|---|---|
KCDefault | 22.6 | 27.5 |
PT KCKang | 16.5 | 19.9 |
PT KCD | 15.9 | 19.4 |
PM KCKang | 16.5 | 20.7 |
PM KCD | 16.5 | 20.7 |
Items | RMAE (%) | RRMSE (%) | ||||||
---|---|---|---|---|---|---|---|---|
HWUM | CWAM | HWAM | Averaged | HWUM | CWAM | HWAM | Averaged | |
a Default | 21.0 | 22.4 | 19.3 | 20.9 | 24.4 | 21.6 | 21.5 | 22.5 |
a KCKang | 23.9 | 21.0 | 16.0 | 20.3 | 28.2 | 24.6 | 26.2 | 26.3 |
a KCD | 25.2 | 21.2 | 16.7 | 21.1 | 29.2 | 25.0 | 26.7 | 27.0 |
b Default | 11.3 | 16.4 | 11.1 | 12.9 | 14.0 | 18.0 | 11.2 | 14.4 |
b KCKang | 9.9 | 13.6 | 11.7 | 11.7 | 12.2 | 17.1 | 11.9 | 13.7 |
b KCD | 9.3 | 13.7 | 11.8 | 11.6 | 11.9 | 17.1 | 12.0 | 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Ru, H.; Leng, X.; He, Z.; Ayantobo, O.O.; Javed, T.; Yao, N. Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions. Agriculture 2022, 12, 1902. https://doi.org/10.3390/agriculture12111902
Wei Y, Ru H, Leng X, He Z, Ayantobo OO, Javed T, Yao N. Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions. Agriculture. 2022; 12(11):1902. https://doi.org/10.3390/agriculture12111902
Chicago/Turabian StyleWei, Yingnan, Han Ru, Xiaolan Leng, Zhijian He, Olusola O. Ayantobo, Tehseen Javed, and Ning Yao. 2022. "Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions" Agriculture 12, no. 11: 1902. https://doi.org/10.3390/agriculture12111902
APA StyleWei, Y., Ru, H., Leng, X., He, Z., Ayantobo, O. O., Javed, T., & Yao, N. (2022). Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions. Agriculture, 12(11), 1902. https://doi.org/10.3390/agriculture12111902