# Drivers of Postharvest Loss among Citrus Farmers in Eastern Cape Province of South Africa: A Zero-Inflated Poisson (ZIP) Regression Model Analysis

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Conceptual Framework

## 3. Materials and Methods

#### 3.1. Study Area

^{2}of land, accounting for 13.8% of South Africa’s total land area. The province is situated at an altitude of between 600 and 1600 m as demarcated by the escarpment and thus experiences a mild climate that is suitable for citrus production [23]. Figure 2 shows the study area location.

#### 3.2. Sampling Procedure

#### 3.3. Data Analysis

#### 3.3.1. Estimating PHLs

#### 3.3.2. Empirical Modelling

## 4. Results

#### 4.1. Socio-Economic Characteristics

#### 4.2. ZIP Regression Results

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

AIC | The Akaike’s information criterion |

BIC | Bayesian information criterion |

CGA | Citrus Growers Association |

CRI | Citrus Research International |

ECM | Eastern Cape Midlands |

GAP | Good Agricultural Practices |

GDP | Gross domestic product |

GAIN | Global Agricultural Information Network |

IRR | Incidence risk ratio |

MLE | Maximum likelihood estimation |

OLS | Ordinary least squares |

OR | Odds ratio |

PHL | Postharvest loss |

PHLS | Postharvest loss score |

SDI | Simpson’s diversity index |

SRV | Sundays River Valley |

SSI | Shannon index |

TPHL | Total postharvest loss |

USDA | United States Department of Agriculture |

WPHLI | Weighted postharvest loss index |

ZIP | Zero-inflated Poisson |

## References

- Sikuka, W.; Caldwell, A. Citrus Annual. United States Department of Agriculture (USDA) and Global Agricultural Information Network (GAIN). Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Citrus%20Annual_Pretoria_South%20Africa%20-%20Republic%20of_12-15-2021.pdf (accessed on 19 April 2022).
- Mashau, M.E.; Moyane, J.N.; Jideani, I.A. Assessment of postharvest losses of fruits at Tshakhuma fruit market in Limpopo Province, South Africa. Afr. J. Agric. Res.
**2012**, 7, 4145–4150. [Google Scholar] [CrossRef] - Hussein, Z.; Fawole, O.A.; Opara, U.L. Harvest and postharvest factors affecting bruise damage of fresh fruits. Hortic. Plant J.
**2019**, 6, 1–13. [Google Scholar] [CrossRef] - Affognon, H.; Mutungi, C.; Sanginga, P.; Borgemeister, C. Unpacking postharvest losses in sub-Saharan Africa: A meta-analysis. World Dev.
**2015**, 66, 49–68. [Google Scholar] [CrossRef] [Green Version] - Ndaka, D.; Macharia, I.; Mutungi, C.; Affognon, H. Postharvest Losses in Africa-Analytical Review and Synthesis: The Case of Kenya; Technical Report; International Centre of Insect Physiology and Ecology (ICIPE): Nairobi, Kenya, 2012. [Google Scholar]
- Ngowi, E.R.; Selejio, O. Postharvest loss and adoption of improved postharvest storage technologies by smallholder maize farmers in Tanzania. Afr. J. Econ. Rev.
**2019**, 7, 249–267. [Google Scholar] - Debebe, S. Postharvest losses of crops and its determinants in Ethiopia: Tobit model analysis. Agric. Food Secur.
**2022**, 11, 13. [Google Scholar] [CrossRef] - Baker, G.A.; Gray, L.C.; Harwood, M.J.; Osland, T.J.; Tooley, J.B.C. On-farm food loss in northern and central California: Results of field survey measurements. Resour. Conserv. Recycl.
**2019**, 149, 541–549. [Google Scholar] [CrossRef] - Stathers, T.; Holcroft, D.; Kitinoja, L.; Mvumi, B.M.; English, A.; Omotilewa, O.; Kocher, M.; Ault, J.; Torero, M. A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nat. Sustain.
**2020**, 3, 821–835. [Google Scholar] [CrossRef] - Mukarumbwa, P.; Mushunje, A.; Taruvinga, A.; Akinyemi, B.; Ngarava, S. Factors influencing number of post-harvest practices adopted by smallholder vegetable farmers in Mashonaland East Province of Zimbabwe. Int. J. Sustain.
**2017**, 6, 1774–1790. [Google Scholar] - Kaminski, J.; Christiaensen, L. Post-harvest loss in sub-Saharan Africa. What do farmers say? Glob. Food Secur.
**2014**, 3, 149–158. [Google Scholar] [CrossRef] [Green Version] - Dodd, M.; Cronje, P.; Taylor, M.; Huysamer, M.; Kruger, F.; Lotz, E.; van der Merwe, K. A review of the postharvest handling of fruits in South Africa over the past twenty-five years. S. Afr. J. Plant Soil
**2010**, 27, 97–116. [Google Scholar] [CrossRef] [Green Version] - Kikulwe, E.M.; Okurut, S.; Ajambo, S.; Nowakunda, K.; Stoian, D.; Naziri, D. Postharvest losses, and their determinants: A challenge to creating a sustainable cooking Banana value chain in Uganda. Sustainability
**2018**, 10, 2381. [Google Scholar] [CrossRef] [Green Version] - Kantaroğlu, M.; Demirbaş, N. Technical and economic factors affecting losses in sweet cherry production: A case study from Turkey. Int. J. Fruit Sci.
**2020**, 20 (Suppl. 3), 1994–2004. [Google Scholar] [CrossRef] - Reddy, V.B.; Madhavi, G.B.; Reddy, V.C.; Reddy, K.G.; Reddy, M.C. Postharvest fungal spoilage in sweet orange (citrus sinensis) and acid lime (citrus aurentifolia swingla) at different stages of marketing. Agric. Sci. Dig.
**2018**, 28, 265–267. [Google Scholar] - Bundi, A.; Mburu, J.; Mbogoh, S.G.; Ambuko, J.L. Factors influencing the adoption of pre-harvest practices among mango farmers in Embu and Machakos counties, Kenya. Int. J. Postharvest Technol. Innov.
**2020**, 7, 56–72. [Google Scholar] [CrossRef] - Arah, I.K.; Harrison, A.; Kumah, E.K.; Ofori, H. Preharvest and postharvest factors affecting quality and shelf life of harvested tomatoes: A mini review. Int. J. Agron.
**2015**, 2015, 478041. [Google Scholar] [CrossRef] [Green Version] - Kahramanoglu, I. Trends in pomegranate sector: Production, postharvest handling, and marketing. Int. J. Agric. For. Life Sci.
**2019**, 3, 239–246. [Google Scholar] - Shee, A.; Mayanja, S.; Simba, E.; Stathers, T.; Bechoff, A.; Bennett, B. Determinants of postharvest losses along smallholder producers’ maize and Sweetpotato value chains: An ordered Probit analysis. Food Secur.
**2019**, 11, 1101–1120. [Google Scholar] [CrossRef] [Green Version] - Gitonga, Z.; De Groote, H.; Tefera, T. Metal silo grain storage technology and household food security in Kenya. J. Dev. Agric. Econ.
**2015**, 7, 222–230. [Google Scholar] - Ali, D.A.; Deininger, K.; Duponchel, M. Credit constraints and agricultural productivity: Evidence from rural Rwanda. J. Dev. Stud.
**2014**, 50, 649–665. [Google Scholar] [CrossRef] [Green Version] - Sawicka, B. Post-harvest losses of agricultural produce. Sustain. Dev.
**2019**, 1, 1–16. [Google Scholar] - Statistics South Africa (Stats SA). Provincial Profile: Eastern Cape Community Survey 2016; Report 03-01-08; Statistics South Africa: Pretoria, South Africa, 2018. Available online: https://cs2016.statssa.gov.za/wp-content/uploads/2018/07/EasternCape.pdf (accessed on 16 April 2022).
- Statistics South Africa (Stats SA). The Extent of Food Security in South Africa; Statistics South Africa: Pretoria, South Africa, 2019. Available online: http://www.statssa.gov.za/ (accessed on 20 May 2022).
- Roopa, S.; Rani, M.S. Questionnaire designing for a survey. J. Indian Orthod. Soc.
**2012**, 46, 37–41. [Google Scholar] [CrossRef] - Sanscartier, M.D. The craft attitude: Navigating mess in mixed methods research. J. Mix. Methods Res.
**2020**, 14, 47–62. [Google Scholar] [CrossRef] - Cheung, Y.B. Zero-inflated models for regression analysis of count data: A study of growth and development. Stat. Med.
**2002**, 21, 1461–1469. [Google Scholar] [CrossRef] [PubMed] - Fávero, L.P.L.; Belfiore, P.; Dos Santos, M.A.; Souza, R.F. Overdisp: A Stata (and Mata) package for direct detection of overdispersion in Poisson and Negative Binomial Regression Models. Stat. Optim. Inf. Comput.
**2020**, 8, 773–789. [Google Scholar] [CrossRef] - Payne, E.H.; Gebregziabher, M.; Hardin, J.W.; Ramakrishnan, V.; Egede, L.E. An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data. Commun. Stat. Simul. Comput.
**2018**, 47, 1722–1738. [Google Scholar] [CrossRef] - Abate, D.; Addis, Y. Factors affecting the intensity of market participation of smallholder sheep producers in northern Ethiopia: Poisson regression approach. Cogent Food Agric.
**2021**, 7, 1874154. [Google Scholar] [CrossRef] - Lambert, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics
**1998**, 34, 1–14. [Google Scholar] [CrossRef] - Cameron, C.; Trivedi, P. Micro-Econometrics: Methods and Application; Cambridge University Press: New York, NY, USA, 2005; pp. 9–11. [Google Scholar]
- Hardin, J.W.; Hilbe, J.M. Regression models for count data from truncated distributions. Stata J.
**2015**, 15, 226–246. [Google Scholar] [CrossRef] [Green Version] - Desmarais, B.A.; Harden, J.J. Testing for zero inflation in count models: Bias correction for the Vuong test. Stata J.
**2013**, 13, 810–835. [Google Scholar] [CrossRef] [Green Version] - Hall, D.B.; Zhang, Z. Marginal models for zero inflated clustered data. STAT Model
**2004**, 4, 161–180. [Google Scholar] [CrossRef] [Green Version] - Shi, X. A nondegenerate Vuong test. Quant. Econ.
**2015**, 6, 85–121. [Google Scholar] [CrossRef] [Green Version] - Kehinde, M.O.; Shittu, A.M.; Adewuyi, S.A.; Osunsina, I.O.O.; Adeyonu, A.G. Land tenure and property rights, and household food security among rice farmers in Northern Nigeria. Heliyon
**2021**, 7, e06110. [Google Scholar] [CrossRef] [PubMed] - Rachoń, L.; Bobryk-Mamczarz, A.; Szumiło, G. Mycotoxin contamination of grain of selected winter wheat genotypes. Pol. J. Agron.
**2016**, 25, 13–18. [Google Scholar]

**Figure 2.**Map showing Eastern Cape Province and the sampled municipalities. Source: Stats SA [23], The map was developed by the authors with the help of GIS experts.

Variable | Variable Description |
---|---|

Dependent | |

PHLS | A summed measure of PHLs (calculated in Equation (5)). |

Independent | |

Age | A continuous variable representing the age of the farmer. |

FarmE | A continuous variable showing the experience of the farmer in citrus production in years |

FarmS | A continuous variable showing the farm size in hectares |

Tree age | A continuous variable representing the age of a tree in years |

Yield | A continuous variable showing the average yield for the farm in tonnes |

Gender | Gender of the respondent is a categorical variable representing sex of the farmer (0 = Female, Male = 1) |

Education | A categorical variable showing the level of education attained by the respondent (1 = Tertiary, 2 = Secondary, 3 = Primary, 4 = No education) |

Marital | A categorical variable representing the marital status of the respondent (1 = Single, 2 = Married, 3 = Widow, 4 = Other) |

Extension | A categorical variable showing access to extension services agents (0 = None, 1 = Seldom, 2 = Moderate, 4 = Always) |

Cultivar | A categorical variable showing the citrus tree cultivar grown by the farmer (1 = Novas, 2 = Navels, 3 = Cara Cara, 4 = Lemons) |

Government | A dummy variable showing access to government support (0 = No, 1 = Yes) |

Credit | A dummy variable showing access to credit (0 = No, 1 = Yes) |

Curling | A categorical variable showing the major postharvest curling factors related to weather and climate change as experienced at the farm (1 = Minor injury, 2 = Wind damage, 3 = Long stem, 4 = Red scale, 5 = Creasing, 6 = Thrip damage) |

Challenge | A categorical variable showing the major constraining factors faced by the farmer (1 = High costs, 2 = Pests and diseases, 3 = Lack of reliable markets) |

Pruning | A categorical variable showing whether the farmer practices pruning (0 = No, 1 = Yes) |

Irrigation | A categorical variable showing the type of irrigation system used at the farm for managing weather induced losses (1 = Drip, 2 = Sprinkler, 3 = Flood) |

Tenure | A categorical variable showing the type of land tenure (1 = Own, 2 = Lease, 3 = Communal, 4 = Other) |

Labour | A categorical variable showing the type of labour available at the farm (1 = Permanent, 2 = Seasonal, 3 = Casual) |

Farmers Location | No. of Farmers | Share of Farmers (%) | No. in Sample |
---|---|---|---|

ECM | 40 | 15 | 22 |

Patensie | 90 | 33 | 45 |

SRV | 140 | 52 | 70 |

Total | 270 | 100 | 137 |

Equation | Narration and Sources |
---|---|

$\mathrm{SDI}=1-\left(\frac{{{\displaystyle \sum}}_{i=1}^{n}{n}_{i}\left({n}_{i}-1\right)}{N\left(N-1\right)}\right)\left(1\right)$ | Simpson’s diversity index (SDI): ${n}_{i}$is the contribution of each PHL dimension; N is the total postharvest loss for the farmer. Simpson’s index was used to estimate the diversity of the PHL dimensions in the sampled farming communities. The value of the index determines the extent of prevalence for different PHL dimensions in the farming community and how evenly distributed the population of each dimension is. |

$\mathrm{SI}=-{\displaystyle {\displaystyle \sum}_{i=1}^{n}}{P}_{i}{\mathrm{ln}P}_{i}\left(2\right)$ | Shannon index (SI): n is the number of PHL dimensions and ${P}_{i}$ is the occurrence of each of the PHL dimensions. The Shannon diversity index determines the extent of PHL dimensions diversity in the farming community. The index is closely related to the number of PHL dimensions and the evenness of their occurrence. |

$\mathrm{TPHL}={\displaystyle {\displaystyle \sum}_{i=1}^{n}}\left[{P}_{i}{+G}_{i}{+H}_{i}{+S}_{i}\right]\left(3\right)$ | Total postharvest loss (TPHL): this is a continuous variable where${P}_{i}$,${G}_{i}$, ${H}_{i}$, and ${S}_{i}$ are the PHLs (as percentages) due to picking, grading, handling, and secondary spoilage, respectively. |

$\mathrm{PHLS}\left(4\right)$ | These were the four dimensions of PHLs experienced by farmers, equal to sorting loss + picking loss + mechanical loss. Thus, 0 means no PHLs were encountered, while 1, 2, 3, and 4 indicate a farmer experienced 1, 2, 3, and 4 types of these PHLs, respectively. This was used as the count variable in the regression models. |

$\mathrm{WPHLI}=\frac{\mathrm{TPHL}}{\mathrm{TH}}\left(5\right)$ | TPHL is the total PHLs and TH is the total harvest. WTPHLI is a measure of the total loss due to postharvest management practices relative to the total yield at the farm. It shows the magnitude of the PHLs and how they compromise the net marketable yield. |

Variable | Mean | Variance | Difference Factor |
---|---|---|---|

PHLS_{total} | 0.3577 | 0.793 | 91% |

PHLS_{non-zeros} | 0.614 | 0.719 | 14.6% |

Model | ll (Null) | ll (Model) | df | AIC | BIC |
---|---|---|---|---|---|

Poisson | −114.8647 | −87.9755 | 28 | 231.951 | 313.711 |

ZIP | −106.1129 | −76.12845 | 34 | 220.257 | 294.536 |

Continuous Variables | ||||
---|---|---|---|---|

Variable | Mean | SD | Min | Max |

Experience | 16.102 | 7.059 | 5 | 34 |

Age | 51.971 | 8.895 | 29 | 65 |

Tree age | 17.891 | 6.588 | 5 | 31 |

Yield | 51.336 | 17.037 | 13 | 74 |

Land size | 62.990 | 42.181 | 10.09 | 215.78 |

Loss total | 4.143 | 1.191 | 0 | 60 |

Categorical variables | ||||

Variable | Frequency | Percentage | ||

PHLS | ||||

0 | 105 | 76.64 | ||

1 | 22 | 16.06 | ||

2 | 6 | 4.38 | ||

3 | 1 | 0.73 | ||

4 | 3 | 2.19 | ||

Gender | ||||

Male | 115 | 83.94 | ||

Female | 22 | 16.06 | ||

Marital status | ||||

Single | 50 | 36.50 | ||

Married | 25 | 18.25 | ||

Widow | 27 | 19.71 | ||

Other | 35 | 25.55 | ||

Land tenure | ||||

Own | 72 | 52.55 | ||

Lease | 36 | 26.28 | ||

Communal | 20 | 14.60 | ||

Other | 9 | 6.57 | ||

Irrigation | ||||

Drip | 58 | 42.34 | ||

Sprinkler | 64 | 46.72 | ||

Flood | 15 | 10.95 | ||

Labour | ||||

Permanent | 34 | 24.82 | ||

Seasonal | 55 | 40.15 | ||

Casual | 48 | 35.04 | ||

Extension | ||||

None | 23 | 16.79 | ||

Seldom | 31 | 22.63 | ||

Moderate | 55 | 40.15 | ||

Always | 28 | 20.44 | ||

Market access | ||||

Seldom | 33 | 24.09 | ||

Frequent | 97 | 70.80 | ||

Always | 7 | 5.11 | ||

Education | ||||

Tertiary | 54 | 39.42 | ||

Secondary | 34 | 24.82 | ||

Primary | 25 | 18.25 | ||

None | 24 | 17.52 | ||

Credit access | ||||

Yes | 74 | 54.01 | ||

No | 63 | 45.99 | ||

Pruning | ||||

Yes | 101 | 73.72 | ||

No | 36 | 26.28 | ||

Cultivar | ||||

Novas | 62 | 45.26 | ||

Navels | 30 | 21.90 | ||

Cara Cara | 8 | 5.84 | ||

Lemons | 37 | 27.01 | ||

Curling | ||||

Minor injury | 31 | 22.62 | ||

Wind damage | 33 | 24.09 | ||

Long stem | 13 | 9.49 | ||

Red scale | 28 | 20.44 | ||

Creasing | 17 | 12.41 | ||

Thrip damage | 15 | 10.95 | ||

Challenge | ||||

High costs | 61 | 44.53 | ||

Pests and diseases | 45 | 32.85 | ||

Lack of reliable markets | 31 | 22.63 |

Cultivar | Curling Factors | Simpson’s Index Cluster | Novas | Navels | Cara Cara | Lemons |
---|---|---|---|---|---|---|

Postharvest curling factors * Postharvest loss diversity cluster | Minor injury | 1 | 0.73 | - | - | - |

2 | 2.19 | 0.73 | - | 0.73 | ||

3 | 3.65 | 1.46 | 1.46 | 4.38 | ||

Wind damage | 1 | 2.92 | - | - | - | |

2 | 2.19 | 1.46 | - | 5.84 | ||

3 | 6.57 | 6.57 | 1.46 | 2.19 | ||

Long stem | 1 | - | - | - | - | |

2 | 5.11 | 1.46 | - | 0.73 | ||

3 | 2.92 | 1.46 | 0.73 | 0.73 | ||

Red scale | 1 | 0.73 | - | - | - | |

2 | - | - | - | 1.46 | ||

3 | 2.92 | 1.46 | - | 4.38 | ||

Creasing | 1 | 1.46 | - | - | - | |

2 | 3.65 | 0.73 | - | - | ||

3 | 2.92 | 3 | 0.73 | 5.11 | ||

Thrip damage | 1 | - | - | - | - | |

2 | 2.19 | 0.73 | - | 0.73 | ||

3 | 5.11 | 3.65 | 1.46 | 0.73 |

ZIP Model | IRR/OR | |||
---|---|---|---|---|

Variable | Coef. | Robust (Std. Err.) | Coef. | Std. Err. |

Count component | ||||

Gender_male | −0.015 | 0.634 | 0.985 | 0.625 |

Marital_married | −1.685 ** | 0.859 | 0.185 ** | 0.159 |

Marital_widow | 0.477 | 0.559 | 1.611 | 0.902 |

Marital_other | −0.969 | 0.605 | 0.379 | 0.229 |

Tenure_lease | 1.734 * | 1.047 | 5.666 * | 5.933 |

Tenure_communal | 2.027 | 1.272 | 7.589 | 9.652 |

Tenure_other | 0.460 | 0.879 | 1.584 | 1.392 |

Irrigation_sprinkler | 1.681 *** | 0.554 | 5.371 *** | 2.977 |

Irrigation_flood | 0.374 | 1.341 | 1.453 | 1.949 |

Labour_seasonal | 1.270 ** | 0.522 | 3.562 ** | 1.858 |

Labour_casual | 1.566 *** | 0.488 | 4.784 *** | 2.333 |

Extension_seldom | −1.433 | 1.132 | 0.238 | 0.269 |

Extension_moderate | −1.985 | 1.207 | 0.137 * | 0.166 |

Extension_always | −3.866 *** | 1.356 | 0.021 *** | 0.028 |

Market_frequent | 0.970 | 0.432 | 2.639 | 1.139 |

Market_always | 2.188 *** | 0.841 | 8.914 *** | 7.494 |

Education_secondary | −1.707 *** | 0.636 | 0.181 *** | 0.115 |

Education_primary | −1.910 | 0.887 | 0.148 | 0.131 |

Education_none | −0.735 | 0.615 | 0.479 | 0.295 |

Credit_none | −2.128 * | 1.236 | 0.119 * | 0.147 |

Prunning_none | 1.464 *** | 0.430 | 4.322 *** | 1.859 |

Cultivar_Navels | 0.811 | 0.655 | 2.251 | 1.475 |

Cultivar_Caracara | −1.041 | 0.769 | 0.353 | 0.271 |

Cultivar_lemons | 1.560 *** | 0.389 | 4.759 *** | 1.853 |

Constant | −0.779 | 1.943 | 0.459 | 0.892 |

Logit component | ||||

Yield | −0.236 *** | 0.072 | 0.789 * | 0.429 |

Credit_none | −3.249 * | 1.879 | 1.037 ** | 0.520 |

Extension_seldom | −4.757 | 1.646 | 2.348 | 0.099 |

Extension_moderate | −5.021 | 1.655 | 1.945 ** | 1.058 |

Extension_always | −9.901 * | 5.322 | 0.886 | 0.524 |

Tree_age | −0.277 * | 0.121 | 1.323 ** | 0.663 |

Cultivar_Navels | 6.931 | 2.143 | 1.389 | 0.704 |

Cultivar_Caracara | 4.571 ** | 1.400 | 0.009 ** | 0.021 |

Cultivar_lemons | 6.339 *** | 1.862 | 2.348 * | 0.949 |

Experience | −0.299 | 0.125 | 0.889 | 0.427 |

Age | 0.172 * | 0.098 | 0.789 ** | 0.376 |

Constant | 13.464 *** | 3.927 | 4.036 *** | 1.297 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nohamba, S.; Musara, J.P.; Bahta, Y.T.; Ogundeji, A.A.
Drivers of Postharvest Loss among Citrus Farmers in Eastern Cape Province of South Africa: A Zero-Inflated Poisson (ZIP) Regression Model Analysis. *Agriculture* **2022**, *12*, 1651.
https://doi.org/10.3390/agriculture12101651

**AMA Style**

Nohamba S, Musara JP, Bahta YT, Ogundeji AA.
Drivers of Postharvest Loss among Citrus Farmers in Eastern Cape Province of South Africa: A Zero-Inflated Poisson (ZIP) Regression Model Analysis. *Agriculture*. 2022; 12(10):1651.
https://doi.org/10.3390/agriculture12101651

**Chicago/Turabian Style**

Nohamba, Siphiw’okuhle, Joseph P. Musara, Yonas T. Bahta, and Abiodun A. Ogundeji.
2022. "Drivers of Postharvest Loss among Citrus Farmers in Eastern Cape Province of South Africa: A Zero-Inflated Poisson (ZIP) Regression Model Analysis" *Agriculture* 12, no. 10: 1651.
https://doi.org/10.3390/agriculture12101651